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(a) mobile phone mounter for a car dashboard (b) mug holder for a chair arm

target geometries customized connector

Figure 1: Example scenarios of connecting two objects together with our method, AutoConnect. Based on geometries of the target objects
and user-specified configurations, AutoConnect generates a 3D-printable customized connector. (a) A mobile phone is connected to a car
dashboard. (b) A mug is connected to a chair arm

Abstract

We present AutoConnect, an automatic method for designing a cus-
tomized, 3D-printable connector that attaches two physical objects
together. With our method, the user simply positions and orients
virtual models of the two objects that he/she wants to connect, and
our method creates several alternative designs. The user can then
choose the connector that he/she likes or modify the design using
a set of high-level parameters. The final connector can be printed
using a commercial 3D printer. We broadly categorize the holders
into two types. First, to hold standard objects such as pipes and
planes, we utilize a database of parameterized mechanical fasteners
and optimize the parameters based on the grip strength requirement
and the material consumption. Second, to hold free-form objects, we
procedurally generates shell-gripper designs using a region growing
approach with geometric analysis. We demonstrate some application
scenarios for connectors that can enhance our daily lives such as
a mount that connects a mobile phone to your car dashboard or a
cup-holder for a table.

1 Introduction

Modern manufacturing processes such as 3D printing allow users
to personally design and manufacture complex 3D objects. One
of the most exciting aspects of such personalized manufacturing is
customization. Several recent works address different aspects of
how to customize existing designs to suit some given specification
or some user’s needs and desires. Often, customization or new
functionalities can be achieved not by creating a new object, but
by combining two existing ones. In fact, many objects in digital
modeling web sites such as Thingiverse are designed to connect and
attach existing objects to other objects in new ways. For instance,
one can download many different designs for attaching smart phones
to bikes.

In this paper we address the problem of designing a custom connec-
tor that connects two objects together. Currently, if the user wants
to connect two objects, she may search digital design sites in hopes
of finding the right connector. However, more often than not, the
specific design is difficult to find, or is not available at all. She can
also try using 3D modeling tools to create a custom connector, but
this demands expertise and is often challenging and complex. This
is also tedious to do for every new pair of objects that need to be
connected. In contrast, we present our AutoConnect method that

requires the user to provide 3D models of two existing objects, such
as an iPhone and a bike or a mug and a table, and only position
them in a given configuration relative to each other. AutoConnect
will automatically create a 3D model of a customized connector that
attaches the two objects in the given configuration, is functional, and
can be fabricated using a 3D printer. In essence, the user provides
“what & where,” and our AutoConnect method determines “how.”

This problem is challenging because a totally new design of a 3D
object that can connect the two input objects must to be created au-
tomatically from scratch. There are many different types of possible
connections to choose the design from. The two objects can have a
completely different geometric structure: some objects (e.g., chairs,
tables) contain common shapes such as pipes or planes, but oth-
ers (e.g., the Stanford bunny or a woman’s shoe) have a free-form
surface design. In addition, other considerations such as printing
cost and aesthetics also come into play, and the connector must
be physically fabricated and therefore, should hold and be sturdy
enough.

Our design method works as follows. The input is a pair of 3D
models that the user wants to connect. These models are loaded
into a view and the user positions and orients them virtually. Auto-
Connect then provides a number of suggestions of potential designs
that are tailored specifically to connect the two input objects. These
suggestions are computed by running geometric analysis and force
analysis in the background. The user can then choose a design she
likes or modify the design interectively by specifying various con-
straints and objectives, such as the regions on the objects that the
connector cannot cover and the maximum force that the connector
must withstand.

To create the actual design we define two types of holders based on
the categorization of the shape of the objects being connected. A
connector consists of two holders, one for each object, and a rod
connecting them. The first type of holder is for a structured object,
which consists of simple, standard shapes such as a cylinder and
box edges. For a structured object, we use predefined parameterized
mechanical fasteners, such as pipe clamps, and customize them
according to the object dimension and weight (§4). The second
type is for freeform object that cannot be held using structured
mechanical fasteners. For these shapes, we create a custom holder
using a region growing algorithm based on geometric analysis (§5).
The type of holder for the two objects is defined by the user when
positioning them in place.
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Our main contributions are as follows:

• We are first, to the best of our knowledge, to address the
problem of computationally designing connectors.

• We present a technique to create 3D-printable mechanical fas-
teners by optimizing their shape parameters according to a
grip-strength estimation based on measurements, while mini-
mizing material consumption. We should also say that the DB
is a contribution.

• We present a technique to generate holders for free-formed
objects that ensures appropriate hold-ability and grip using a
region growing algorithm based on geometry analysis.

• Using these techniques we present an automatic method to
create connectors that can be physically printed and show
various examples of generated connectors that are practical in
everyday scenarios (Fig. 1).

2 Related Work

Commercial Sites and Systems Today, one of the most popular
ways to obtain functional models for fabrication is to search for such
models on the Internet. For example, [Thingiverse ] is a web site
for such a purpose where end-users can download and share 3D
models. A user can find many iPhone cases and bike connectors, but
if she wants a special kind of case or connector, chances are that this
specific 3D model will not be found. Some 3D models allow cus-
tomization by exposing some parameters, but customized connectors
are rare and are usually limited to some trivial modifications—rarely
can the user change the type of objects being connected. In contrast,
our method allows creating a completely new connector for many
types of different objects, and allows exchanging them freely.

Another option to create a connector is to design it using CAD tools
such as Solidworks [Dassault Systèmes ] or AutoCAD [Autodesk
]. However, this requires expertise, and more importantly, the user
would still need to take into account any functionality constraints
while modeling. We target a method that will allow end users to
simply generate a connector between any target shapes without
having to consider its functionality or design.

