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Abstract—Nonlinear image warping or image resampling is
a necessary step in many current and upcoming video appli-
cations, such as video retargeting, stereoscopic 3-D mapping,
and multiview synthesis. The challenges for real-time resampling
include not only image quality but also available energy and
computational power of the employed device. In this paper, we
employ an elliptical-weighted average (EWA) rendering approach
to 2-D image resampling. We extend the classical EWA frame-
work for increased visual quality and provide a very large scale
integration architecture for efficient view rendering. The resulting
architecture is able to render high-quality video sequences in
real time targeted for low-power applications in end-user display
devices.

Index Terms—Elliptical-weighted average (EWA) splatting,
image-based rendering, image sampling, memory architecture,
very large scale integration (VLSI), video signal processing.

I. Introduction

V ISUAL COMMUNICATION has become ubiquitous.
Today, we consume visual content on a broad range

of displays, from large scale cinema screens, television sets,
and personal computer screens to various types of mobile
devices. Pixel resolution, aspect ratios, and frame rates of
corresponding displays vary significantly. Also, capabilities
of terminal devices greatly differ in terms of computational
power, memory, and battery lifetime. Furthermore, the de-
livery of visual content is carried out over a large range
of communication channels and protocols. To cope with the
resulting heterogeneous environment in visual communication,
scalable video coding (SVC) techniques efficiently represent
and encode the same video content in different formats [1].
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Channels and terminals may pick the right bits from the
scalable stream to adapt to given capabilities and conditions.
However, SVC still couples content creation to consumption
and does not handle all possible cases.

The desired decoupling can be achieved if the terminal
device is able to render a video in the desired display for-
mat. In this context, content-aware video retargeting recently
received a lot of attention [2]; to change the aspect ratio of a
video, the frames are transformed in a nonlinear fashion such
that visually important regions keep their aspect ratio, while
distortions are hidden in visually less important regions (see
Fig. 1). High-quality nonlinear image warping (rendering) in
the terminal device is a crucial component in such processing.

Further, the advent of stereoscopic 3-D (S3D) for home
entertainment and mobile applications creates new challenges
for end-user devices in terms of rendering and view synthesis
[3]. Depth impression in S3D is a sensitive illusion that
largely depends on the display size and viewing distance.
Disparity mapping allows for (nonlinearly) adapting the depth
impression of S3D content based on viewing conditions or user
preferences [4], [5]. This enables, for instance, a depth button
on the remote control of a 3-D TV set, similar to brightness
or color controls today. Also, disparity mapping requires view
synthesis, which can be realized by nonlinear image warping.

Finally, next generation visual communication applications
will require even more sophisticated forms of view synthesis
and rendering [3]. Multiuser autostereoscopic displays require
a multiview signal as input, which can be generated from S3D,
for instance, by nonlinear image warping [6]. Free viewpoint
video applications allow the user to select his own viewpoint
and direction, which requires synthesis of the corresponding
view [7], [8]. This may be embedded into a teleimmersion or
telepresence application [9].

In consequence, all these advanced 2-D and 3-D video
processing applications mentioned so far require nonlinear
image warping. Most of such processing is realized today
on graphics processing units (GPUs), which are the natural
choice for rendering applications [10]. Although rendering
on GPUs achieves high performance, GPUs consume several
hundred watts. Also, GPUs are neither cheap nor small in
size and hence ill-suited for many end-user devices, such as
smart phones or televisions. Further, the recently appearing
mobile GPUs trade computational power for energy efficiency,
but always remain less efficient than custom architectures due
to the programmability overhead. In this paper, we therefore
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Fig. 1. Example of EWA rendering used for aspect ratio retargeting [2].
Refer to Fig. 17 for details. (Image courtesy of A. Malone.)

present a custom hardware architecture to replace GPUs in
the context of nonlinear image warping, similar to the work
presented in [11] and [12] for point rendering. Our design
enables the above-mentioned advanced applications at low cost
and low power.

Algorithms for nonlinear image warping, resampling or
texture mapping, have been extensively covered in the liter-
ature [13], [14]. Among those algorithms, elliptical-weighted
average (EWA) filters provide a good tradeoff between visual
quality and computational complexity, especially for nonlinear
transformations [10], [15], [16]. Iterative methods such as
[15] or [17] can provide even better quality, but they also
involve much higher computational complexity and are less
well suited for hardware implementation. The often-used bi-
linear filtering, for which also very large scale integration
(VLSI) implementations have been proposed (such as in [18]),
provides fair quality at low computational complexity for
linear transformations, but can lead to poor results for non-
linear transformations. We therefore select the EWA splatting
algorithm [19] as a starting point of our work. The main
algorithmic drawback of EWA filters, i.e., overblurring, can
be extenuated by careful adjustment of the filter parameters,
which is addressed in this paper. We also show that EWA
splatting can be efficiently implemented in VLSI in contrast
to iterative high-quality methods or computationally intensive
supersampling techniques.

A. Contributions

This paper consists of two parts: an analysis and optimiza-
tion of the EWA splatting algorithm, and a corresponding
VLSI architecture for real-time nonlinear warping. First, we
extend the traditional EWA splatting algorithm by showing
how to optimally choose the filter parameters and by providing
an adaptive scheme that optimizes the tradeoff between blur-
ring and aliasing. Also, to practically deal with the infinite
impulse response of EWA filters, we show how to select
cutoff points in the rendered target space. Second, to provide
a low-power, low-cost, and small size solution, we propose
a VLSI architecture of the derived EWA splatting algorithm

for real-time, high-resolution nonlinear warping. To cope with
the large memory bandwidth requirements of EWA splatting,
we propose a two-level caching architecture that significantly
reduces the required memory bandwidth. Further, we investi-
gate various number formats for EWA splatting. Finally, we
provide area and performance results for a fabricated design
in a 180-nm CMOS process.

B. Outline

The remainder of this paper is structured as follows. Sec-
tion II reviews the basics of image resampling and EWA
splatting in particular. In Section III we derive and discuss
the optimum EWA filter parameters. Section IV summarizes
the data flow of the implemented EWA splatting design and
the assumptions made for the VLSI architecture. Section V
explains the hardware details of the EWA splatting, with
a particular emphasis on arithmetic precision and the pro-
posed caching architecture. Section VI provides rendering
quality results as well as ASIC performance and complexity
results.

