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Abstract

Finding minimal cuts on graphs with a grid-like struc-
ture has become a core task for solving many computer vi-
sion and graphics related problems. However, computation
speed and memory consumption oftentimes limit the effec-
tive use in applications requiring high resolution grids or
interactive response. In particular, memory bandwidth rep-
resents one of the major bottlenecks even in today’s most
efficient implementations.

We propose a compact data structure with cache-efficient
memory layout for the representation of graph instances
that are based on regular N-D grids with topologically
identical neighborhood systems. For this common class of
graphs our data structure allows for 3 to 12 times higher
grid resolutions and a 3- to 9-fold speedup compared to ex-
isting approaches. Our design is agnostic to the underly-
ing algorithm, and hence orthogonal to other optimizations
such as parallel and hierarchical processing. We evaluate
the performance gain on a variety of typical problems in-
cluding 2D/3D segmentation, colorization, and stereo. All
experiments show an unconditional improvement in terms
of speed and memory consumption, with graceful perfor-
mance degradation for graphs with increasing topological
irregularities.

1. Introduction
Minimal cuts on graphs have been studied over

decades [12] and have developed into a fundamental so-
lution to problems in various disciplines. In computer
vision and graphics, applications range from segmenta-
tion [4, 24, 28], stereo and shape reconstruction [7, 17, 35],
editing and synthesis [1, 23, 29, 32], fitting and registra-
tion [5, 13, 22] to pose estimation and more [20].

Typically, in those application domains the underlying
graph structures can be characterized as regular N-D grids,
where all nodes have topologically identical neighborhood
systems, i.e., each node is connected in a uniform fashion to
all other nodes lying within a given radius (Fig. 1). One of
the algorithms which are efficient on such graph construc-

tions is the popular method by Boykov and Kolmogorov
(BK) [6].
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Figure 1: Typical examples of neighborhood connectivity.

Central to this method is the concept of the resid-
ual graph; based on the seminal Ford-Fulkerson’s algo-
rithm [12], the BK algorithm performs a bi-directional
search for augmenting paths on the residual graph, to-
gether with a tree-reuse strategy which avoids rebuilding
the search trees from scratch after each augmentation. Al-
though its worst case complexity may be worse than alter-
native algorithms it was shown [6,8,11] that, for the specific
graph structures encountered in vision and graphics, BK
typically outperforms other approaches such as the push-
relabel algorithm [15] and its more recent variants [14].

However, despite many advances, using min-cuts for
processing high resolution data at sufficient speed is still a
significant challenge. For example, in the previously men-
tioned application domains, segmenting and editing HD
video in real-time or high resolution 3D model reconstruc-
tion from megapixel images remain very active fields of re-
search. Recent research on parallelization [25] and strictly
polynomial extensions [16] shows that there is still consid-
erable need and room for improvement of the BK algorithm.

In this paper we show that significant further improve-
ments can be achieved by optimizations of the memory
bandwidth. Our main contribution is a compact data struc-
ture specifically designed for an efficient encoding of com-
monly used structured N-D graphs, and, in particular, their
residual graphs. We exploit the typical connectivity patterns
observed in the previously mentioned application domains
for a highly efficient memory layout. Our method allows
for 3 to 12 times higher grid resolutions and achieves a 3-
to 9-fold performance gain. Our optimizations are agnostic
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of the actual implementation and hence complementary to
other types of min-cut algorithms. Moreover, our method
does not strictly rely on the graph regularity assumptions,
and shows superior performance on graphs with moderate
amount of topological irregularities as well.

2. Previous work

The body of work on optimization strategies for graph
cut computation comprises a variety of fundamentally
different approaches, including hierarchical approxima-
tions [18, 26, 27], capacity scaling [19], strategies for re-
using computations [20], or parallel processing [10, 25, 30,
31,34]. We therefore concentrate our review on those works
related to cache-efficient data structures that are closest re-
lated to our paper.