Functional Design and Fabrication To allow non-expert users
to create functional objects, researchers have investigated various
computational design methods, each of which formulates a specific
functionality for fabrication. For example, Prévost et al. [2013]
proposed a method to evaluate and optimize the stand-ability of 3D-
printed objects, while the method proposed by Bächer et al. [2014]
enables to consider spin-ability of objects. Umetani et al. [2014]
proposed a method to deal with fly-ability of lasercut paper airplanes.
General structural strength of 3D-printed objects has also been inves-
tigated recently in [Stava et al. 2012; Lu et al. 2014]. In our method,
we focus on two specific functionalities for designing connectors:
grip strength of mechanical fasteners, and hold-ability of holders for
free-form shapes.

Other works follow an interactive approach to modeling, while
still constraining some functionalities in design. These include
durability and validity in interactive furniture design in [Umetani
et al. 2012], creation of chairs in [Saul et al. 2011], stacking ability
in [Li et al. 2012], and fabricability by including connectors and
fasteners in [Schulz et al. 2014]. In our work, the human interaction
part is kept to a minimum–only placing the two objects relative to
each other and choosing some initial parameters.

The system proposed by Schulz et al. [2014] also utilizes existing
functional models to create new ones by-parts. Such an example-
based approach to modeling is promising, especially to help novice
users with little knowledge to design new objects. Our method for

designing mechanical fasteners is an implicit example-based method,
since we use a database of parametric models of 3D-printable me-
chanical fasteners. However, the user does not need to explicitly
pick or change the design–this is done automatically.

3D-Printing Mechanisms Modern commercial 3D printers al-
low printing not only static parts, but complex mechanical objects.
By combining mechanism design with computational techniques,
researchers have investigated several applications. For example,
designing and printing articulated models [Calı̀ et al. 2012; Bächer
et al. 2012], toys [Zhu et al. 2012; Zhou et al. 2014], characters
with designable motions [Coros et al. 2013; Thomaszewski et al.
2014], and even figures that mimic human motions [Ceylan et al.
2013]. Others allow printing small working-prototypes of mechan-
ical designs for testing [Koo et al. 2014]. Our method is first to
utilizes mechanical fasteners for effectively gripping target objects.
In addition, we combine the design with real-world measurement
data to estimate functionality given different shape parameters. This
measurement-based approach encapsulates the complex mechanism
of fasteners, and allows handling many types of mechanisms in a
consistent manner.

Cost considerations also come into play when printing. Simi-
lar to previous work that examine the tradeoff between cost and
strength [Wang et al. 2013], we consider the tradeoff between cost
and grip strength while optimizing the shape parameters of mechani-
cal fasteners.

Analysis of Holding Objects Methods to hold objects could be
broadly classified into two categories: holding objects by using
frictional forces (e.g., pinching an object with two fingers), and
holding objects by contact regardless of frictions (e.g., enveloping
an object in your palm). In robotic grasping theory [Bicchi and
Kumar 2000], these two alternatives are called force closure and form
closure respectively. In our work we use both methods. We use force
closure for mechanical fasteners using data-driven measurements,
and form closure for free-form objects. A force-closure approach is
also possible for free-form objects, by using physical analysis. For
example, Chen et al. [2014] introduce a force-closure example of
a phone holder. However, robotic hands can be actively actuated,
while 3D-printed holders are passive. Our form-closure approach
to free-form objects uses a hold-ability criterion. This criterion is
related to methods in robotic grasp, but is tailored to our application.
In robotic, robotic-hands with a small number of contacts are used
(e.g., tips of robotic fingers), while we generate a continuous wrapper
that fits the target free-form shape.

We are also interested in holders that do not completely restrain the
objects. These holder have free directions, where the held object
is able to move without being blocked by contact. This allows, for
instance, easy insertion or removal of the object. Such blocking
relationships are investigated in assembly planning domain [Wilson
1992; Hirukawa et al. 1994; Agrawala et al. 2003]. Our method
uses a similar formulation to generate holders with free directions.
However, as our target shapes is a free-form holder enclosing a
free-form object, more contact points have to be dealt with than in
assembly planning scenarios.

3 Overview

Given two 3D objects that are to be connected, our goal is to auto-
matically create the design for a connector that can be 3D printed
and used. Hence, the input to our method are two 3D models (i.e.
water-tight triangle meshes) of the objects, or a proxy for the area
being connected (e.g. a bar representing a bike’s handle or a table’s
leg). For many mass-manufactured objects, such as mobile phones

2



Import 2 geometries Output geometryPosition and orient them Select from the options

Specify optional parameters Push “Connect” button

Figure 2: User experience. Our method does not require any special interactions to obtain a connector; our method generates many connectors
from a simple input and allows the user to choose the best one. The user can also specify some optional parameters such as a free motion and a
region that should not be covered.

and bikes, 3D meshes or CAD data are available online. Models
of other objects can be acquired using scanners, 3D cameras and
software such as Kinect Fusion. In some cases, the user needs to
specify some additional information such as the object’s mass or
shape labeling (see §4), a free-motion direction, or a region that
should remain uncovered (see §5).

To define the connector, the two objects must be positioned in the
desired configuration relative to each other in 3D space. Therefore,
we provide a simple user interface where the two objects to be con-
nected are loaded and the user positions and orients them, and then
presses the Connect button. After a short computation time (usually
a few minutes and up to an hour), the system automatically gener-
ates several functional connector designs, presents them to the user,
and allows the user to choose the most appropriate one for his/her
purpose. To increase diversity among the candidate designs we im-
plement various different strategies to produce connectors. Also, the
user can revise the design by directly specifying or changing some
design parameters or creation strategies. Fig. 2 shows this workflow
from the user’s perspective.