II. Background: Image Rendering and

EWA Splatting

In this section, the necessary basics of image-based EWA
rendering are summarized, based on [19] and references
therein. In Section III, we show how to set the parameters
of the rendering formulas to maximize the rendering quality.

A. Notation

The following notation conventions and symbols are used
throughout this paper. Scalars are represented by lower-case
letters, column vectors by bold-face lower-case letters, and
matrices by uppercase letters. The entry in the ith row and
jth column of a matrix A is denoted as ai,j . The continuous
convolution is denoted by a ∗ symbol. The Dirac-delta dis-
tribution is denoted by δ(x), with

∫
δ(x)f (x)dx = f (0). The

L2 norm of a square integrable function f (x) is denoted and
defined as ||f (x)||2 =

∫
Df

|f (x)|2dx, where Df is the domain
of f (x). |A| denotes the determinant of A.

B. Rendering

Given a 2-D source image and a transformation function
assigning a target coordinate to each source coordinate, a target
image is rendered by mapping each source pixel position into
a target pixel position and subsequently resampling the pixel
values on an integer grid.

Let uk ∈ N
2 be the kth discrete pixel position with

intensity wk in a uniformly sampled source image. The source
image grid uk is an integer pixel grid with finite dimensions.
The domain of the source image index k is denoted as
Ds = {1, . . . , WsHs} with image width Ws and image height
Hs. The rendering process transforms an arbitrary pixel loca-
tion u in the source image into a target pixel position x

x = m(u)

where m is an arbitrary mapping (see Fig. 2). Assuming an
integer grid for the source pixel positions u, the transformed
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Fig. 2. EWA splatting or EWA target space rendering. Each source pixel is
mapped into a screen pixel according to its spatially and temporally varying
affine warp function Jk .

positions will generally not form an integer grid. Therefore,
we introduce the continuous source image

fs(u) =
∑
k∈Ds

wkδ(u − uk) ∗ fi(u)

=
∑
k∈Ds

wk

∫
R2

δ(τ − uk)fi(u − τ)dτ

=
∑
k∈Ds

wkfi(u − uk)

where fi(u) is a 2-D interpolation function. Using the contin-
uous source image and the pixel transformation mapping, the
target image is

fc(x) =
∑
k∈Ds

wkfi(m
−1(x) − uk).

In order to be displayed, fc(x) must be sampled on a
uniform integer grid. To avoid aliasing during this sampling
step, an antialiasing filter h(x) is applied

fc,aa(x) = fc(x) ∗ h(x)

=
∫
R2

∑
k∈Ds

wkfi(m
−1(τ) − uk)h(x − τ)dτ. (1)

Equation (1) provides the rendered target image for arbitrary
interpolation filters, antialiasing filters, and mappings. Thus,
generating an output image can be done by evaluating fc,aa(x)
on a 2-D integer grid. To make the evaluation computationally
tractable in real time, an approximation to the mapping func-
tion and a specific set of filters are discussed in the following.

C. Linearization

The general mapping function m(u) can be linearly
approximated with a Taylor expansion around an integer grid
position uk

x = m(u) ≈ m(uk) + Jk · (u − uk)

where Jk is the 2 × 2 Jacobian matrix of m at position
uk. The approximation error is small if the interpolation
function has compact support around uk (e.g., Gaussians)
since the approximation is most precise in the vicinity of uk.
Rearranging the expression into

u = m−1(x) ≈ J−1
k · (x − m(uk)) + uk

and substituting the approximation into (1) yields

f̃c,aa(x) =
∫
R2

∑
k∈Ds

wkfi(J
−1
k τ)h(x − m(uk) − τ)dτ. (2)

D. EWA Splatting

EWA splatting employs multidimensional elliptical Gaus-
sian filters. For a covariance matrix V a Gaussian filter is
defined as

GV (x) :=
1

2π|V |1/2
e−1/2xT V−1x. (3)

Thus, in the EWA splatting setup, the antialiasing filter is a
2-D Gaussian while the transformed interpolation filter is a
Gaussian under an affine transformation

h(x) = GVa (x)

fi(J
−1
k x) = GVi (J

−1
k x) =

1

|J−1
k |GJkViJ

T
k

(x)

where Vi = diag(σ2
i,x, σ

2
i,y) and Va = diag(σ2

a,x, σ
2
a,y) are the

diagonal interpolation and antialiasing covariance matrices,
respectively. σ2

i,x is the interpolation variance in horizontal
direction, σ2

i is the variance of an isotropic covariance matrix:
Vi = σ2

i I2. Substituting the Gaussian filters into (2) yields the
EWA rendering or EWA splatting equation in target space

fEWA(x) =
∑
k∈Ds

wk

1

|J−1
k |GJkViJ

T
k +Va

(x − m(uk))

=
∑
k∈Ds

wk|Jk|
2π|C|1/2

e−1/2(x−m(uk))T C−1(x−m(uk)). (4)

To obtain (4) we use the fact that a convolution of two
Gaussians is again a Gaussian. The location index k of the
EWA covariance matrix C := JkViJ

T
k + Va is omitted for ease

of notation. Fig. 2 summarizes the EWA rendering process.

III. EWA Filter Parametrization

In order to achieve high-quality video rendering results, an
optimal filter parameterization for the general EWA rendering
equation (4) is crucial. In this section, we derive the optimal
Gaussian interpolation covariance matrix Vi and develop a
strategy to adaptively choose the antialiasing covariance matrix
Va to optimize the tradeoff between aliasing and blurring. Also,
we derive cutoff points to truncate the filter support, denoted
as bounding box of the Gaussian ellipse. The evaluation of the
filters can thus be delimited to the significant contributions and
the summation term is reduced to a small sampling region.

A. Interpolation and Antialiasing Parametrization

The Gaussian filter can introduce excessive blurring for
large variances and can lead to aliasing for small variances.
To achieve the best possible image rendering quality, we
therefore derive the optimal tradeoff between blurring and
antialiasing. We first determine the optimal covariance matrix
for the circular Gaussian interpolation filter in the (uniformly
sampled) source space fi,EWA(x) = GVi (x). From this result,
the optimal parameterization of the transformed interpolation
kernel in target space fi,EWA(J−1

k x) follows immediately. The
parametrization of the antialiasing filter by itself reuses the
same values as determined for the interpolation filter in source
space. However, due to the convolution with the target space
interpolation filter, the resulting resampling filter is locally
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Fig. 3. (Normalized) impulse responses of ideal (sinc) and Gaussian
low-pass filters with different interpolation variances. (a) Time domain.
(b) Frequency domain.

adaptive. Hence, an optimal parametrization requires an adap-
tive antialiasing strategy, which we propose in the subsequent
section.