One of the first approaches specifically focusing on
memory layout and cache optimizations is the method by
Bader and Sachdeva [3]. Their focus is on a parallel im-
plementation of the push-relabel method [15] for general,
irregular graphs on multi-processor machines with shared
memory. For each edge they store its capacity, current flow
and also link to its reverse edge to reduce the number of
memory accesses when the reverse edge is just read and not
updated. They also use contiguous allocation of memory for
parallel pairs of edges to ensure spatial locality of the data
structures during the updating. Delong and Boykov [10]
employed similar strategies and presented a different par-
allel variant of the push-relabel approach that targets the
specific grid-like graph structures encountered in computer
vision. A particular strength of their approach is the con-
trol over locality of memory accesses that allows for more
efficient processing of very large graph structures. Liu and
Sun [25] describe a parallel implementation of the BK al-
gorithm, using a grid-like partitioning to maintain locality
of computations within subgraphs. Their approach is im-
plicitly cache-friendly and partially achieved super-linear
speedups on shape fitting problems. Recently Goldberg et
al. [16] proposed several low-level optimizations to avoid
cache violating access. They also replace adjacency lists
with arrays and reported that this optimization resulted on
average in a 20% performance gain over the original BK
implementation.

Complementary to these works we show that the opti-
mization of memory bandwidth is a further important re-
source for optimization, gaining significant improvements
in terms of speed and memory utilization.

3. Our approach

Computation of maximum flow on graphs typically re-
quires frequent data transfers between memory and CPU
causing significant latencies in the run time of max-flow
algorithms. Our aim is to ease this memory bandwidth

bottleneck by employing a compact graph representation
with cache-friendly memory layout that exploits the regu-
lar structure of grid-like graphs.

3.1. Compact representation of the residual graph

Central to most max-flow algorithms [6, 10, 16] is the
so called residual graph which maintains the distribution
of flow during the algorithm run time. This data structure
requires constant access and updates, as such its compact
representation is crucial in order to achieve a significant re-
duction in memory bandwidth.

For the encoding of general graphs one usually requires
a representation that stores the connectivity information ex-
plicitly. These are realized by pointer-heavy data structures
(like the adjacency list) which reference elements from sep-
arate collections of nodes and edges. The pointers often
comprise the majority of the graph’s memory footprint, in
particular on 64-bit CPUs where single pointer occupies
eight bytes.

However, by exploiting prior knowledge of the graph
structure we can eliminate the need for pointers altogether
by determining connectivity information on the fly. To that
end we employ a single 32-bit integer index for addressing
individual nodes. Since nodes are arranged in a N-D grid
with repeated neighborhood connectivity we can enumerate
them in such a way that their neighbors are always at con-
stant offsets. Thanks to this property accessing to neighbor-
ing nodes requires only picking the right offset and adding
it to the current node’s index.
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Figure 2: Enumeration of outgoing edges and reverse edge
lookup using the REV table.

As the connectivity information is implicit in our repre-
sentation, there is no need to maintain a separate collection
of edges. Instead, we store the information associated with
edges in their tail nodes, i.e., each node is equipped with
the data of its outgoing edges. Each edge in the residual
graph is associated with residual capacity rc, which is the
amount of flow that can be further pushed along the edge
without exceeding its capacity. In our representation we
impose fixed ordering on the node’s k outgoing edges and
enumerate them with index 1 . . . k (see Fig. 2). Each node is
then associated with k-tuple (rc1, . . . , rck) of its outgoing
edges’ residual capacities. This scheme assumes that each



node has the same degree, however, it can be used even in
cases when the graph is not perfectly k-connected by as-
signing zero residual capacity to missing edges or to edges
adjacent to missing nodes.