The actual design is created by classifying the input objects into two
categories: structured objects (§4) and free-form objects (§5). The
final connector is created by combining two such holders using a
simple rod with a fixed radius. To hold structured objects such as
pipes and planes, we utilize a database of parameterized mechanical
fasteners and optimize the parameters based on the grip strength
requirement and the material consumption. To hold free-form ob-
jects, we generate shell-gripper designs procedurally using a region
growing approach with geometric analysis. Another case that is
supported by our method is when one of the objects being connected
is also 3D printed. In this case, only one “holder” is needed and it is
attached directly to the printed object (see Fig. 18).

4 Fasteners for Structured Objects

We define a structured object as one in which its attachment area
can be well approximated by a standard shape, which, in our current
implementation, consists of: cylinder, rectangular-prism, box-edge,
and flat-plane (Fig. 3). These standard shapes need not describe
the whole shape—a single object can have multiple attachment
areas. As an example, a table can be approximated by a flat-plane
at the top, four cylindrical legs, and box-edge at the table edges.
The attachment area of a 3D object can be classified into one of
these shapes by analyzing the object using geometry processing
methods such as slippage analysis [Gelfand and Guibas 2004], or
manually labeled by the user. In this work we assume that we are
given this information. We create a database of these fasteners
annotated with their grip strength information (§4.1). This database
of measurements is created once; it does not need to be recreated by
each user. During run time, once the user has oriented and positioned

Cylinder Rectangular-prism

Box-edge

Flat-plane

Figure 3: Standard shapes in our current implementation.

Snap pipe clamp
4 parameters
Cylinder

Cam pipe clamp
3 parameters
Cylinder

Strap pipe clamp
1 parameters
Cylinder

Snap box clamp
4 parameters
Rectangular-prism

Toggle clamp
4 parameters
Box-edge

Suction cup
3 parameters
Flat plane

Figure 4: Mechanical fasteners in our database.

the objects, we query this database for a set of candidate fastener
designs (§4.2) by optimizing for minimum material consumption
while maintaining the requested grip strength. Any object that does
not fall under one of these categories is treated as a free-form shape
(§5).

We currently use six types of mechanical fasteners (see Fig. 4).
Each fastener types corresponds to one of the four standard shapes
(e.g., cylinder, flat plane). These fasteners are designed using CSG-
tree representations and are parameterized with a small number
(≤ 4) of parameters, such as “width” and “thickness.” Some of
these parameters are used to make the fastener exactly fit the tar-
get shape dimensions, and the remaining parameters are used to
search for a set of designs that minimize the volume and provide
adequate grip strength. All of the fasteners, including suction cups
and multi-material toggle clamps, can be printed using a commercial
printer. The database can be easily extended to include other types
of fasteners created using any CAD software capable of parametric
design.
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mechanical fastener

force meter

Figure 5: Setting for measurement of the grip strength. We measured
the minimum force that is required to (slightly) move the fastener by
pulling in various directions.

4.1 Estimating the Grip Strength

Under normal operating conditions, mechanical fasteners are ex-
pected to stay rigidly attached and not move. To be precise, we
use the term grip strength to mean the minimum force required to
perturb the fastener away from the gripping configuration. When
we search the database for the appropriate fasteners §4.2, we require
an estimate of the grip strength provided by the fastener for various
parameter values. We take a data-driven approach by building a
lookup table of real data measurements. Data-driven physics has
been recently used for other applications including design of de-
formable objects [Bickel et al. 2010] and paper airplanes [Umetani
et al. 2014].

An alternative approach for estimating the grip strength is to use
physical simulation each time a parameter is changed. However,
because mechanical fasteners operate based on a complex interplay
of various factors, such as elasticity of the shape and friction at the
contacting areas, accurately simulating the grip strength of the design
is challenging and time consuming. Furthermore, other types of
fasteners not in our implementation may work by some other means
such as Velcro or screws, and so using a data-driven approach allows
for more flexibility when adding new types of fasteners even when
we do not have access to appropriate simulators. Note, however, that
it is possible to use simulation results in the lookup table along with
measured results.

The main idea is to use scattered-data interpolation to learn the re-
lationship between the design parameters x and the grip strength.
We physically measure the grip strength for a discrete set of sample
points in parameter space, and use interpolation to define the grip
strength function G(x) on the whole parametric space. In our imple-
mentation, we use Radial Basis Function (RBF) interpolation [Anjyo
et al. 2014], with the Gaussian kernel K(x) = exp(−x

2

2
). Other

types of interpolation are also possible.

To compute the grip strength for the sample points, we print each
fastener model with various parameter settings. Each new setting
defines a point in the parametric space of the specific fastener. We
physically measure the minimum force that is required to move each
fastener by slowly pulling on the fastener as shown in Fig. 5. We use
a digital force meter to measure forces, and a video camera to record
the measurement process, so that we can read the maximum force
before the fastener starts to move. We consider various possible
directions for each printed fastener and use the minimum force from
among them. For each mechanical fastener we obtained 16 to 25
sample points according to the number of design parameters. Details
of the measurement setting and discussions of the quality of this
approach can be found in the appendix. Although the accuracy of
this approximation is not high, in practice, using our safety factor
(§4.2) was enough to produce satisfactory results in our scenario.

