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Abstract—Over the last couple of years, multiview autostereo-
scopic displays (MADs) have become commercially available
which enable a limited glasses-free 3D experience. The main
problem of MADs is that they require several (typically 8 or 9)
views, while most of the 3D video content is in stereoscopic 3D
(S3D) today. In order to bridge this gap, the research community
started to devise automatic multiview synthesis (MVS) methods.
These algorithms require real-time processing and should be
portable to end-user devices to develop their full potential. In
this paper, we present a complete hardware system for fully
automatic MVS. We give an overview of the algorithmic flow
and corresponding hardware architecture, and provide imple-
mentation results of a hybrid FPGA/ASIC prototype – which is
the first complete hardware system implementing image-domain-
warping-based MVS. The proposed hardware IP could be used
as a co-processor in a system-on-chip (SoC) targeting 3D TV sets,
thereby enabling efficient content generation in real-time.

I. INTRODUCTION

Over the last couple of years, video capture, post-processing
and distribution technologies for stereoscopic 3D (S3D) con-
tent have become mature enough for broad commercializa-
tion. Coupled with the box office success of S3D movies,
this has brought on renewed interest in the development of
S3D-capable consumer-electronic devices such as TV sets.
However, most such devices require the viewers to wear some
sort of shutter- or polarization glasses, which is often regarded
as an inconvenience. Recently, so-called multiview autostereo-
scopic displays (MADs) [1], [2] have become commercially
available. These are able to project several views of a scene
simultaneously - enabling a glasses-free 3D experience and a
limited motion parallax effect in horizontal direction. However,
appropriate content for such displays is largely inexistent since
storage and transmission of high definition (HD) content with
more than two views is impractical and even infeasible in
some cases. The fact that each MAD has different parameters
exacerbates the problem. In order to bridge this content-display
gap, multiview synthesis (MVS) methods [3], [4] have been
devised over the past couple of years. These methods are able
to generate M virtual views from a small set of N input views.

Common MVS methods are based on depth image based
rendering (DIBR) [4], [5], where a dense depth map of the
scene is used to reproject the image to new viewpoints.
Although physically correct, this approach requires accurate
depth maps and additional inpainting steps. Our work uses
an alternative conversion concept suggested by [6] which is

based on image domain warping (IDW). The IDW framework
allows to locally distort image regions via a non-linear, two-
dimensional transformation which is obtained by solving a
least squares (LS) problem. The constraints for this problem
are formulated using image features extracted from the input
images.This technique is promising as it does not rely on pixel
dense depth, but only on robust, sparse point correspondences.
Further, no inpainting is required which is still an algorithmi-
cally difficult step of DIBR-based view synthesis methods [7].

Multiview synthesis, using IDW methods as well as alter-
native approaches, are computationally intensive - yet they
should run efficiently in real-time and should be portable
to end-user devices to develop their full potential. To this
end, we develop an efficient hardware architecture for fully
automatic MVS. The proposed architecture could be used as
a co-processor in a system-on-chip (SoC) targeting 3D TV
sets, thereby enabling efficient content generation in real-time.
This paper1 gives an overview of the algorithmic flow and the
corresponding architecture, as well as implementation results
of our hardware prototype – which is the first IDW-based real-
time MVS system.

II. RELATED WORK

The IDW method used in this work relies heavily on prior
work on warping approaches for video content adaption such
as aspect-ratio retargeting [9], S3D retargeting [10] and non-
linear disparity mapping [11]. In these applications, the video
is warped in a content-aware manner in order to fulfill certain
constraints. Image features (such as edges) and visual impor-
tance maps (saliency) are used in order to determine which
parts of the image are important and should be preserved.
Unavoidable distortions are moved to visually unimportant
regions. This IDW framework has been extended for automatic
MVS by [6]. The artifacts caused by geometrical incorrectness
are minor and visually hardly noticeable. In fact, exhaustive
and formal subjective experiments performed by MPEG [6]
revealed that IDW as proposed here performs at least as well as
DIBR-based [3], [5] methods, even if those used pre-computed
and hand-tuned depth maps. Based on these results, MPEG
adopted warp coding for the 3D extension of the new HEVC
standard [12], thereby enabling IDW-based MVS.