When traversing the residual graph, max-flow algorithms
often have to access residual capacities of reverse edges.
We facilitate this access by referencing the opposite direc-
tion edge in the rc tuple of neighbor’s outgoing edges. To
determine the index of the opposite direction edge, we use
a small lookup table REV (see Fig. 2). When a node lies at
the grid boundary, the requested neighbor might not exist.
We avoid handling this situation as a special case by extend-
ing the grid with a border layer of sentinel nodes whose out-
going edges have residual capacities all set to zero. In this
way there always exists a valid neighbor, and referencing of
reverse edges can never cause an out-of-bounds access.

In addition to the regular edges between neighboring
nodes, each node can be potentially connected to both ter-
minals by s/t links. Similarly to the implementation1 of [6],
we perform a trivial augmentation of the source-node-sink
path during the graph initialization and only store the resid-
ual capacity rcs/t of the link that remained unsaturated (or
set it to zero when both became saturated). In the con-
text of push-relabel algorithms, this value corresponds to
the node’s initial excess/deficit.

In summary, to represent the residual graph, we main-
tain a collection of nodes, and for each node we only store
the residual capacities of its outgoing edges and the residual
capacity of the remaining unsaturated s/t link. In this collec-
tion, the nodes are addressed by a 32-bit index and indices
of neighbor nodes are computed on the fly. Each node has
the same number of outgoing edges, and the edges have a
fixed ordering which allows quick determination of the op-
posite direction edge using a lookup table. This approach
is similar to representations employed by [25], the imple-
mentation2 of [10], and the GPU oriented graph encoding
of [34], but crucially, we further combine it with structure
splitting and blocked array reordering to achieve even better
utilization of caches, as described in the following sections.

3.2. Structure splitting

Besides residual capacities max-flow algorithms usually
introduce additional algorithm-specific fields. For exam-
ple, BK maintains two search trees with marking heuris-
tic [21] requiring for each node to store the tree member-
ship tag, a reference to a parent node, an estimation of the
distance to its terminal, and a time-stamp indicating when
the distance was computed. However, from the optimiza-
tion standpoint the key observation is that these fields are
typically not accessed at the same time during the max-flow
computation. For instance, algorithms based on augment-

1vision.csd.uwo.ca/code/maxflow-v3.01.zip
2vision.csd.uwo.ca/code/regionpushrelabel-v1.03.zip

ing paths alternate between search and augmentation while
accessing different subsets of fields in each stage. In liter-
ature on cache optimization [9] these frequently accessed
fields are typically referred to as hot while unused fields
are cold. To improve cache utilization we want to preserve
space for hot fields and avoid transfers of cold fields. This
can be achieved by rearranging the node information using
the structure-of-arrays layout (SoA) [9]. Instead of storing
all nodes in a single array of structures with all fields packed
together, we split the individual fields into separate arrays.
With this layout the data can be naturally split into hot and
cold portion.

3.3. Cache-friendly layout of arrays

We observe that even though the data access pattern of
max-flow algorithms is irregular, it usually exhibits a cer-
tain amount of spatial locality. For example, when some
node is visited during the computation, it is likely that other
nearby nodes will be visited afterwards. The aim is to ex-
ploit this behavior to further improve utilization of caches.
As transfers between cache and memory are executed in
blocks (cache lines) with fixed size (typically 64 bytes) we
can rearrange arrays into a blocked layout. Here all blocks
have a size equal to the size of cache lines and their fields
are arranged in such a way that spatially close nodes on the
grid become spatially close in memory (see Fig. 3). When
a field from the block is accessed for the first time, a cache
miss occurs and the field is loaded into the cache along with
fields of other nodes lying in the same block. Thanks to this
behavior fields of nearby nodes can be quickly accessed in
further steps of the algorithm.

Figure 3: Blocked array layout.