4.2 Optimizing Shape Parameters

In most mechanical fastener designs, there is a trade-off between the
volume (material consumption) and the functionality (grip strength)
of the fastener. To balance such a trade-off, our method optimizes
the parameters of mechanical fasteners so that the user can reduce
the consumption of unnecessary materials while ensuring that the
fastener satisfies the functional requirement.

The functional requirement, Gtarget = s×m, is the required grip
strength, which depends on the mass of the object, m, and the safety
factor s, set by the user. (We use the default value of s = 5 unless
otherwise stated.) The optimization guarantees that the generated
fastener will be rigid (will not move) when applying disturbance
force up to Gtarget. Hence, the optimization is formulated as mini-
mizing a volume objective, with a constraint that the grip strength
will be larger than Gtarget. This can be written as:

minimize
x

V (x)

subject to G(x) ≥ Gtarget,

C1(x), . . . , Ck(x),

0 ≤ xi ≤ 1 (i = 1, . . . , n),

(1)

where x ∈ [0, 1]n are the parameters that should be optimized,
which are manually normalized so that they fit within the valid
range, V (x) is a function that provides the volume of the design,
G(x) is the function that provides the estimated grip strength for a
given parameter setting x described above, and C1(x), . . . , Ck(x)
are any additional constraints, such as minimum thickness.

Because we use CSG representations for the fastener designs, exact
computation of the volume V (x) is time consuming. To efficiently
compute the volume during optimization, we approximate it again
by using an RBF data-interpolation approach; as preprocessing, we
generate many sample designs with various parameters x, compute
their exact volumes, and define the function V (x) for the whole
parametric space using interpolation. Other approaches, including
analytical approaches, are also possible.

The optimization itself is solved by COBYLA (gradient-free op-
timization) algorithm [Powell 1998] from the NLopt library. To
generate a set of fastener designs, and to avoid getting stuck in local
minima, we generate 20 random initial solutions for the optimiza-
tion, and use the best results, which usually takes less than 1 second
to complete. Fig. 6 shows example results of the snap pipe-clamp
for various target grip strength. Please see the accompanying video
for more results.

5 Holders for Free-Form Objects

If the attachment area of an object does not have a standard shape,
we categorize the object as a free-form object. For such an object, we
use a geometry-based approach to generate a holder whose contact
points prevent the object from moving in any direction. The user
can optionally specify the ungrowable region and the free motion
direction. Similar to the mechanical fasteners, we aim to generate
for the user many different fabricable free-form holders for a given
object by changing internal parameters and using different strategies.

The overview of the approach is shown in Fig. 7. The input is
the mesh of the free-form object. We choose a starting point on
the mesh and apply region growing using several priority biases
(§5.1). As the subregion1 grows, the contact area increases, making
the subregion more and more capable of geometrically holding the

1We use the term subregion to emphasize that this region does not cover
the whole object.

4



Target grip strength
[N]

Optimal design

Opening location
Thickness

Width

20.518.015.513.010.58.05.53.00.5

Figure 6: Example results of our optimization while increasing the target grip strength (from left to right) for the snap pipe clamp. This clamp
has 4 design parameters, one of which defines the target diameter and is fixed in the example. The other 3 parameters are optimized so that the
volume is minimized while the target grip strength is achieved.

region growing

Figure 7: Generating a free-form holder (orange) by growing the
subregion from a seed point (red) until the hold-ability criteria is
achieved.

object. Region growing terminates when the holdability criterion is
satisfied (§5.2). The result is a set of triangles that provide contact
points that hold the object rigidly, which is then converted into a
3D-printable mesh by thickening. In this work, we do not consider
elastic forces and friction but rather assume that everything is rigid
and rely on geometric hold due to contact. Because there are many
possible subregions that can achieve holdability, and there is no clear
optimal solution, we generate many candidate designs and allow the
user to pick the most suitable one.

5.1 Region Growing

Region growing is governed by three principal characteristics, in
addition to the stopping criteria §5.2: (1) what target shape to fit,
(2) where to start (what seed triangle to use), and (3) what growing
priority to use.

By default, the target shape is the object’s mesh itself. However,
to create more alternative designs, we also use the convex hull of
the shape as an additional target shape for the creation of free-form
holders. Other targets such as the lower envelope are also possible.
In addition, the user can specify certain regions on the mesh, such
as the screen of a mobile phone, that should not be covered by the
holder. The triangles in these regions are marked as ungrowable and
are not inserted to the queue, making the region growing process
skip over these triangles.

The starting point of the region-growing process has a large effect on
the generated holder shape. For aesthetic reasons we use symmetry
cues to generate these starting points. We detect the global reflective
symmetry planes of the object ([Mitra et al. 2006; Podolak et al.
2006]), and choose the seed points by uniformly sampling from
these planes. If no symmetry is found, we generate seeds randomly.

The priority used in the queue also has a significant effect on the
final shape of the holder, as it biases the growing direction of the
subregion by determining which triangles will be added next. The
basic priority used for region growing is the geodesic distance of the
triangle t in question to the seed triangle s. We use the weighted
sum of the geodesic distance from the seed and two additional terms
as our priority:

w1Dgeod(t, s)+w2 min
k
Dsymm(t, Pk)+w3Dnorm(n(t), N) (2)

where Dgeod(t, s) is the geodesic distance between the barycenters

of triangle t and triangle s,Dsymm(t, Pk) is the distance between the
barycenter of t to the kth symmetry plane Pk, and Dnorm(n(t), N)
is the angle between the normal n(t) of triangle t and a global
direction vector N . The first term in is used simply to grow at
a constant speed on the target shape from the seed. The second
term is used to encourage growth along the symmetry planes, which
were computed previously for finding the seeds. Note that we can
use a negative w2 weight to grow in directions perpendicular to
the symmetry planes. The third term is used to bias the growth to
cover certain mesh regions. For example, by setting N to the gravity
direction, we can increase the coverage of the holder in the bottom
part of the object (e.g., for cup holders). Fig. 12 shows some results.