1) Interpolation in Source Space: To find a good tradeoff
for the interpolation covariance matrix Vi, we minimize the
mean squared error (MSE) between the EWA filter and an
ideal low pass filter. The ideal low-pass filter is a 2-D sinc
function fi,ideal(x) = sinc(x)sinc(y), which corresponds to a
2-D rectangular function in the frequency domain

Ffi,ideal(x) =: f̂i,ideal(p) =
1

2π
rectπ(p)rectπ(q)

where p = (p, q)T is a point in the 2-D angular frequency
space and rectπ(p) = 1 if |p| ≤ π and 0 else; F is the Fourier
transform operator [20].

The Fourier transform of the EWA interpolation filter in
source space is

f̂i,EWA(p) =
1

2π
exp

(
−σ2

i (p2 + q2)

2

)

where Vi = σ2
i I2, and σ2

i is the interpolation variance. Note that
the optimal source space covariance matrix Vi is isotropic, as
the sampling in source space is assumed to be uniform.

In order to compare the EWA kernel and the ideal sinc
kernel, we calculate their MSE

mse(σi) = ||fi,ideal(x) − fi,EWA(x)||2
= ||f̂i,ideal(p) − f̂i,EWA(p)||2
∝ ||rectπ(p)rectπ(q) − exp(−σ2

i /2(p2 + q2))||2
∝ 1 +

1

4πσ2
i

(
1 − 4 · erf

(
πσi√

(2)

))
(5)

where the first step follows directly from Parseval’s theorem,
and where erf(x) is the Gaussian error function. The best
(least-squares) tradeoff between antialiasing and blurring can
be obtained by choosing an interpolation variance such that the
mse(σi) is minimized. Numerical minimization of (5) yields
the optimal tradeoff in the least-squares sense

σ̂i = argminσi
(mse(σi)) ≈ 0.39.

A comparison of this ideal EWA low-pass filter to other EWA
filters is plotted in Fig. 3. Note that using the (ideal) sinc
directly is not optimal in practice due to its slow decay and
hence large support. A necessary truncation (due to complexity
constraints) would lead to severe filter quality degradations
(e.g., Gibbs oscillations).

Fig. 4. Different steps of EWA splatting in the frequency domain.
(a) Source space. (b) Target space. (c) Applying antialiasing in target space.
The transformed axes are not necessarily the principal axes of the ellipse in
target space. Therefore, the transformation is diagonalized into an orthonormal
basis. An antialiasing rule is derived with the main axes, which scales the axes
if aliasing is detected in a specific direction.

2) Interpolation in Target Space: In the EWA splatting
case, we are not interested in the source space parametrization
but in the target space parametrization. The target space
parameterization fi,EWA(J−1

k x) can be directly derived from
the source space parameterization. Consider the following
transformation property [21] of Fourier transforms: if f̂ (p)
is the Fourier transform of f (x) and A ∈ R2×2 an invertible
matrix, then

Ff (Ax) =
1

|A| f̂ (A−T p).

Hence, the MSE in target space reformulates to

mse(σi) = || 1

|J−1
k | (f̂i,ideal(J

T
k p) − f̂i,EWA(JT

k p))||2.

An optimization will yield the same σ̂i as found for the source
space optimization (set p′ = JT

k p). Intuitively, the transfor-
mation JT

k will transform the optimal source interpolation
covariance to the optimal destination interpolation covariance.

3) Antialiasing: The complete EWA resampling opera-
tion (4) is location dependent, i.e., the EWA filter is a locally
adaptive filter. Convolving the location-dependent interpola-
tion filter with an antialiasing filter results in a new EWA
filter with a location-dependent covariance matrix. Thus, the
choice of an optimal Va depends on the interpolation variance
in target space: JkViJ

T
k . That is, there is no single Va that

optimizes the EWA splatting operation. For instance, if we set
the sum of σi and σa to σ̂i, we have good filtering performance
in regions where there is no scaling, but in areas with strong
minifications, aliasing artifacts will appear. Setting σa larger
introduces unnecessary blurring in regions with magnification
[see Fig. 5(b) and (c)]. In summary, Va is locally adaptive and
requires an adaptive antialiasing strategy.

B. Adaptive Antialiasing

In the following, we derive a general close-form expression
for the ideal adaptive antialiasing covariance matrix. Instead
of using an MSE-based evaluation as used for the interpolation
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kernel, we analyze the resampling operation in the frequency
domain to derive the antialiasing covariance matrix. Aliasing
occurs when the 2-D frequency response of the transformed
interpolation kernel Ffi,EWA(J−1

k x) is larger than the 2-D
Nyquist frequency [20]. More specifically, aliasing occurs
when the frequency content exceeds the region delimited
by the 2-D rectangular function illustrated in Fig. 4(c). Our
adaptive antialiasing strategy detects if such aliasing occurs,
and locally adapts the nonisotropic antialiasing covariance
matrix Va = diag([σa,x, σa,y]) to avoid aliasing. In geometric
terms, the corresponding principal ellipse axes are scaled to
fit into the Nyquist rectangle. The principal axes of the ellipse
are the eigenvectors of the covariance matrix (this property
is denoted as principal axis theorem, valid for real symmetric
matrices, see [22, p. 285]).

1) Detecting Aliasing: To quantify the presence of aliasing,
we evaluate the frequency response at the intersection of
the principal axes of the transformed ellipse with the ideal
antialiasing filter. If this frequency, the response value is
large compared to the optimal Gaussian (σ̂i), we will have
aliasing. The transformation matrix C̃ = JkViJ

T
k does reveal

the transformation axes, but not the principal axes of the target
space Gaussian kernel [see Fig. 4(b) and (c)]. The principal
axes are obtained with an eigen decomposition C̃ = Q�QT ,
where � contains the magnitudes and Q the orthogonal
directions of the principal axes.