1A longer, more detailed description of the system has been submitted to
TCSVT for review [8].



Saliency

Point Corresp.

Edges

1. Video Analysis

S3D Input 

Implemented on FPGA

5. Anti-Aliasing & Interleaving

Implemented on ASIC
Interleaved Output               (to MAD)

0.0  1.00.5 

2. Warp Calculation

2 Warps

-0.25 -0.04 0.18 0.39 0.61 0.82 1.04 1.25

3. Warp Inter-/Extrapolation

2 Warps

-0.25 -0.04 0.18 0.39 0.61 0.82 1.04 1.25

4. Rendering

Fig. 1: Image domain warping pipeline for MVS (refer to the text for more
information). As indicated below, the first part is implemented on an FPGA,
and the second part on an ASIC. Testimages © copyright 2008, Blender
Foundation.

Most published real-time systems either only implement
the video analysis or the view synthesis modules. E.g., [13],
[14] implement FPGA depth estimation cores and [15], [16]
describe ASIC solutions for DIBR rendering. There are rel-
atively few real-time systems which contain all modules,
such as [17] and [18]. Riechert, et al. [17] presents the first
complete system for DIBR-based multiview synthesis which
is implemented using a high-end workstation, whereas Liao, et
al. [18] describes an FPGA-based system able to synthesize
one synthetic view from 1920×1080 S3D input at 60 fps from
perfectly rectified video content.

In contrast, we implement a complete hardware system that
only requires a stereo video input stream and that outputs eight
interleaved views for display on a MAD.

III. ALGORITHMIC FLOW

This section is a summary of the algorithmic flow of the
implemented MVS scheme, and is based on [6], [19]. As
shown in Figure 1, the input to the IDW processing pipeline is
the S3D footage (left and right images) which is analyzed in
order to reveal image features such as point correspondences,
edges and saliency information in a first step. Those features
are then used to formulate a global energy minimization
problem. The solution of this problem results in two warps -
one for each input image. These warps describe the (nonlinear)
transformation of the input images to a viewing position
centered between the two original views. The new views are
then generated by first inter- and extrapolating the two warps
to the desired view positions, followed by resampling the
S3D input according to those interpolated warps. Finally, the
generated views are interleaved such that they can be displayed
on the MAD. The individual steps are explained below.

A. Video Analysis.

1) Sparse Point Correspondences: In multiview synthesis,
the disparities are the most important features since they reveal
the 3D geometry of the observed scene. Yet these have to

be robust in order to get good results. As opposed to DIBR-
based methods, the IDW approach used here works on sparse
disparities. In this work we adopted features based on semantic
kernels binarized (SKB) [20], since they work very well in the
setting of almost ideally rectified stereo video. SKB features
a low outlier rate and, therefore, it is possible to use the point
correspondences without an additional RANSAC filtering step,
which would be costly in hardware. Occasional outliers can
be tolerated since the warp calculation process enforces spatial
and temporal smoothness. Furthermore, since SKB is a binary
descriptor, it can be calculated and matched very efficiently in
hardware. Descriptors containing fixed-point or even floating-
point entries such as SURF or SIFT are much more costly in
this respect.

2) Saliency and Edges: A saliency map identifies the
visually important regions in the image, and is used to guide
the warp calculation such that deformations are hidden in
unimportant regions (e.g. homogeneous parts such as blue
sky). Extracting visual saliency is difficult since it is a sub-
jective measure that depends to some extent on video content,
viewer, and application. Here we use the quaternion-Fourier-
transform-based (QFT) algorithm from [21] which exhibits a
good tradeoff between computational complexity and quality.
The algorithm leverages the phase-spectrum of a video se-
quence, which carries information on where discernible objects
are located in an image. The QFT can be efficiently calculated
using two separate 2D Fast Fourier Transforms (FFTs).

Very salient lines should also be preserved in order to
avoid bending them in the warped images. This can be done
using several methods, e.g. by extracting straight lines using
the Hough transform. However, since this feature is not as
important as the saliency and the point correspondences,
simple gradient-magnitude maps without Canny edge post-
processing are used here. Such gradient-magnitude maps can
be extracted very efficiently using 3× 3 Sobel filters.