5.2 Holdability Criterion

To determine when to terminate the region-growing process, we use
the holdability measure. Roughly speaking, holdability indicates
how well the contact area of the subregion prevents the object from
moving. Each time we add a triangle, we recompute the holdability
measure and stop growing if it is above a certain threshold.

Our approach combines and extends two related concepts: form clo-
sure2 from robotics [Bicchi and Kumar 2000] and slippage analysis
from geometry processing [Gelfand et al. 2003; Gelfand and Guibas
2004]. Like slippage analysis, our approach deals with the geom-
etry, or the triangle mesh, of the object, and thus handles a large
number of contact points compared to grasp analysis in robotics.
However, unlike slippage analysis, our approach deals with unilat-
eral (inequality) contact constraints, which are handled by grasp
analysis. Proper handling of unilateral constraints is critical because
we need to differentiate between penetration and separation. For
example, slippage analysis would mark all of the cases in Fig. 8 as
rigid, since any motion of the object causes the surface of the object
to penetrate into or separate from the surface of the holder. Our
approach correctly identifies the rigid and non-rigid cases because it
can differentiate between penetration and separation.

inside

outsideφ

n
xp

To define holdability, we start with the 6-
dimensional rigid motion (or twist), φ. Let p be
a surface point with position x and normal n. Given
p and φ, we can compute how much the surface
point p moves along its outward normal. This value
measures the amount of blockage experienced by
the point p when the object is moved infinitesimally
by φ. We call this the contact blockage, denoted b(p, φ). If the point
moves away from its outward normal, then there is no blockage,
and so b always takes on a non-negative value. (See §B.1 for the
derivation of b.)

As the subregion grows, the number of contact points increases. For

2“A condition of complete restraint in which the grasped body can resist
any external disturbance wrench, irrespective of the magnitude of the contact
forces.”
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rigid rigid non-rigid non-rigid

Figure 8: 2D schematic examples of our rigid and non-rigid cases.
If there is no free-motion, we consider it is rigid; otherwise, it is
non-rigid. Purple and red parts correspond to the target meshes and
generated holder meshes respectively. Gray arrows correspond to
free-motions.

each triangle, we use the barycenter as the contact point, assuming
that the input mesh is well-conditioned. Let T be the set of triangles
of the current subregion. Given T and φ, We define a non-negative
valued subregion blockage as a sum of contact blockages:

B(T , φ) =
∑
i

b(pi, φ), (3)

where pi is the barycenter of the ith triangle. Intuitively, B repre-
sents the amount of blockage the holder applies to the object when
the object tries to move in the direction φ. If B(T , φ) = 0, then
none of the triangles in the subregion blocks φ, and thus φ is a
free-motion. In this case, the object can locally move away from the
holder defined by T without any collisions. If B(T , φ) > 0, then
there is at least one triangle in T that blocks the object from moving
in the φ direction.

We define the holdability of the subregion T as the minimum subre-
gion blockage with regard to all the possible motions.

H(T ) =

{
minimize

φ
B(T , φ),

subject to ‖φ‖ = 1.
(4)

We treat φ as a 6D direction, and so we restrict the search to the unit
hypersphere ‖φ‖ = 1. (We can also use any small positive number
instead of 1.) We use hyper-spherical coordinates to parameterize φ,
giving us an unconstrained minimization problem with 5 degrees of
freedom that allows us to deal with the constraint ‖φ‖ = 1 implicitly.
The holdability criterion is met when H(T ) > 0. In other words,
we achieve holdability when B(T , φ) > 0 for any φ.

We define the normalized holdability measure as

H̃(T ) =
H(T )

H(Twhole mesh)
, (5)

so that 0 ≤ H̃ ≤ 1. This normalization allows us to use the same
threshold to get reasonable results for all our examples. If H̃ ≈ 0
the subregion holds very lightly, and if H̃ ≈ 1, the subregion
holds very rigidly. To balance the scaling effect of the rotations
vs. translations, we regularize (scale and translate) the mesh into the
unit bounding box before evaluating this function. This has the effect
of roughly equalizing the maximum torque to the unit translational
force [Gelfand et al. 2003]. To solve this minimization problem
(Eqs. 4-5), we use COBYLA, a gradient-free method [Powell 1998].
We run this optimization every time we add a new triangle and
terminate the region-growing process when H̃(T ) becomes greater
than a threshold. In our implementation, we set this threshold to 0.1.
The region-growing process finishes in a few seconds for a smaller
mesh and around 15 seconds for a large mesh.

Figure 9: Concept of intrinsic free motions. These 2D schematic ex-
amples show growable regions (blue), constrained regions (orange),

“maximum” holders (red), and intrinsic free motions (gray).

5.3 Free Motions

In some cases, the holdability measure is zero even if all triangles of
the mesh are included in the triangle set T . For example, for objects
with primitive shapes such as a sphere or a cylinder, there remains
a rotational motion that cannot be blocked by the holder composed
of all the triangles of the object mesh. We call these unblockable
motions the intrinsic free motions of the object. Before starting the
region growing process, we analyze the input mesh to find these
intrinsic free motions, and then we ignore these motions for the
computation of the holdability measure to determine when we stop
the region-growing process.