We are interested in the intersection point of axis and ideal
low-pass filter; hence, we only need the axes directions. One
direction is given by α = q1,2/q1,1, the second is −α−1 since
the axes are orthogonal. Evaluating the decomposition yields

α =
2c̃1,2

c̃1,1 − c̃2,2 −
√

4c̃2
1,2 + (c̃1,1 − c̃2,2)2

.

Thus, the two intersection points of the EWA ellipse and
the ideal low-pass filter are p1 = (1, α)T and p2 = (−α, 1)T

for |α| < 1 or else p1 = (α−1, 1)T and p2 = (1, −α−1)T . If the
value of the Gaussian filter at the intersection with an ideal
low-pass filter is larger than the value of the optimal Gaussian
kernel, there is aliasing. Hence, the condition for aliasing is

exp(−1/2pT
l C̃pl) > exp(−1/2σ̂2

i ) l = 1, 2. (6)

2) Removing Aliasing: If the aliasing condition (6) holds,
the interpolation kernel needs to be convolved with an an-
tialiasing kernel. As stated earlier, this convolution leads to an
addition of the covariance matrices C = C̃+Va. The antialiasing
variance matrix can, therefore, be determined by substituting
C̃ with C and by solving for the upper bound of the inequality
(6)

exp(−1/2pT
l (C̃ + Va)pl) = exp(−1/2σ̂2

i ) l = 1, 2

pT
l Vapl = σ2

i − pT
l C̃pl l = 1, 2.

Combining the equation above with the condition for
antialiasing yields(

p2
1,1 p2

1,2
p2

2,1 p2
2,2

) (
σ2

a,x
σ2

a,y

)
=(

max(0, σ̂2
i − pT

1 C̃p1)
max(0, σ̂2

i − pT
2 C̃p2)

)
(7)

Fig. 5. Nonlinear, locally affine transformation of a test image, eval-
uated for different EWA filter parameterizations. (a) Initial image.
(b) {σi, σa} = 0.2. (c) {σi, σa} = 0.6. (d) {σi, σa} = 0.39. (e) σi = 0.39,
σa adaptive. Small uniform EWA variances reconstruct sharp images, but can
lead to aliasing in (b) areas of minification. Bigger EWA variances avoid these
aliasing artifacts, but lead to excessive blurring in (c) areas of magnification.
Using the optimal uniform EWA variance leads to (d) best tradeoff: aliasing is
suppressed effectively. However, some blurring is still visible on the magnified
areas. Our adaptive EWA formulation yields much sharper results in (e)
these areas, while still preserving the antialiasing filter properties in areas
of minification.

where pl = (p1,l, p2,l)T , and Va = diag(σ2
a,x, σ

2
a,y) represents the

antialiasing covariance matrix. Thus, solving the expression
for σ2

a,x and σ2
a,y provides the optimal choice for the EWA

antialiasing filter in target space.
We evaluate the quality improvement of our adaptive an-

tialiasing method using two different strategies. First, we
provide visual comparisons (Fig. 5) of different EWA pa-
rameterizations for a nonlinear, locally affine transformation.
As can be seen, using the ideal but constant parameterization
for antialiasing and interpolation filters individually leads to
blurring in magnified regions. Our adaptive EWA parameter-
ization yields much sharper results in these areas, while still
preserving the antialiasing filter properties in areas of minifi-
cation. A second evaluation consists in comparing frequency
responses after a one-to-one mapping and a minification with
different EWA parameters. Fig. 6 shows that our adaptive
strategy outperforms all other EWA parameters regarding over-
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Fig. 6. Frequency domain comparison of minification and one-to-one map-
pings of EWA rendering between fixed kernel sizes and our adaptive antialias-
ing strategy. The lowest frequency component is the center point of the mag-
nitude plots. (a) Initial image (512 × 512) [spatial (left) and frequency (right)
representation]. (b) One-to-one mapping (512 × 512). Left: {σi, σa} = 0.39,
right σi = 0.39, σa adaptive. In the left image, a considerable amount of
blurring is visible (attenuation of high frequencies), which is quantified by a
mean pixel error of approximately 3.3 between initial and rendered image.
Our adaptive strategy induces no blurring, initial and EWA rendered image
are identical (mean error equals 0). (c) Minification or downsampling of 3.2
(160×160). Left {σi, σa} = 0.2, right σi = 0.39, σa adaptive. In the left image,
aliasing is visible, our adaptive strategy successfully removes high-frequency
components.

blurring, illustrated with a one-to-one mapping, and aliasing,
appearing for minifications.

3) Complexity Reduction: For many video rendering ap-
plications, solving (7) for arbitrarily transformed covariance
matrices C̃ is not necessary; often, the image transformation Jk

only contains nonuniform scaling and no or very little shearing
and rotations. More specifically, this holds true when the off-
diagonal elements of C̃ are negligible compared to its diagonal
elements. An evaluation of the locally affine transformations of
several video retargeting examples shows that the off-diagonal
elements are indeed several orders of magnitude smaller than
the diagonal entries (c̃i,j/c̃i,i ≈ 10−3) on average and one
order of magnitude in the worst case. Hence, C̃ behaves like a
diagonal matrix, and the main directions of the ellipse are the
principal axes p1 = (1, 0)T and p2 = (0, 1)T . The antialiasing
condition (7) can then be reduced to

σ2
a,x = max(0, σ̂2

i − c̃1,1) | + c̃1,1

c̃1,1 + σ2
a,x︸ ︷︷ ︸

c1,1

= max(c̃1,1, σ̂
2
i )

and similar in the y direction.

Fig. 7. Geometric determination of the bounding box in target space. The
intersection points of a specific ellipse level [e.g., exp(−0.5)] with a rect-
angular bounding box in target space are to be determined. Therefore, the
intersections are transformed to source space where the ellipse simplifies to
a circle that makes the evaluation of the intersection easier.

Fig. 8. Architecture overview: the blue dotted line delimits the implemented
part. In a fully operational system, a specific external RAM interface needs
to be added as well as the normalization unit.

C. Bounding Box

In theory, the contributions of the Gaussian filter need to be
calculated over the entire image domain. In practice, however,
the Gaussian weights decay very fast, and all weights falling
below a predefined cutoff threshold can be discarded without
noticeable image artifacts [13]. In the following, we will derive
a tight axis-aligned bounding box that encloses the isoline of
a threshold value. All subsequent evaluations of the Gaussian
will be limited to this bounding box.

