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Figure 1: We present the first method to capture an individual’s hair style (left) in a manner suitable for miniaturization and physical
reproduction while still faithfully preserving the essential visual look of the style (right).

Abstract

Recently, we have seen a growing trend in the design and fabri-
cation of personalized figurines, created by scanning real people
and then physically reproducing miniature statues with 3D print-
ers. This is currently a hot topic both in academia and industry, and
the printed figurines are gaining more and more realism, especially
with state-of-the-art facial scanning technology improving. How-
ever, current systems all contain the same limitation - no previous
method is able to suitably capture personalized hair-styles for phys-
ical reproduction. Typically, the subject’s hair is approximated very
coarsely or replaced completely with a template model. In this pa-
per we present the first method for stylized hair capture, a technique
to reconstruct an individual’s actual hair-style in a manner suitable
for physical reproduction. Inspired by centuries-old artistic sculp-
tures, our method generates hair as a closed-manifold surface, yet
contains the structural and color elements stylized in a way that
captures the defining characteristics of the hair-style. The key to
our approach is a novel multi-view stylization algorithm, which ex-
tends feature-preserving color filtering from 2D images to irregular
manifolds in 3D, and introduces abstract geometric details that are
coherent with the color stylization. The proposed technique fits
naturally in traditional pipelines for figurine reproduction, and we
demonstrate the robustness and versatility of our approach by cap-
turing several subjects with widely varying hair-styles.
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1 Introduction

A mainstream goal in computer graphics is to create data-driven
methods for building geometric models of humans. In recent years
we have seen advances in 3D face and body scanning, motion
capture and real-time performance capture. While human scan-
ning has many applications in fields like video games, films and
medical analysis, a fast-growing field is the physical reproduction
of miniature statues or figurines. Physical reproduction in gen-
eral, and particularly of humans, has become a hot topic both in
academia [Li et al. 2013; Sturm et al. 2013; Tena et al. 2013] and
industry [3DSystems 2013; 3D-u 2010; D-Tech Me 2012; Omote
3D 2012; PocketSize Me 2013]. Recently, 3D-Systems even an-
nounced the release of a 3D-photobooth, which will facilitate 3D-
portraits for the masses. The underlying pipeline of all these sys-
tems is essentially the same: A person is scanned, the resulting
mesh is processed often with artist interaction, and the figurine is
printed using a 3D printer. Consequently, all systems have similar
drawbacks, and in particular, no previous approach can capture per-
sonalized hair-styles with adequate details, while being suitable for
physical reproduction.

Almost as much as the face, a person’s hair-style is a defining
characteristic of an individual. The reproduction of figurines
without properly capturing the hair is a severe limitation of current
systems, since the hair-style contributes so substantially to the
person’s identity. Existing research in hair capture methods either
focus on reconstructing highly-detailed individual wisps or hair
strands [Luo et al. 2013; Beeler et al. 2012; Paris et al. 2008], which
do not meet the physical manufacturing constraint of a closed
manifold surface, or they produce coarser reconstructions [Luo
et al. 2012] that lack the level of stylization, detail or colors
required to produce appealing 3D-printed models. In this work we
present the first method for stylized hair capture, which addresses
current limitations of physical reproduction systems, enabling the
faithful miniaturization and physical reproduction of figurines with
drastically varying hair-styles. Our method automatically reduces
the complexity of hair to an abstract, printable 3D surface, while
still capturing the essential structural and color elements that define
its style. The proposed method fits naturally into existing physical
reproduction pipelines, and so our work has the potential to
significantly impact the growing industry of figurine reproduction.
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Our work is inspired by existing artistic sculptures of hair. For cen-
turies, artists have shown that the essence of a hair-style can be rep-
resented on a continuous manifold surface, such as marble or clay,
through stylized sculpting of geometric details (Figure 2, left). To-
day in the digital world, CG modelers follow the same principles
by virtually sculpting hair structure on a 3D mesh (Figure 2, right).
Our goal is to computationally achieve a similar level of abstraction
in the captured hair-style of an individual.

Figure 2: Our work is inspired by artistic sculptures of hair in
the real world and those created by digital artists in professional
modeling software.

To this end, we start by obtaining a smooth surface representation
of the hair-style from multi-view stereo reconstruction. As our pri-
mary contribution, we introduce a novel color stylization operator
that works directly over the geometric mesh domain, and can be
applied over non-uniform manifold surfaces. This way, color infor-
mation can be sampled, stored and processed in a consistent way
with respect to the input views. As it is important to retain the ap-
pearance of directional wisps and the overall flow of hair, the color
is stylized over the mesh using a combination of directional smooth-
ing and orthogonal shock filters, inspired by analogous 2D image
stylization [Kang et al. 2009; Kyprianidis and Kang 2011]. The
per-vertex stylized color is then used to generate coherent geomet-
ric displacements over the surface, effectively stylizing the shape
as well. The final result is a printable surface that can be miniatur-
ized so that both geometry and color convey the hair-style of the
captured person (see Figure 1). Our method allows the user to ad-
just the level of abstraction to match the scale of the final printout
and to achieve different visual styles, which behave in a consistent
way no matter the complexity of the original hair-style. Ultimately,
the stylized hair is combined with state-of-the-art face scanning and
traditional 3D printing methods for fabricating full-head figurines.
We show the flexibility of our approach by reconstructing a large
number of varied, complex hair-styles, and even non-human furry
objects.