The algorithm for computing the set F = {φfree
i } of intrinsic free

motions of an object is given in Alg. 1 (listed in §B.2). We run this
algorithm on the whole input mesh as a preprocessing step before
we start the region-growing process.

Some examples of intrinsic free motions are given in Fig. 9. (The
orange regions are marked as ungrowable by the user.) Let us first
consider the box example with one free intrinsic motion. Let φfree

be this free motion. When we solve for φ in Eq. 5, we want φ to not
point in the same direction as φfree. The can be expressed as

φ · φfree ≤ α. (6)

This constraint forces the solution, φ, to not point within a cone of
directions centered around φfree. The parameter α controls the size
of this cone. For the box example in Fig. 9, since there is a single
free direction, α = 1 would work well, preventing φ from pointing
exactly in the direction of φfree. However, for the triangular object
in Fig. 9, there is a cone of intrinsic free motions, indicated by the
three gray arrows. If we know exactly what this cone is, then we
can set the correct value of α, and a single φfree would be sufficient
to fully cover the free motion directions. However, since we do not
know the extent of these cones for an arbitrary mesh, we set α < 1
and sample the cone of free directions. If α becomes closer to 1 then
the approximation becomes more accurate and we will obtain more
solutions at the expense of requiring more φfree

i . For the triangular
shape in Fig. 9, we have i = 3 with each φfree

i covering roughly a
third of the total cone. In our implementation, we use α = 0.5 for
all the examples.

In some cases, the user may manually specify additional free motion
directions, which we call extrinsic free motions. For example, the
user may specify that the holder should not block the object from
moving vertically up, so that the user can insert and remove the
object freely in that direction. (In this case, φfree = (0 0 0 0 0 1)T ,
assuming gravity points in the −z direction.) We add these ad-
ditional motion directions to the set F of intrinsic free motions
computed by Alg. 1.

To incorporate F into our pipeline, we slightly modify both the
region growing process and the holdability criterion. First, when
growing, we do not add a triangle that blocks any of the specified
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Figure 10: Leave-one-motion examples, where the up direction is
specified as an extrinsic free motion. For the bottom example, the
convex hull is used for region growing.

Convex hull

Figure 11: A failure example of leave-one-motion (up direction is
specified here). The bottom part of this mug is slightly wider than
its mouth, and thus the outward normal of almost all of the triangles
of the convex hull face upward. The region growing process stops
before achieving the stop criteria because no triangle can be added
without blocking the up motion (thus there are many free-motions
left).

free motions in F . In other words, we only add triangles that satisfy
the following criteria.

b(p, φfree
i ) < 0, ∀φfree

i ∈ F , (7)

where c is the contact penetration function from §5.2, and p is the
contact point on a triangle. Second, we modify the computation of
H(T ) in Eq. 4 by adding additional constraints

φ · φfree
i < α, ∀φfree

i ∈ F . (8)

These constraints keep φ away from all the intrinsic and extrinsic
free motions.

Fig. 10 shows some examples of free-form holders, where the up
direction is specified as an extrinsic free-motion. Fig. 11 shows a
failure case, where region growing terminates before achieving the
stopping criterion because no more triangles can be added due to the
condition Eq. 7.

Snapfit mechanism
Splitting and Attaching Snapfits
When the user does not specify any
(extrinsic) free-motion, we split the
shell into multiple parts so that we
can physically attach/detach the shell
to/from the target object without any
intersection. We use the symmetry
planes of the target objects if avail-
able or ask the user to specify these
cutting planes. We then add snapfit
mechanisms (see the inset image) for each split part to ensure that

Figure 13: Mobile phone holder with a suction cup attaching to a
glass plane. The top direction is specified as a free motion. Note
that the whole thing including suction cup is printed.

Figure 14: Pingpong paddle connected to the desk leg by using
snap pipe clamp. The top direction w.r.t. the paddle is specified as a
free motion.

the parts can snap to each other. In our implementation we use only
translational snapfits, but it is possible to attach rotational snapfits
(e.g., locking hinge) when a rotational motion path is available. For
more details, see Appendix §B.3.

To summarize, the generation of the free-form holder designs is
composed of the following steps:

• Analyze the input mesh to find intrinsic-free motions (§5.3).
• Generate a shell that can hold the target object (§5.1 & §5.2).
• Optionally split the shell into multiple parts (§B.3).

Fig. 12 shows generated various holders for some free-form shapes.
We use random combinations of region-growing weights (Eq. 2)
w1 ∈ {1.0}, w2 ∈ {−1.0, 0.0, 3.0, 6.0}, w3 ∈ {0.0, 0.5} and also
start with several different seed points (§5.1) to generate many dif-
ferent designs. Selecting a small number of diverse, distinguishable
options from the possible design space is an important future work,
but is out of the scope of this research. For this purpose, there are
many previous methods available [Marks et al. 1997; Won et al.
2014].

6 Application Scenarios

We create many connectors that could enhance our daily lives by
using our AutoConnect. In Figures 13-16, we connect a structured
object and a free-form object, and specified a free-motion when
generating connectors. For many uses cases, it is desirable to specify
a free-motion, since it allows the user to easily attach and detach the
object.

Sometimes, the user may want to connect two objects very firmly.
Fig. 17 is an example where strong external forces can be applied
to the target objects when using this connector. For this scenario,
we do not specify any free-motion and specify a large safety fac-
tor. Our method generates design options by using the strap pipe
clamp, which has a very strong grip strength compared to the other
mechanical fasteners for cylinders.