B. Warp Generation
1) Energy Minimization: The warps are calculated by solv-

ing a quadratic energy minimization problem of the form
min
f

(E (f)) = min
f

(Edata (f) + Esmooth (f)) (1)

where the data term Edata enforces function values at certain
coordinate positions, and the smoothness term Esmooth is a
regularizer that propagates these known values to adjacent
sampling positions. The vector f holds the samples of the
unknown warp vertices. The data term itself is composed of
the energy term Ept containing the desired vertex positions
in the target image, and the energy term Et which enforces
temporal consistency:

Edata = λptEpt + λtEt.

The parameters λpt and λt are weighting parameters that
can be used to set the relative importance of a particular
constraint. Analogously, the smoothness term comprises the
two constraints Esal and Eedge that determine the local
smoothing strength (also called stiffness sometimes):

Esmooth = λsalEsal + λedgeEedge.
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Fig. 2: Blockdiagram of the MVS prototype. It consists of five main parts, where the first three reside on the FPGA and the remaining ones on the ASIC.

Again, the parameters λsal and λedge are relative importance
weights. Recall that we solve for two warps, each of which
maps either the left or the right image to a virtual view at
position 0.5 on the normalized baseline (see Figure 1). This
asks for setting up four quadratic energy functionals Elx, Ely,
Erx and Ery (two coordinate dimensions for each input view)
which can all be minimized independently. More details on
how the constraints are formulated can be found in [6], [19].

2) Sparse Linear System: Since the energy functionals to
be minimized are quadratic in the elements of f , the solution
of the problem in (1) is a least-squares (LS) solution. The
constraints are defined on small neighbourhoods, and therefore
the corresponding linear system is very sparse and only
contains one main- and nine off-diagonals. Further, the matrix
dimension is in the order of tens of thousands to millions -
depending on the resolution of the warping grid. The resolu-
tion of current video content is predominantly 1920×1080,
resulting in four equation systems (Elx,Ely,Erx and Ery)
with nearly two million variables for each frame in the video.
Solving such large systems at frame rates of up to 30 fps is
computationally very demanding and infeasible for embedded
real-time applications. Also, such pixel-dense solutions are not
necessary as even 10× sub-sampled grids result in sufficient
synthesis quality on many S3D HD sequences [6]. This results
in realistic grid sizes of about 180×100, which corresponds to
18 k variables. Based the evaluations by [19], we decided to
use a Cholesky-decomposition-based solver in our hardware
implementation, since it provides a good tradeoff between
memory bandwidth and hardware complexity in this setting.

C. Warp Interpolation and Rendering

In the rendering step, the two warps are first bilinearly
upsampled in order to form pixel-dense warps. Then, these
two warps are linearly inter- and extrapolated to all desired
view positions on the normalized baseline. As illustrated in
Figure 1, eight views are generated in this setting: four views
are from the left image, and the other four views are generated
from the right image. Note that this view interpolation can be
used to linearly scale the depth range of the scene at runtime.
The input images are then resampled using elliptical weighted
average (EWA) splatting [22], which is a forward-mapping
method. Although EWA is more complex than traditional
bilinear backward mapping, it has the advantage that no warp

inversion is required as the warps are generated in forward
format in this application. The EWA framework uses Gaussian
filter kernels and local, affine approximations of the image
warp in order to calculate the footprint of an input image
pixel in the output image. Input pixels thus correspond to
Gaussian splats in the output image, which are rasterized
within a bounding box and accumulated in a frame buffer.
Since Gaussians are closed among themselves and under affine
transformations, an anti-aliasing filter for the output image
sampling grid can be easily incorporated analytically [23].