The only issue associated with this rearrangement is an
efficient computation of a node’s neighbor indices. A naive
approach would be to reconstruct the grid coordinates back
from the nodes’s index, translate them by the desired off-
set and then recompute a neighbor’s index from the new
coordinates. However, this computation can be very costly



requiring several division and modulo operations. To keep
the index computation cheap, we consider only blocks with
power of two extents (not necessarily equal) and with scan-
line ordering of nodes inside the block as well as the blocks
themselves (see Fig. 3). Grids with dimensions that are not
evenly divisible by block size are padded by dummy nodes.
In this setting coordinates inside the block can be easily sep-
arated from the node’s index by bit-mask operations. This
helps to quickly distinguish between different neighbor off-
sets for nodes inside a block. We demonstrate this com-
putation for 2D 4-connected grids in Appendix, other com-
mon neighborhood systems (2D8C, 3D6C, and 3D26C) are
listed in the supplementary PDF.

3.4. Implementation details

To demonstrate the effectiveness of our method, we
incorporated the proposed optimizations in our own re-
implementation of BK which we call OBK. The source code
of OBK is available at http://gridcut.com. Our implementa-
tion always uses the full combination of the compact resid-
ual graph representation (CR), the structure of arrays (SoA),
and the blocked array layout (BLK).

Because the growth and adoption stages of BK access
residual capacities only to determine whether the edges are
saturated or not, we found it beneficial to store the satu-
ration status of a node’s k outgoing edges in an additional
k-bit field. Each bit in this field indicates whether the corre-
sponding edge has non-zero residual capacity. Even though
the bit field must be updated whenever the edge saturates
or desaturates (in the augmentation stage), the overall ben-
efit of fetching less data from memory more than compen-
sates for the overhead of updates. The use of a saturation
bit field is advantageous mainly on denser graphs with large
capacities. We used it in all our experiments except for the
4-connected grids which are not dense enough to amortize
its maintenance.

Our implementation also employs the “marking” heuris-
tic described in [21], except for 4-connected grids where
we observed an average 7% increase in algorithm run time
when the heuristic was enabled. However, we still make use
of the timestamping mechanism to mark the nodes whose
origin was already traced to one of the terminals. In its orig-
inal form the heuristic is applied in both the growth and the
adoption stages of BK. We use a slightly different approach
where we apply the heuristic only during adoption stage, as
in our experiments the path length reduction achieved by
parent reassignment in the growth stage did not account for
its overhead, and on average increased the run time by 9%.

4. Results and Discussion
To verify the efficiency of our method we performed

an exhaustive benchmark (see Tab. 1) which combines
graphs from well-known data sets provided by The Uni-

versity of Western Ontario3 and Middlebury College4 (α-
expansion [7, 33]). These graphs originate from various ap-
plications such as restoration (1-2), stereo (3-8), 2D seg-
mentation (9-11), photomontage (12-13), 3D shape fitting
(21-22), and 3D segmentation (23-48). In addition to that
we also include graphs (14-20) used to solve the coloriza-
tion problem [32] which is similar to 2D image segmenta-
tion [4], but with only very sparse links to the s/t terminals.
Besides various applications and density of s/t links we
also provide variability in grid dimension (2D/3D), num-
ber of nodes (20k-12M), neighborhood topology (4/6/26-
connected), and number of bits needed to store the maximal
capacity (8/16/32-bit).

To perform the comparison we downloaded the latest im-
plementation1 of BK and used our optimized implemen-
tation OBK. We compiled both codes in 32-bit and 64-bit
modes with identical compiler settings and ran them on var-
ious CPUs (Xeon & Core i3/i7) with different cache sizes
(3/6/8M). Exact configurations as well as used compilers
and switches are listed in Tab. 1. For each graph instance
we selected an appropriate code template having an optimal
data type able to store the maximal capacity in the graph
(same for BK and OBK). In contrast to previous bench-
marks we decided to measure processing time not only for
maximum flow computation, but also for graph initializa-
tion and output phase. This is crucial for a fair comparison
with BK as in OBK we have to perform initial data rear-
rangement which takes some additional CPU time.