Our method can also be applied when one side of the connected
objects is directly 3D-printed. Fig. 18 shows such cases; first, we
attach a 3D-printed dragon’s head to a high-heel shoe by using
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Figure 12: Variations of generated free-form holders. The red points are the seed points for region growing. Top row: a rectangular mobile
phone, where the display part is specified as a contrained (non-growable) region. The top direction is specified as a free-direction. As there are
two reflective planes, the center of back side is always selected as a seed point. Middle row: game controller. Bottom row: a mug, where the
convex hull is used for region growing and the top direction is specified as a free-direction.

Figure 15: Mug holder at the desk edge. The convex hull is used for
region growing, and the top direction is specified as a free motion.

the free-form holder. Second, we attach a 3D-printable object to
a structured object by using one of the mechanical fasteners. We
can also connect structured-structured combinations; we show such
scenarios in Fig. 19.

7 Discussion

In this paper, we presented AutoConnect, a method to automatically
design 3D-printable connectors that are tailored to the two input
geometries and user’s specifications. Our method classifies the tar-
get geometries into two categories, structured objects and free-form
objects, and applies different strategies to generate holders/grippers

Figure 16: A connector that allows us to put a game controller to a
chair arm.

for each of them. For structured objects, we perform force-based op-
timization to predefined mechanical fasteners. We use a data-driven
approach to estimate the grip-strength based on real measurements.
For free-form objects, we perform procedural region growing with
geometry-based criterion of holdability. We showed various possible
scenarios for the usage of AutoConnect, which include mounting
various objects to the desk or chair (phone, ping-pong paddle, mug),
creating phones mounts to the bike or the dashboard of the car, and
creating decorative objects such as wall mounted bunny and a shoe
dragon.

Our final goal is that anyone would be able to pick two objects and
get a connecting design for them. We presented a first step towards
this goal, but there are many limitations and possibilities for future
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Figure 17: Mobile phone can be attached to your mountain bike
in your favorite configuration. This connector consists of a strong
strap pipe clamp and a free-form holder without free motions.

Figure 18: One of the connected objects can be a directly-printable
object. (Top) Attaching printed Stanford dragon’s head to a free-
form high-heel. (Bottom) Attaching a printed bunny to a flat glass
plane.

work. First, we need correct 3D virtual models for the two objects
to create a functional connector. We have demonstrated the use of
Kinect-fusion to scan the car dashboard to produce a connector, but
this process can be time consuming. It would be nice if one could
use photographs or videos or even simple scanning devices.

Currently we use only six models in our parametric fasteners
database. This limits variation of possible designs, but in the future
it is easy to add more parametric fasteners to build a larger database,
or even use a web-based service, where dedicated users can upload
their fastener designs. To add such a design to the database it needs
to be parametric, and the grip-strength needs to be measured and
stored for various parameter values. The lookup and interpolation-
based approach during optimization of the mechanical-fasteners
sidesteps the complexity of real-time simulation with real data and
measurement. On the other hand, using explicit simulation does
not require pre-processing. In the future, it would be interesting to
combine the two approaches as they need not be mutually exclusive.

As most fasteners are easy to detach (e.g., a toggle clamp has a

Figure 19: Our method can be applied even when both target objects
are structured. (Left) Attaching the cylindrical light to the bike
handle. (Center) A beverage can holder connected to the belt. For
this example, we assume that the belt is rectangular-prism-shaped.
(Right) We can also attach a can to the desk leg.

handle for detaching), we do not consider the difficulty of detaching
in our optimization. However, since some fasteners, such as the snap
pipe clamp, must be difficult to move but easy to detach, it would
be interesting to find a way to include such conflicting requirements
in our optimization. We also assume currently that both the target
objects and the printed connectors are rigid and infinitely strong.
Considering soft deformation and structural strength is an important
future work.

For free-form holders, when the target shape is highly complex
or includes many concave parts, such as in the Stanford dragon’s
mouth or legs or the armadillo model, our method can generate a
complex holder that is difficult to attach/detach because of blocking.
In this case, our split-and-verify algorithm (§B.3) often fails, or
needs many splitting planes. In most practical scenarios, this is not a
problem, as many artificial artifacts have nearly convex shapes, and
can easily achieve attachability/detachability using a single splitting.
In addition, the ability to use the convex hull of the target shape can
provide some solution to this problem.

Although we try to create many alternative designs for the user
to choose from, some of them can be very similar. A measure
of similarity between the designs could be used to provide more
distinct alternatives and assist the user. Lastly, it would be interesting
to allow more user input either in the form of more declarative
constraints such as where to position the cutting planes, where to
place the connecting rod, or how many parts to divide the connector,
or in the form of a fully interactive modeling tool.

We believe that the problems of automatic creation of geometry and
customization of everyday objects for 3D printing are challenging
but are indeed very useful. We hope that our work, which only starts
to tackle these problems, will inspire future research as well.
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A Details of Measurement of Grip Strength

Number of Data Points For the mechanical fastener that has n de-
sign parameters, we consider 1+2n+2n parameter sets consisting of
1 default parameter set (i.e., (0.5, 0.5, . . . , 0.5)), 2n one-parameter-
minimized/maximized parameter sets (e.g., (1.0, 0.5, . . . , 0.5)),
and 2n every-parameter-minimized/maximized parameter sets
(e.g., (1.0, 0.0, . . . , 0.0)). For example, for the snap pipe clamp,
which has 4 parameters, we print 1 + 2× 4 + 24 = 25 clamps and
measure each clamp’s grip strength.

The strap pipe clamp is an exception. This clamp has almost in-
finitely strong grip strength in a realistic scenario (we applied over
50 kg-weight force several times, but it never moved). Thus, we do
not gather any data for this strap pipe clamp. Note that the strap
pipe clamp is parameterized by only one geometrically-deterministic
parameter (the diameter of the target pipe) and thus there is no need
to optimize the design according to the grip strength.