Assume that we strive to limit the evaluation to a cutoff
weight proportional to exp(−0.5). The EWA splatting equation
(4) defines the implicit evaluation as −0.5xT (JkViJ

T
k +Va)−1x,

where we omit the translational component without loss of
generality. Unfortunately, this quadratic form does not directly
reveal the explicit point transformation x = Ku, which can
be used to determine the exact bounding box. We therefore
decompose C = JkViJ

T
k + Va = KKT in order to obtain the

transformation K. Since Vi and Va are diagonal matrices, C is
symmetric and can be diagonalized into an orthonormal basis
[22]

C = Q�QT = KKT

where Q is orthogonal and � diagonal. Hence, K = Q
√

� is
uniquely obtained with the eigen decomposition.

Having obtained the explicit point transformation K, we
can now derive the bounding box delimiters (see Fig. 7). The
bounding box in target space is delimited by four straight lines
x = ±xb and y = ±yb, where x = (x, y)T is a point in target
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space. Consider the case x = xb; the equation can be rewritten
as (1, 0)x = xb. Transforming the target coordinates back into
source space yields

(1, 0)Ku = xb

k1,1u + k1,2v = xb (8)

with u = (u, v)T . Note that this expression resembles to a line
equation in source space with normal vector (1, −k1,1/k1,2)T .

In source space, the EWA filter kernel resembles the unit cir-
cle. Hence, the optimal bounding box line must be tangent to
the unit circle. This holds true because affine transformations
conserve lines and intersections [23]. Expressed analytically

u2 + v2 = 1 (9)

(u, v)(1, −k1,1/k1,2)T = 0 (10)

where the second equation is the condition for tangency. By
combining (8), (9), and (10), we obtain

xb = ±
√

k1,1
2 + k1,2

2.

Moreover, with

C = KKT =

(
k2

1,1 + k2
1,2 .

. k2
2,1 + k2

2,2

)

the bounding box equations simplify to

xb = ±√
c1,1

yb = ±√
c2,2

where the second equation follows from a similar reasoning for
yb. The bounding box rectangle then delimits the ellipse to a
cutoff value of exp(−0.5), since the rectangle delimits the unit
circle in source space. For other cutoff values, the bounding
box values can simply be scaled by sbb such that sbbxb and
sbbyb generate the desired cutoff values. Note that the same
result can be derived by applying (parts of) the results from
[24] to the 2-D case.

IV. System Overview

This section puts the EWA splatting algorithm described
above into a hardware context. To this end, we summarize
first the specifications for the reference implementation. Sub-
sequently, we tailor the data flow to the needs of a real-time
streaming application and provide a top level view on the
hardware architecture.

A. Specifications and Target Application

The EWA splatting setup is evaluated in the context of warp-
based video retargeting [2]. This application involves large
vertical and horizontal pixel deviations, which renders it an
excellent test-case for developing an architecture that is able
to handle even the most demanding warp kernels. Other ap-
plications, such as disparity mapping or multiview generation,
act much more locally and can therefore be considered a more
simple special case.

Our implementation targets high-definition (HD) TV. The
current HD TV standard is half HD (1280×720) at 25 frames
per second (f/s), denoted by 720p25. The implemented ASIC
is designed to support 720p25, but its architecture is easily
scalable to the upcoming full HD standard (1920 × 1080).

Algorithm 1 Employed EWA splatting algorithm
k = 1 . . . WsHs source image index
h = 1 . . . WtHt target image index
Input: pixel intensity wk, Jacobian Jk, target position

m(uk), default variances Vi = σ2
i I2, Va = σ2

aI2,
Output: fEWA(xh)
for k ∈ WsHs do

Calculate C̃ = (JkViJ
T
k )

if adaptive then
Determine Va

end
Calculate C−1 = (C̃ + Va)−1

Calculate ck = 1/(2π)|Jk|
√

|C−1|
Calculate bounding box :

√
c1,1,

√
c2,2

for xh in bounding box do
φ = ck · exp(− 1

2 (xh − m(uk)T )C−1(xh − m(uk)))

ρh ← ρh + φ

f̃EWA(xh) ← f̃EWA(xh) + φ · wk

end

end
for h ∈ WtHt do

Normalize fEWA(xh) = f̃EWA(xh)/ρh

end

B. Data Flow

The original EWA rendering equation (4) describes the cal-
culations to be performed for each output pixel. Unfortunately,
a straightforward mapping of this equation is incompatible
with the introduction of a bounding box to reduce complexity,
since identifying the subset of source pixels with relevant
contributions to a pixel in the target image is an extremely
complex task. Therefore, our approach reverses the flow such
that we accumulate the contributions of each source pixel to
the various different target pixels. The number of contributions
of each source pixel can now easily be limited by the bounding
box. However, due to this truncation and the fact that a Gaus-
sian is not a real interpolation filter, a postnormalization step
is required after the accumulation. Algorithm 1 summarizes
the main steps of the employed EWA splatting algorithm.

To match this modified data flow, we assume that pixels
of the source video sequence are streamed row-wise into the
architecture, for example through an HDMI or SDI interface.
The output image is constructed and stored in a frame buffer,
from where its pixels can be forwarded again to a standard
video interface.

C. Architecture Overview

Fig. 8 provides a high-level view on the architecture. The
inputs are the 8-bit gray-level1 pixel (wk) together with the

1The architecture remains identical for 24-bit RGB color or 8-bit gray-level
setups; only the total area and input/output (I/O) bandwidth change to process
three color channels in parallel.
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corresponding Jacobian transformation matrix (Jk) and the
target pixel location (m(uk)). The output of the architecture is
rendered pixels in the form of accumulated pixel contributions
and corresponding accumulation weights for off-chip renor-
malization. We use a generic RAM interface and a handshake
protocol to throttle the streaming input.

The architecture is subdivided into two main stages: an
arithmetic part calculates the pixel contributions and an ac-
cumulation part collects and adds up the contributions in the
target image. Since each source pixel contributes to several
pixels in the target image, a caching architecture is proposed
for the accumulation part to reduce the required memory band-
width to the target frame buffer that serves as an accumulator,
thus requiring read-modify-write operations. Double buffering
ensures that final readout and accumulation do not collide.