The resulting memory footprint reductions as well as
speedups on selected CPUs are listed in Tab. 1. As shown
in the table, the memory footprint reduction increases with
the number of nodes and graph connectivity. It ranges from
2x to 6x for 32-bit and 3x to 12x for 64-bit modes. The av-
erage speedup over all instances and CPUs is 2.7x for 32-bit
and 4.4x for 64-bit modes. However, as is visible from the
table and graphs in Fig. 4, there is a notable variability. De-
spite of this fact, we found a few interesting trends which
are worth mentioning.

First we observed that the main performance gain is al-
ways caused by the compact data representation (CR on
the bottom graph in Fig. 4). The importance of the lower
memory consumption is also apparent when comparing 32-
bit with 64-bit modes (top and middle graph in Fig. 4).
Today 64-bit mode is preferred in practice as it allows
for a significantly larger addressing space. On the other
hand it requires 64-bits to store all the pointers used in the
BK method, therefore a larger amount of data needs to be
stored/transferred compared to OBK where only a few array
pointers are needed and all nodes are indexed by 32-bit in-
tegers. Another important factor which influences speedup
is the size of frequently accessed area in the memory. The

3http://vision.csd.uwo.ca/maxflow-data/
4http://vision.middlebury.edu/MRF/
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Figure 4: Speedups of OBK with respect to BK in 32-bit (top) & 64-bit (middle) modes and speedup breakdown (bottom).

performance gain is only moderate when such area is so
small that it can be fully fitted into the cache (see speedups
for small instances 1-8 on all CPUs). Due to same rea-
son cache-efficient memory layout (CR+SoA+BLK, bot-
tom in Fig. 4) brings notable improvements only for larger
instances (9-48). It is also interesting to note that the
structure splitting technique alone (CR+SoA) typically does
not improve the final performance over CR. Only in com-
bination with the blocked layout (BLK) we see notable
speedups. Another question is whether cache size influ-
ences the speedup. There is not a straightforward depen-
dance, however, from the graphs displaying the difference
between Core i3 (3M) and Core i7 (8M) (see Fig. 4) one
may deduce that our approach brings better speedups on
CPUs with smaller caches.

As OBK brings significant performance gain for a vari-
ety of vision and graphics problems we decided to compare
it directly with existing state-of-the-art max-flow/min-cut
methods. We selected two recent algorithms: (1) voronoi-
based pre-flow push (VPP) [2] and (2) incremental breadth-

first search (IBFS) [16] which to our best knowledge report
best speedups over the original BK. Based on a DLL pro-
vided by authors of VPP we performed our own comparison
with BK and found that the results shown in [2] were af-
fected by three important factors. Firstly the authors did not
set the graph for the BK algorithm correctly and introduced
many redundant edges with zero capacities. Secondly, they
did not use the latest version of BK, and also did not use
full compiler optimizations (/Ox in Visual Studio). These
points are crucial for the peak performance of BK. With all
these issues fixed, VPP performed only comparable or even
worse than BK. The performace comparison of VPP with
respect to OBK is provided in the supplementary material.
Regarding IBFS we used the publicly available implementa-
tion5 and found that on all instances OBK achieves notably
better absolute times mainly due to inefficient preprocess-
ing phase used in IBFS. The absolute times were often bet-
ter even when measuring only the computation of maximum
flow (see supplementary material for detailed evaluation).

5http://www.cs.tau.ac.il/˜sagihed/ibfs/



32-bit 64-bit 32-bit 64-bit 32-bit 64-bit 32-bit 64-bit

#opotecnatsni  nodes captype reduction reduction speedup speedup speedup speedup speedup speedup

1 /mid/denoise/penguin 2D/4C 22k 16-bit 1.71 3.11 1.24 1.54 1.37 2.11 1.31 1.81

2 /mid/denoise/house 2D/4C 66k 32-bit 1.49 2.72 1.67 2.64 1.76 2.95 1.55 2.72

3 /mid/stereo/tsukuba 2D/4C 111k 8-bit 1.91 3.64 1.54 2.57 1.52 2.23 1.34 1.98

4 /uwo/stereo/BVZ-tsukuba 2D/4C 111k 8-bit 1.91 3.64 2.10 3.82 1.90 2.93 1.56 2.50