IV. HARDWARE ARCHITECTURE

Figure 2 provides a high-level block diagram of our MVS
system and can be conceptually divided into two parts: the
core view synthesis components (numbered from 1. through 6.)
which are, in principle, device-independent and can be ported
to other FPGA/ASIC technologies; and an infrastructure part
handling all FPGA board and I/O specific controllers. The core
components 1. to 6. process the input video according to the
algorithmic flow presented in Section III: 1. The input scaler
block scales the input video to the different resolutions that
are required later on, and stores them in the memory. 2. The
video analysis block extracts the saliency- and edge maps, and
calculates the point correspondences using these scaled video
frames. 3. The warp calculation block contains a constraints
assembly core and a Cholesky-decomposition-based linear
solver. The former is a microcode-programmable unit that
builds the LS-problem matrices, and the latter is a fixed
function solver. 4. The warp interpolation stage upsamples the
two warps to 1080p resolution, and interpolates them to the
desired view positions. The rendering block 5. prepares a filter
kernel for each input pixel/warp-vertex pair, evaluates it on
the sampling lattice of the assigned view on the display, and
sends it to the accumulation stage 6. which fuses all subpixels
to form the interleaved output image.

V. IMPLEMENTATION RESULTS

Table I provides a summary of the resource utilization of the
multiview prototype (shown in Figure 3). The system has been
designed to provide enough throughput to process 1080p S3D
input footage @30 Hz using warps with 180 × 100 vertices.
Note that the same rendering architecture implemented in
the ASIC could easily support UHD (3840 × 2160) output
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resolution at the same frame rate by increasing the I/O band-
width. This has not been carried out here due to practical I/O
limitations (no flip-chip packaging). The only other systems
with similar functionality are the works by [17] and [18]. [17]
implement a system based on a dual processor workstation
with two Intel Xeon 5690 CPU’s and two NVIDIA GTX
590 graphics cards. It has almost the same performance as
ours and is able to synthesize 8 interleaved views for an
Alioscopy display from 1080p S3D content at 24 fps. Clearly,
the size of this system, the cost, and power consumption
make it unsuitable for integration into consumer devices. [18]
implement a single-view synthesis pipeline on a FPGA able
to produce depth-adjusted S3D content generated from 1080p
S3D input video at 60 fps. In order to do so, they synthesize
one virtual view and bypass one of the input views. However,
their implementation is not a complete MVS system since it
only renders one virtual view and not up to nine views as in
our work and [17]. [18] also make the assumption that the
input video is perfectly rectified, i.e. there is no y-disparity
between the left and right image, which simplifies all 2D-
problems to 1D-problems. Yet such rectification is not easily
achieved, and therefore systems should be designed to tolerate
y-disparities. For example, our system is designed to support
up to ±11 pixels of y-disparity.

VI. CONCLUSIONS

To our knowledge, this is the first hardware implementation
of a complete, IDW-based MVS system, capable of full HD
view synthesis with 8 views in real-time. During informal
subjective tests using full-length S3D movie footage, we found

TABLE I: Physical characteristics of the different parts of the multiview
system. The FPGA is an Altera Stratix IV (EP4SGX530KH40C2), and the
ASIC has been fabricated in 65 nm technology from UMC.

FPGA Logic RAM Freq.
LUTs Regs DSPs LUTs 9/144K [MHz]

Scalers 4.1 k 7.1 k 24 2.3 k 10/0 138.6
Analysis 43.3 k 47.3 k 177 2.7 k 434/24 135
Warp Calc. 51.9 k 67.4 k 420 0.7 k 148/0 255
Subtotal 99.3 k 121.8 k 621 5.7 k 592/24 ↑
IO/Infra. 22.1 k 35.5 k 0 15.7 k 14/4 N/A
Total 121.4 k 157.3 k 621 21.4 k 606/28 ↑
ASIC Logic SRAM Freq.

[mm2] [kGE] [MBit] [mm2] [kGE] [MHz]
IO/Infra. 0.28 195 - - - 75, 300
Warp Interp. 0.314 218 0.76 1.023 710 300
Rendering 2.317 1’609 - - - 300
Accumulator 0.385 267 3.6 5.436 3’775 300
Total 3.296 2’289 4.36 6.459 4’485 ↑

that the hardware system works well on a broad range of
content using the same set of parameters. The current hardware
prototype is based on an FPGA platform, combined with a
custom rendering ASIC. The developed hardware IP could
be integrated within a SoC where it would act as an energy-
efficient co-processor – thereby paving the way towards mobile
MVS in real-time.
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