V. EWA Splatting VLSI Architecture

In this section, we provide details of the proposed architec-
ture of the EWA splatting algorithm shown in Fig. 8 and Algo-
rithm 1. We illustrate the involved hardware units and evaluate
different number formats. We introduce a caching scheme that
significantly reduces the required memory bandwidth.

A. EWA Arithmetic Part

The arithmetic part is structured into several parallel splat-
ting units, which allows for scaling the required splatting
throughput easily. A dispatcher distributes the incoming Ja-
cobian and pixel values to the different units. Each splatting
unit first generates a covariance matrix, determinants, and the
bounding box in the filter setup stage, and then rasterizes pixel
contributions on an integer grid delimited by the bounding box
(Fig. 9).

The filter setup stage is further divided into four pipelined
and parallel running substages, where each substage is al-
located a specific number of cycles before data are passed
onto the next pipeline stage. Thus, the filter setup stage has a
throughput determined by the number of cycles (eight cycles
are found to be a good choice). The multicycle architecture
is continued in the rasterizing part, where in each cycle one
of the contributions within the bounding box is evaluated.
The throughput can be increased or decreased by modifying
the number of splatting units at constant AT efficiency.2 The
benefit of the employed multicycle architecture over a fine-
grained pipelined systolic architecture is the low pipelining
area overhead and easy scalability with respect to the necessary
throughput.

1) Datapath Implementation: The datapath of a splatting
unit contains linear matrix operations and several nonlinear
functions (Figs. 9, 10). Two multiply-accumulate (MAC) units
calculate the covariance matrix C and the required determi-
nants |Jk| and |C|. The reduced-complexity version of adaptive
antialiasing comes at virtually no hardware overhead, since a
thresholding operation merely consists of a comparator. The
normalization factor 1/

√|C| of the Gaussian is efficiently

2The area-delay (AT) product is a standard metric in digital VLSI to
compare efficiency of hardware architectures.

Fig. 9. Architecture overview of EWA splatting unit (simplified). The black
bars denote pipelines stages, each stage operates for n (filter setup) or m

(rasterizer) cycles. The nonlinear functions are detailed in Fig. 10.

Fig. 10. Architecture of nonlinear function approximations. The constant
OFFSET of the fast inverse square root block depends on the integer width
of the input (= 127 − width + 1), for an explanation of the value 0x5F3759DF
see [25].

implemented with the fast inverse square root algorithm [25]
using multiplications and additions. Similarly, the square roots
in the bounding box calculation part

√
ci,i can be approximated

with the fast inverse square root z · 1/
√

z. The bounding box
is rounded to an integer grid such that the evaluation does
not need to be very accurate. The 2-by-2 matrix inversion of
the covariance matrix C is realized by multiplying the entries
of C with 1/|C| (and inverting the sign of the off-diagonal
elements). The inversion is realized with a coarse look-up table
(LUT) followed by four refining Newton iterations

zn+1 = 2 · zn − z2
n · a n = 0, . . . , 3

where a is the value to be inverted, zn is the result after
n iterations, and z0 is the initial LUT value. The sampling
points of the values in the LUT are logarithmically spaced
over the function domain to increase precision. The (base-2)
logarithmic lookup is obtained by addressing the number of
leading zeros. A third MAC unit realizes the multiplications
of ci,j by 1/|C|, the bounding box scaling sbb

√
ci,i, and the

multiplication of the normalization factors 1/(2π)|Jk||C|−0.5.
Finally, the exponential function in the rasterizer part is
realized with linear interpolation between uniformly spaced
precalculated supporting points.
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Fig. 11. PSNR of different number formats illustrated with one typical
example image. The abbreviation Qa.b stands for a fixed-point format with
a integer bits and b fractional bits, ea.b stands for a floating point with an a

bit exponent and b bits significand. The plot shows Q8.x and e5.x, where x

is determined by the x-axis of the plot.

2) Arithmetic Precision: To quantify the precision of the
nonlinear function approximations described in the previous
paragraph and to decide on the most efficient number format in
view of chip area and throughput, we compare various number
formats against the IEEE single precision standard (32-bit
floating point). The simulated number formats are custom-
fixed point and custom floating point formats defined by the
number of integer or fraction bits and significand or exponent
bits, respectively.

The PSNR for the complete EWA splatting system of the
custom number formats compared to single precision is shown
in Fig. 11. The specified data format is used for all arithmetic
operations in the data-path except for some well-defined
signals, such as I/Os. Due to the nonlinear approximations, the
PSNR ceils at a certain value. The ceil value, between 60 and
70 dB, is sufficiently high to conclude that the approximations
do not have a noticeable impact on the quality. Also, fixed-
point and floating-point formats converge to the same PSNR
value such that both formats are equivalent in terms of pre-
cision for the corresponding number formats. In terms of AT
efficiency, the fixed-point variant performs slightly better when
comparing an MAC unit with number formats at the same
PSNR value. Thus, we opted for a fixed-point architecture.

B. Accumulation and Caching

The main challenge of the accumulation part is the increased
bandwidth requirement on the framebuffer memory compared
to the bandwidth of the input pixels since the rasterizers
generate several pixels for each input pixel. Moreover, the
pixels to be accumulated over time are, in principle, arbitrary
distributed in the target image such that we need to buffer and
access the entire target image in a random-access fashion. To
reduce the bandwidth and the random-access pattern to the
frame buffer, the accumulation is realized in several stages,
which takes the form of a two-level cache.

1) Key Observations: The rectangular bounding boxes
access memory in blocks of neighboring pixels. Besides, since

Fig. 12. Typical accumulation buffer access patterns for the warped pixels
positions. The horizontal scanline order of the source image is transformed
to curved scanline orders in the target image, and no holes are formed by the
continuous warp function. Therefore, consecutive horizontal and vertical target
pixels will overlap. The zoomed windows show the incoming pixel bounding
boxes in detail, for three consecutive lines (red, green, and blue). Overlaps
are indicated by color blending of the different colors (see the legend).

source pixels are streamed in a scanline order, subsequent
target pixels typically exhibit large horizontal overlaps. The
same holds for vertically neighboring pixels. Our proposed
accumulation architecture, therefore, first absorbs neighboring
contributions both horizontally and vertically, and then writes
larger chunks of partially accumulated pixels into the exter-
nal memory. Also, since accumulation is mathematically an
associative and commutative operation, the complete accumu-
lation operation can be split into partial accumulations. This
property allows us to separate the accumulation into multiple
accumulation stages.