2 Related Work

Our work is related to methods for creating personalized figurines,
reconstructing hair, geometry abstraction and image stylization.

Personalized Figurines. A large variety of methods are being
employed to capture a person in 3D, ranging from depth sensors
such as the Kinect to photogrammetric systems. Li et al. [2013]
present a system to capture 3D self portraits from a 3D sensor,
based on non-rigid registration of several partial scans and Pois-
son texture blending for smooth colors from the input views. Sturm
et al. [2013] propose a signed distance function that is updated at
interactive rates directly from the sensor feed, obtaining dense 3D
models. Tena et al. [2013] develop a semi-automated, commercial
system to seamlessly integrate customer faces into figurines. How-
ever, all methods have problems when it comes to reconstructing

hair, either approximating the hair-style in low-resolution or replac-
ing it completely with a pre-modeled template.

In addition to research efforts, the consumer market is exploding
with products and services that offer physical reproduction of per-
sonal figurines [3DSystems 2013; 3D-u 2010; D-Tech Me 2012;
Omote 3D 2012; PocketSize Me 2013]. However, these systems
suffer from the same drawback that the hair-style is not sufficiently
captured. Our work is complementary to these efforts, proposing
the first approach to address this limitation and provide personal-
ized hair-styles suitable for 3D reproduction.

Hair Reconstruction. Early work on reconstructing hair from
images targeted simple hair-styles [Kong et al. 1997] or recon-
structed only partial hair [Grabli et al. 2002]. More recently we
have seen several advances in generating photo-realistic hair re-
constructions [Paris et al. 2004; Wei et al. 2005; Paris et al. 2008;
Jakob et al. 2009; Beeler et al. 2012; Herrera et al. 2012; Chai
et al. 2013; Luo et al. 2013; Hu et al. 2014] and synthesis [Wang
et al. 2009]. These methods aim to reconstruct individual strands
of hair, which do not meet the physical reproduction constraint of
a manifold surface. In contrast, we aim to create 3D-printable hair
with enough geometric detail to convey the same style as the orig-
inal. Luo et al. [2012] obtain a hair surface from multiple images,
based on the observation that orientation fields are reasonably co-
herent across views. However, hair-style results tend to lack the
level of stylization, detail and color required to produce appealing
3D-printed models. Finally, coarse hair reconstructions have been
obtained from a single image for the application of advanced image
editing [Chai et al. 2012], which differs significantly from our goal
of stylized 3D hair capture.

Geometry Abstraction. Several works have recently appeared
on the topic of abstraction of geometrical features for simplifica-
tion of complex models [Yumer and Kara 2012; Nan et al. 2011;
Mehra et al. 2009]. However, those focus on man-made shapes,
which are very different from the geometry of hair-styles.

Image and Video Stylization. The field of non-photorealistic
rendering is traditionally very active in studying the problem of
stylizing and abstracting 2D images and videos (refer to Kypri-
anidis et al. [2013] for a detailed survey). Specifically related to
hair stylization are methods that stylize images while preserving
the directionality of the most prominent features [Kang et al. 2009;
Kyprianidis and Kang 2011]. These techniques are designed for
single images represented as 2D regular grids, and are thus unsuited
for 3D hair stylization. Even in the context of multi-view styling,
consistency of existing 2D stylization algorithms across views is
not guaranteed. We draw inspiration from these 2D operators, and
propose a novel extension to irregular 3D geometric domains and
multi-view settings. This allows us to stylize hair while handling
its view-dependent appearance and geometric complexity in a co-
herent way.

In summary, our work represents the first approach for reconstruct-
ing hair that is suitable for manufacturing personal figurines, yet
stylized with subject-specific details that capture the identity of the
individual.

3 Method Overview

Figure 3 shows a diagram of our pipeline. Our algorithm takes as
input several color images of a person with a given hair-style from
a multi-view capture system (Section 4). Using these images, an
initial smooth and coarse proxy geometry is obtained using multi-
view stereo [Beeler et al. 2010]. This proxy is then initialized with
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Figure 3: Our approach starts with a data acquisition process to construct a coarse proxy surface of the hair from multiple images. Stylized
hair capture then begins by initializing, and then stylizing color information over the proxy surface using a novel stylization filter. We then
extract detailed structure from the stylized colors in order to consistently stylize also the geometry. The result is a 3D-printable surface that
captures the defining features of the hair-style.

per-vertex color information from the input images, split into multi-
ple frequencies (Section 5). Next, stylization operators are applied
over the color information to achieve the desired level of abstraction
(Section 6). From the stylized color information, new geometric de-
tails for the proxy are synthesized giving the artist control over the
geometric appearance (Section 7). The final output of our method is
a stylized mesh which abstracts the complexity of a real hair-style
while still preserving its defining features (Section 8). This mesh is
suited for miniaturization and 3D printing (Figure 1, right).