5 /uwo/stereo/BVZ-sawtooth 2D/4C 165k 8-bit 1.95 3.73 1.80 3.04 1.54 2.31 1.43 2.13

6 /uwo/stereo/BVZ-venus 2D/4C 166k 8-bit 1.93 3.68 1.63 3.07 1.50 2.23 1.37 2.01

7 /mid/stereo/venus 2D/4C 166k 16-bit 1.85 3.37 1.31 2.57 1.42 2.16 1.25 1.85

8 /mid/stereo/teddy 2D/4C 169k 8-bit 1.97 3.76 1.73 2.92 1.70 2.62 1.43 2.19

9 /mid/segment/flower 2D/4C 270k 16-bit 1.87 3.41 2.35 5.29 2.24 4.11 2.15 3.98

10 /mid/segment/person 2D/4C 270k 16-bit 1.87 3.41 2.29 5.86 2.30 4.19 2.18 4.04

11 /mid/segment/sponge 2D/4C 307k 16-bit 1.86 3.40 2.58 6.30 2.72 4.66 2.60 5.16

12 /mid/photomontage/family 2D/4C 426k 32-bit 1.56 2.86 1.87 3.17 2.52 4.14 2.13 3.22

13 /mid/photomontage/panorama 2D/4C 514k 32-bit 1.55 2.83 1.81 3.08 2.39 3.65 2.11 3.04

14 /ctu/lazybrush/footman 2D/4C 593k 16-bit 1.89 3.44 1.93 4.77 2.93 5.85 2.45 4.52

15 /ctu/lazybrush/hmdman 2D/4C 593k 16-bit 1.89 3.44 2.44 5.96 3.44 6.57 2.77 5.06

16 /ctu/lazybrush/mangadinner 2D/4C 593k 16-bit 1.89 3.44 2.11 4.72 3.04 5.62 2.56 4.53

17 /ctu/lazybrush/mangagirl 2D/4C 593k 16-bit 1.89 3.44 2.04 4.54 3.20 6.24 2.71 4.78

18 /ctu/lazybrush/elephant 2D/4C 2370k 16-bit 1.90 3.48 2.61 4.27 4.69 7.32 4.31 6.53

19 /ctu/lazybrush/bird 2D/4C 2372k 16-bit 1.91 3.48 3.39 5.58 5.26 8.74 4.79 7.55

20 /ctu/lazybrush/doctor 2D/4C 2373k 16-bit 1.91 3.48 2.42 4.35 3.83 6.51 3.09 5.35

21 /uwo/shapefit/LB07-bunny-sml 3D/6C 806k 8-bit 2.51 4.86 3.03 5.60 2.34 4.56 2.37 4.33

22 /uwo/shapefit/LB07-bunny-med 3D/6C 6311k 8-bit 2.70 5.21 3.74 6.53 3.41 6.19 2.90 5.23

23 /uwo/seg3d/bone_subxyz_subxy.n6c10 3D/6C 246k 8-bit 2.31 4.32 4.20 7.03 3.87 6.71 2.57 4.84

24 /uwo/seg3d/bone_subxyz_subx.n6c10 3D/6C 492k 8-bit 2.39 4.46 5.00 7.94 4.04 6.81 3.01 5.42

25 /uwo/seg3d/bone_subxyz.n6c10 3D/6C 983k 8-bit 2.46 4.61 5.05 7.84 4.13 7.00 3.44 5.79

26 /uwo/seg3d/bone_subxy.n6c10 3D/6C 1950k 8-bit 2.53 4.73 4.33 6.90 3.67 5.74 3.20 5.10