2) Analysis of Accumulation Bandwidth: The warp func-
tion usually transforms neighboring pixels from the input
image into neighboring pixels in the output image, which
leads to strong spatial correlation in the accesses to the off-
chip frame buffer. Fig. 12 provides an example for such an
access pattern. The strong correlation motivates an on-chip
accumulation buffer that stores several lines to take advantage
of both horizontal and vertical proximity. The effect of on-
chip buffers on external bandwidth is shown in Fig. 13. The
average splat size being a window of almost 3-by-3 pixels, we
see that with an on-chip buffer smaller than the average splat
size, we need almost nine times the bandwidth compared to
writing the image once. If the on-chip buffer is larger than
the average splat size, the horizontal proximity is exploited,
and thus the bandwidth is reduced by a factor of 3. Finally,
if the on-chip buffer covers more than three vertical lines,
vertical proximity can be exploited and the minimal possible
bandwidth is approached.

In addition to the on-chip accumulation buffer, two addi-
tional design choices are made to increase the accumulation
performance. The first design choice is motivated by the nature
of the nonlinear warping, where horizontal source lines can
possibly be rendered to (almost) arbitrary-shaped curves. If
the on-chip buffer is partitioned into multiple lines that span
the full image width, then variations in the vertical direction
beyond the number of lines within the on-chip buffer require
costly swap operations. We therefore split the accumulation
buffer into many 2-D blocks (tiles), where each block can
be individually addressed. The impact of block size and
total buffer size on bandwidth performance is summarized in
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Fig. 13. Bandwidth simulation of different sizes of the on-chip accumulation
buffers, performed for different scenes. The plot shows the mean values
with associated vertical error bars to indicate the standard deviation. The
accumulation buffer model is assumed to be ideal, where each tile is comprised
of 1x1 pixel (see Fig. 14). The external output bandwidth is normalized to
the bandwidth required to transmit one full frame buffer once, and therefore
a bandwidth of 1 can be considered optimal.

Fig. 14; the smaller the block size the lower the required
accumulation bandwidth but at the cost of higher address
complexity and hence increased critical path and chip area.
The specific block size configuration of our architecture will
be detailed in the next section.

The second design choice is motivated by the size of the
accumulation buffer, which is typically on the order of kB
to MB, and therefore needs to be realized using bandwidth-
limited on-chip SRAM blocks. While using such on-chip
buffers reduces the external memory bandwidth, it also shifts
the bandwidth bottleneck from external memory to the on-
chip memory blocks. We therefore introduce another level
of smaller-sized accumulation buffers, which can be realized
in high-bandwidth distributed memory resources that allow
concurrent access to all elements. Note that this two-level
approach has no impact on external bandwidth.

3) Architecture Details: As motivated before, our
architecture employs a multilevel accumulation strategy.
In a first stage neighboring and overlapping pixels of the
rasterizers are combined into several small and register-based
accumulation buffers. Next, the resulting chunks of spatially
adjacent pixels are accumulated in larger SRAM-based
accumulation buffers which can exploit larger vertical pixel
proximity by absorbing several target lines. In a final step,
the outputs are transferred and accumulated in the frame
buffer (external memory). In the best case, the last step does
not require an accumulation but only a write-out operation.
The proposed structure is shown in Fig. 15.

The two on-chip accumulators are detailed in the following
using cache terminology, i.e., they are referred to as level
1 (L1) and level 2 (L2) caches, respectively. Each cache is
composed of multiple tiles (blocks of pixels). The particularity
of our caches is that we do not replace the cache tiles with
data, but rather empty them and accumulate the content in the
next higher hierarchy. The address conversion from external
memory to the accumulation buffer is performed using a two
way set associative mapping. Table I summarizes potential
cache configurations for various resolutions.

Fig. 14. Effect of tile size and total on-chip buffer size on external memory
bandwidth, simulated for 720p images. The external output bandwidth is
normalized to the bandwidth required to transmit one full frame buffer once,
and therefore a bandwidth of 1 can be considered optimal. For our design, we
select a horizontal tile size of 32 and a vertical tile size of 2, with an overall
on-chip buffer size of 8*2048 pixels for 720p or 1080p images.

Fig. 15. Two-level accumulation architecture, and resulting cache configura-
tion for 720p. A third accumulation level (not shown in the figure) is realized
in the frame buffer.

Using two way set associative accumulation buffers, each
pixel address can potentially be mapped to two different cache
tiles. In comparison, direct address mapping uses predeter-
mined addresses for each external pixel address. In theory,
set associativity reduces the number of address collisions and
increases the flexibility of a cache, at the cost of an overhead in
storage of address tags and of increased addressing complexity.
In our case, the overhead of using two way set associativity is
negligible, but it also has only a minor effect on bandwidth. A
bigger advantage is the possibility of efficiently balancing the
L1–L2 transfers; if one of the two blocks within a set contains
a partial accumulation result, it gets flagged for swapping.
If several blocks contain one (or two) partial accumulation
result, an additional least recently used flag determines the
swap priority. This allows us to continuously transfer data
from the L1 to the L2 accumulation stage, and thus minimizes
cache write-out misses. This way, cache transfers can be
balanced better to achieve constant bandwidths at full capacity.
In summary, the two way associativity provides an efficient
mechanism to determine blocks that are most likely to produce
a cache write-out miss.
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TABLE I

Cache Configurations and Sizes for Different

Target Resolutions

L1 Cache L2 Cache
Memory type Flip-flop array Dual-port SRAM macro
Read ports (g/c) 32/64 and 128/256 bit 128/256 bit
Write ports (g/c) 32/64 bit 128/256 bit
Tile/block size 2×2 pixels 2 × 32 pixels

576p 720p 1080p
# tiles (eight lines) 8 256 320 480
size (eight lines, c) 256 B 128 kB 160 kB 240 kB
size (four lines, g) 128 B 32 kB

All the resolutions have widescreen 16:9 aspect ratio, the number indicating
the vertical resolution. “g” stands for gray level images, “c” for color
images. The last row (four lines, g) indicates the cache used in the
implemented ASIC. The cache is two way set associative.