For the toggle clamp, which has 4 parameters, there are 7 invalid
designs (e.g., some parts are intersected, or it breaks before applying
enough force to measure) out of 25 designs. Thus we interpolate the
grip strength using the rest of 18 data points. Similarly, for the cam
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clamp, which has 3 parameters and thus 15 clamps are printed, we
failed to measure 3 clamps, so we use other 12 data points for the
interpolation.

Measurement Settings For the fasteners for cylinder, we use
stainless polished pipes with the diameter of 20.0mm, 30.0mm,
40.0mm. For the flat-plane fastener (i.e., suction cup), we use a glass
plate. For the rectangular-prism fastener (i.e., box clamp) and the
box-edge fastener (i.e., toggle clamp), we use printed prisms and
printed boxes.

Every fasteners and standard shapes for measurements are printed
with the material called Endur, which is Simulated Polypropylene,
except for suction cups and contact areas in toggle clamps. For those
exceptions, we use the meterial called Tango, which is Rubber-like
material. All fasteners are printed by using a commercial inkjet 3D
printer called Objet Connex 500.

For measuring force, we use a force meter whose resolution is 0.040
kg-weight. When printing fasteners for measurement, we always
print a small hook at the point defined for each fastener, then the
force meter is attached to this small hook. Starting from pulling small
force, we increase the force gradually, and when the mechanical
fastener moves, we record the maximum force that the force meter
displays during this process3. It takes 2 to 5 hours to obtain data for
each fastener type.

Validation We performed a simple validation for the snap pipe
clamp, which has 4 parameters. We printed an additional set of snap
pipe clamps (testing set) and measured data for them. The size of
learning data set is 25, and we choose the size of testing set as 12 in
total (4 random parameter sets for each diameter). Let x1, . . . ,x12

be the testing parameters, and G1, . . . , G12 be the corresponding
measured data. The root mean square (RMS) error of our estimation
is

RMS =

√∑N
i=1 (G(xi)−Gi)2

N
= 0.14[kg-weight]. (9)

The average of 25 measured grip strength is 0.57 kg-weight and the
maximum value is 3.54 kg-weight. We consider this estimation is
not very accurate; however, we use this estimation with the safety
factor, which is typically specified by rough values (e.g., s = 5 or
s = 10). Thus, this accuracy could be enough for our context. Note
that we can add data points when more accuracy is necessary.

B Free form details

B.1 Contact displacement function

To define holdability, we require the 6-dimensional rigid motion (or
twist)

φ =

(
ω
ν

)
∈ R6, (10)

where ω ∈ R3 is the rotational velocity, and ν ∈ R3 is the trans-
lational velocity expressed in body local coordinates. 4 Let p be
a surface point with position x and normal n. Like φ, both x and
n are expressed in body local coordinates. Given p and φ, we can

3For the cam clamp, we took a different approach; we measured the force
not to slightly move the fastener (by slippage), but to remove the fastener
completely from the cylinder (by breaking). We empirically found that
scaling this data by 0.1 is a reasonable approximation of the grip strength.

4More precisely, φ ∈ se(3), the Lie algebra of SE(3), the special Eu-
clidean group in 3 dimensions.

Algorithm 1 Computing intrinsic free motions

1: F ← empty set of free motions;
2: C ← empty set of constraints;
3: T ← all triangles from mesh;
4: loop
5: Solve: H ← minφB(T , φ) s.t. C;
6: φmin← the optimal argument;
7: if H < ε then
8: F ← F ∪ {φmin};
9: C ← C ∪ {φ · φmin < α};

10: else
11: return F ;
12: end if
13: end loop

evaluate how much the surface point p moves along its normal when
the object is moved infinitesimally by φ. We call this the contact
blockage of p given φ:

b(p, φ) = max(nTΓφ, 0), (11)

where Γ = ([x]T I) is the 3 × 6 matrix that transforms a spatial
velocity, φ, to a point velocity. The 3× 3 skew symmetric matrix,
[x], is the cross product matrix, such that [x]a = x × a, and I is
the 3 × 3 identity matrix. If b is positive, then p moves along its
normal. Thus, this surface point p blocks the object from moving in
the direction φ.

B.2 Finding Intrinsic Free Motions

We start with an empty set F of free motions, and incrementally
build this set by iteratively solving the subregion blockage equation
(Eq. 3) subject to the constraint set C, which is also initially empty.
Each new free motion we find adds the corresponding constraint to C
of the form Eq. 6, so that motion directions close to the newly found
direction are no longer considered. Once we achieve holdability, the
algorithm terminates, returning a set of intrinsic free motions of the
input mesh. The thresholding parameter (e.g., ε = 0.01) is necessary
to be robust against noise in the input mesh and inaccuracy due to
discretization. For our examples, this algorithm takes less than one
second to find the intrinsic free motions.

B.3 Splitting

To verify that every part of the holder can be attached to and detached
from the object, we first ensure that the local holdability of each
holder part is zero, and then ensure that there is an intersection-free
motion path for each part.To find such an intersection-free path, we
use the information of the optimal twist motion φk that satisfies
H(Tk, φk) = 0, where Tk is the sets of triangles for the split parts
so that T =

⋃
Tk. Then, we run a dynamic rigid body simulation,

where every holder part and the target object are assumed to be rigid,
with virtual spring forces that pull each holder part towards their
computed twist motion φk. If the global intersection check fails, the
system rejects the current cut plane, and a different one is chosen
either automatically (if symmetry planes are used) or by the user.
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