27 /uwo/seg3d/bone_subx.n6c10 3D/6C 3899k 8-bit 2.57 4.80 3.82 5.70 3.34 5.31 3.08 4.69

28 /uwo/seg3d/liver.n6c10 3D/6C 4162k 8-bit 2.67 4.99 2.75 4.11 2.69 4.09 2.33 3.44

29 /uwo/seg3d/babyface.n6c10 3D/6C 5063k 8-bit 2.66 4.98 3.17 4.78 3.07 4.71 2.76 4.09

30 /uwo/seg3d/bone.n6c10 3D/6C 7799k 8-bit 2.61 4.88 6.00 9.40 5.36 9.16 5.01 8.47

31 /uwo/seg3d/adhead.n6c10 3D/6C 12583k 8-bit 2.67 4.99 3.29 4.59 2.79 4.30 2.62 3.86

32 /uwo/seg3d/bone_subxyz_subxy.n6c100 3D/6C 492k 8-bit 2.39 4.46 3.78 5.94 3.36 5.52 2.61 4.65

33 /uwo/seg3d/bone_subxyz_subx.n6c100 3D/6C 492k 8-bit 2.39 4.46 3.78 5.70 3.34 5.49 2.56 4.43

34 /uwo/seg3d/bone_subxyz.n6c100 3D/6C 983k 8-bit 2.46 4.61 3.21 4.77 2.97 4.54 2.51 3.89

35 /uwo/seg3d/bone_subxy.n6c100 3D/6C 1950k 8-bit 2.53 4.73 2.81 4.18 2.70 4.02 2.41 3.49

36 /uwo/seg3d/bone_subx.n6c100 3D/6C 3899k 8-bit 2.57 4.80 2.52 3.59 2.66 3.83 2.37 3.28

37 /uwo/seg3d/liver.n6c100 3D/6C 4162k 8-bit 2.67 4.99 2.10 2.90 2.35 3.32 2.15 2.97

38 /uwo/seg3d/babyface.n6c100 3D/6C 5063k 8-bit 2.66 4.98 2.39 3.25 2.54 3.54 2.29 3.12

39 /uwo/seg3d/bone.n6c100 3D/6C 7799k 8-bit 2.61 4.88 4.70 7.07 4.39 7.14 4.12 6.63

40 /uwo/seg3d/adhead.n6c100 3D/6C 12583k 8-bit 2.67 4.99 2.74 3.61 2.56 3.49 2.43 3.27

41 /uwo/seg3d/bone_subxyz_subxy.n26c10 3D/26C 246k 8-bit 5.42 10.65 2.88 4.02 2.72 4.40 2.27 3.57

42 /uwo/seg3d/bone_subxyz_subx.n26c10 3D/26C 492k 8-bit 5.59 10.97 2.94 4.06 2.93 4.54 2.39 3.74

43 /uwo/seg3d/bone_subxyz.n26c10 3D/26C 983k 8-bit 5.76 11.30 3.00 4.06 2.49 4.38 2.14 3.61

44 /uwo/seg3d/bone_subxy.n26c10 3D/26C 1950k 8-bit 5.89 11.57 2.67 3.39 2.16 3.41 1.95 2.82

45 /uwo/seg3d/bone_subxyz_subxy.n26c100 3D/26C 246k 8-bit 5.42 10.65 2.71 3.60 2.61 4.02 2.15 3.39

46 /uwo/seg3d/bone_subxyz_subx.n26c100 3D/26C 492k 8-bit 5.59 10.97 2.61 3.40 2.48 3.79 2.06 3.15

47 /uwo/seg3d/bone_subxyz.n26c100 3D/26C 983k 8-bit 5.76 11.30 2.45 3.12 2.12 3.42 1.84 2.86