VI. Results

In this section, we summarize the results, both in terms
of rendering quality and implementation results, and also
recapitulate the limitations of our architecture.

A. Throughput

For the following throughput evaluation, we use a clock
frequency of 133 MHz (synthesis result) and a frame rate of
25 (e.g., 720p25). One input pixel is assumed to generate nine
output pixels and each pixel is a 24-bit RGB value.

1) 720p: One splatting unit has a throughput of
6.65 MPixels/s. A 720p25 video stream requires a throughput
of 23 MPixels/s and thus four splatting units. The necessary
external memory bandwidth without caching is 2 × 9 ×
23MPixels/s, which amounts to 3.31 GB/s for 8 byte per
pixel (accumulated RGB values plus normalization weight).
The factor 2 comes from the read-modify-write operation of
the accumulation. A cache efficiency of 83% (2 × 1.5 the
minimal bandwidth) reduces the bandwidth to 550 MB/s. An
additional read or clear operation to the memory is further
necessary to account for the final read-out and clearing. An
L2 cache of eight lines with 1280 pixels per line (160 kB) is
necessary to reach the targeted cache efficiency (see Fig. 14).

2) 1080p and Beyond: For 1080p, the number of splatting
units and L1 caches needs to be doubled and the L2 cache
needs to be extended to line size of 1920 (240 kB). Also,
such an architecture allows for rendering 720p at higher frame
rates (720p50, 720p60). The architecture can be extended to
resolutions beyond 1080p if the interface bandwidth between
L1 and L2 cache is scaled accordingly.

3) Comparison to Software Implementation: In order to
put these numbers into context, we provide performance test
results of EWA rendering on a high-end CPU. The computa-
tion time depends on the chosen image resolution and the warp
type. For 720p, our C++ based implementation takes between
155 ms and 165 ms for different video retargeting sequences
on a high-end machine equipped with an Intel XEON 3.2 GHz
(W3565) processor and 24 GB RAM.

B. CMOS Implementation Results

The architecture described in Section V was implemented
in VHDL and was fabricated in the 180 nm (1P6M) CMOS
technology. A chip micrograph is provided in Fig. 16. The

Fig. 16. EWA video rendering chip micrograph with overlayed main blocks
and their corresponding size.

Fig. 17. Example of aspect ratio retargeting [2]. The retargeted image and
associated image warp are shown in comparison to uniform image scaling:
while uniform scaling visually distorts the image, the retargeting algorithm
keeps the visually important portions of the image undistorted. We show a
conversion from 16:9 to 4:3 aspect ratio (image courtesy of A. Malone).

design supports image resolutions up to 2048 × 2048. It
employs four splatting units to support 720p25 in splatting
performance. The implemented L2 cache is reported in Table I;
due to die size limitations the cache is reduced to four lines
of gray-valued 576p.

The ASIC has been successfully tested at 123 MHz, where
a power consumption of 300 mW has been measured. The
core voltage is 1.8 V and the I/O pad voltage is 3.3 V. The
core area is 6 mm2, which corresponds to 660 kGE. There are
64 data I/O pins and 56 power or ground pins.

C. Rendering Results

To illustrate the purpose and quality of EWA rendering, we
provide an example of 2-D image retargeting. The images in
Fig. 17 show an initial image with an aspect ratio of 16:9,
the content-aware retargeted 4:3 version, and the linear scaled
version for reference. The warps have been generated with a
framework similar to [2]. For more examples and explanations
on video retargeting, refer to [2] directly.

D. Discussion of Temporal Aspects

The target applications of the EWA rendering architecture
are real-time video applications. To render video, i.e., a se-
quence of correlated images, it is often not sufficient to render
the images individually, but temporal effects need to be taken
into account. Temporal artifacts occur when objects within
a video sequence are warped inconsistently in consecutive
images. A prominent example is a nonmoving object that is
warped into different positions in consecutive frames, which
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Fig. 18. Example of temporal stability of aspect ratio retargeting. Four con-
secutive frames of a video sequence with slow camera are shown, both without
temporal coherence constraints and with temporal coherence constraints. To
illustrate the effect of the coherence constraints better, we show a zoomed
portion of the image with a vertical line as a column reference. Without
temporal constraints, the top of the bridge slightly moves left and right, which
is perceived as a “wobbling effect.” Using temporal constraints, such erroneous
motion can be suppressed effectively (image sequence: c©Mammoth HD).

would be perceived as “wobbling effect.” Fig. 18 shows an ex-
ample of such a temporal artifact. Note that this artifact is not
specific to EWA splatting but a general problem in video ren-
dering. An efficient solution is to constraint the warp grid by
minimizing a temporal coherence energy expression [2], [26]

∑
k∈Ds

(mt(uk) − mt−1(uk))2

which penalizes varying warp positions over time. The
formula uses the same notation as in Section II with the
additional image index t. Fig. 18 compares several video
frames rendered with and without this temporal stabilization.
More details on temporal stability can be found in [2].

E. Limitations and Future Work

Algorithmically, the following limitations have to be taken
into account and potentially addressed in future work. First,
the linear approximation of the per pixel warp function is
only able to handle locally affine transformations correctly.
Besides, the EWA framework always introduces a tradeoff
between aliasing and blurring, which might be improved
with different warping approaches. Finally, our implemented
simplified adaptive antialiasing strategy leads to aliasing when
the warping consists of significant rotations and shearing.

The VLSI architecture has not been optimized for low-
power operation so far. Although clock gating has been
included, no design effort has been spent to make the design
specifically low-power. An improved CMOS implementation
will account for this. Also, we investigate techniques for
lowering the required cache size.

VII. Conclusion

EWA splatting is a promising technique for current and
next-generation HD video applications, such as video retar-
geting, disparity mapping, and multiview synthesis. Setting the
Gaussian filter variances in an adaptive way greatly improved
rendering quality. Thus, with the proposed adaptive strategy,
we were able to render high-quality images without aliasing
or excessive blurring. Furthermore, we showed that EWA
rendering can be efficiently implemented into a VLSI circuit,
which would be targeted for end-user display integration.
The proposed VLSI architecture for real-time EWA splatting
provided high-quality results using fixed-precision number
formats. Multilevel accumulation significantly reduced the
necessary memory bandwidth to the external frame buffer.
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