48 /uwo/seg3d/bone_subxy.n26c100 3D/26C 1950k 8-bit 5.89 11.57 2.16 2.68 1.96 2.76 1.69 2.36

average: 2.77 5.26 2.81 4.58 2.84 4.65 2.47 3.99

Memory Xeon Core i3 Core i7Intel Xeon E5440 @ 2.83 GHz 6M cache | gcc 4.4.0, -O3 -march=native -mtune=generic -DNDEBUG

Intel Core i3 M370 @ 2.40 GHz 3M cache | gcc 4.5.2 (32b) / 4.7.0 (64b), -O3 -march=native -mtune=generic -DNDEBUG

Intel Core i7 950 @ 3.07 GHz 8M cache | gcc 4.5.2 (32b) / 4.7.0 (64b), -O3 -march=native -mtune=generic -DNDEBUG

Table 1: Detailed performance evaluation for different problem instances.



This leads us to the conclusion that for most vision and
graphics problems OBK outperforms current state-of-the-
art and delivers best single core performance. However,
despite this fact we believe that by incorporating our op-
timizations into IBFS and making the preprocessing phase
more efficient one can possibly beat OBK on selected in-
stances. The key limitation of our approach is that it is tai-
lored to structured grid-like graphs with nodes having iden-
tical neighborhood connectivity. However, since we can
always introduce redundant edges with zero capacities in
places where the edge is missing in the original graph we
can handle even more general topologies. To measure the
efficiency of our approach in these irregular cases we con-
ducted an experiment where we randomly removed a per-
centage of edges from the original graphs (22 & 30) having
full 6-connected neighborhoods. We then build a new irreg-
ular graph on which we run BK as well as OBK with re-
dundant edges, and measured the performance gains. Fig. 5
shows a graceful performance degradation with increasing
topological irregularities. However, further investigation is
needed to verify that behavior in more practical scenarios.
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Figure 5: Speedup of OBK with respect to the percentage
of removed edges.

5. Conclusions
We have presented a set of cache-efficient optimizations

that enable a notable reduction of memory bandwidth when
computing graph cuts on structured N-D grids. Our exper-
imental evaluation shows that the proposed optimizations
achieve a significant performance gain as well as a reduc-
tion of the memory footprint, which renders our method
particularly useful for interactive applications and for large
problems. Finally, the presented techniques are comple-
mentary to other optimizations and can be easily plugged
into other graph cut algorithms. Our implementation is pub-
licly available at http://gridcut.com.
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Appendix
In this section we present the details of node enumer-

ation and neighbor index computation on the example of
4-connected 2D grid (see supplementary material for other
neighborhood systems). In the blocked layout with 8×8
blocks, the index u of a node with grid coordinates x and y
is evaluated using the formula

u = (x&7)+((y&7)�3)+((x&∼7)�3)+W ·(y&∼7),

where W is width of the padded grid. To compute the in-
dices of a node’s neighbors, we make use of the fact that
in a 4-connected grid the index of each neighbor can differ
from the current node’s index by only two possible additive
constants, depending on whether the two nodes are in the
same or different blocks. In the 8×8 blocked layout, we
can decide between the two situations by examining the six
least significant bits of the node indices. The bits have a
specific pattern on the block’s boundary. For instance, the
lower three bits are always 000 on the left boundary and the
higher three bits are always 111 on the bottom boundary.
To compute a neighbor’s index, we first check whether the
node lies on the block’s boundary by comparing the relevant
bits and pick one of the constants accordingly. To compute
the left, right, top and bottom neighbor of a node with index
u, we use the functions

left(u) = u & 000111b ? u− 1 : u− 57
right(u) = (∼ u) & 000111b ? u+ 1 : u+ 57
top(u) = u & 111000b ? u− 8 : u− Yofs

bottom(u) = (∼ u) & 111000b ? u+ 8 : u+ Yofs,

where Yofs = 8 · (W − 8 + 1). The use of the ternary
operator ? hints the compiler to generate conditional moves
instead of branches. This is beneficial as it avoids latencies
incurred by branch mispredictions.