4 Data Acquisition

As a domain for computing stylized effects, our algorithm requires
a coarse, low-resolution geometric proxy surface of the hair. This
proxy may be generated with any 3D capture system that provides
geometry and images, such as Li et al. [2013]. In this work, we use
a multi-view reconstruction setup as described in the following.

Ideally, the geometry proxy would be captured in a single shot from
sufficient viewpoints to cover the full head. Since this approach
requires a significant amount of camera and lighting equipment,
we describe a technique that makes use of only limited hardware.
We place ten digital SLR cameras in a quarter-spherical setup and
photograph the subject under four consecutive orientations defined
by 90-degree rotations (Figure 4).

Figure 4: Our capture setup consists of 10 cameras placed in a
quarter-sphere and we capture 4 different orientations of the sub-
ject.
Although we take care not to change the hair-style or alter the
facial expression drastically between the four takes, minor differ-

Figure 5: Partial reconstructions from four sequential orientations
(left) are combined to form a proxy geometry (right) shown with the
hair masked in green.

ences are tolerated since we require only a low-resolution proxy
shape. We use a multi-view stereo reconstruction algorithm [Beeler
et al. 2010] to compute partial reconstructions from each of the
four orientations (Figure 5, left). These reconstructions are aligned
rigidly through the Iterative Closest Points (ICP) algorithm [Besl
and McKay 1992], and a single surface is obtained through Poisson
reconstruction [Kazhdan et al. 2006] of the combined point cloud.
This surface represents our geometric proxy, including both hair
and face (Figure 5, right). We manually identify the hair region
through simple masking. The proxy will serve as a base for syn-
thesizing stylized details in both shape and color. The four rigid
transformations computed from ICP are also applied to the cali-
brated camera views to produce virtual cameras surrounding the
proxy. In total we could obtain 40 virtual cameras; however, while
such a dense view sampling is advantageous for multi-view stereo,
we found that a subset of eight views is sufficient for hair styliza-
tion once the geometry is reconstructed. To this end, we select the
eight views that cover the hair volume from front, back, and both
sides at two different elevations. In the rest of this paper we refer
only to this subset of inputs.

5 Color Initialization

Once the proxy geometry has been obtained, the next step is to as-
sign colors to its vertices. Contrary to face colors, which come
from [Beeler et al. 2010], coloring the hair requires special treat-
ment because the proxy surface only poorly approximates the volu-
metric nature of hair and is not geometrically accurate, so there will
inevitably be inconsistencies between different views. Furthermore,



Figure 6: a) All-frequency colorization from the single-best view
introduces strong seams but locally preserves sharpness. b) All-
frequency colorization by averaging multiple views leads to blurry
results, but reduces seams. c) Seams are most apparent in low-
frequency bands, while they are masked in the high-frequency bands
(shown in false color given they are offsets from the DoG). d) Loss
of sharpness on the other hand is most apparent for high frequen-
cies. e,f) We colorize the proxy by averaging low-frequency infor-
mation from mutliple views but sample high-frequency information
from the single-best view, leveraging to the complementary nature
of the two approaches. g) This approach might cause a change
in contrast, which we equalize as described in Subsection 5.3. h)
Contrast may be further boosted by scaling the intensity of the high-
frequency band to help stylization. (Dataset courtesy of Luo et
al. [2012]).

hair has a very complex appearance, with strong view dependent ef-
fects, such as specular reflection, translucency and occlusions. Ob-
taining a sharp and seamless colorization from multiple views is
therefore extremely challenging. On the one hand, assigning colors
per vertex based on a single-best viewpoint will lead to strong color
seams (Figure 6 (a)). On the other hand, computing color by aver-
aging multiple viewpoints will lead to blurry results (Figure 6 (b)).
As shown in Figure 6 (c), color seams due to single-best viewpoint
selection are most apparent in the lower frequencies, while they are
masked in the high frequency bands. In contrast, blurryness due
to color averaging has the biggest impact on the high-frequency
components (Figure 6 (d)). Following from this observation, we
separate color information into two frequency bands, low and high,
using a Difference of Gaussians (DoG) filter. These color bands are
processed separately according to their complementary nature and
combined back together on the mesh (Figure 6 (e-f)).

Subsequent steps in the pipeline will make use of the intensity val-
ues to enhance contrast (Section 5.3) and guide geometric styliza-
tion (Section 7). To be able to directly operate on intensity values
we convert the images from RGB to HSV color space as a prepro-
cessing step.

5.1 Low-Frequency Color

For low-frequency color information, we assign a color c to each
vertex of the proxy mesh by averaging color samples cj from the
set of views V , weighted by their foreshortening angle ωj

c =
1∑

j∈V ω
j

∑
j∈V

ωjcj , (1)

with
ωj = max(< n,vj >, 0),

cj = Ij(P jp),

where n is the normal and p is the position in world space of the
vertex. Ij , vj and P j are the low-frequency HSV image, view
vector and projection matrix of view j respectively. Equation 1 is

applied to each HSV channel separately. This approach effectively
removes visible color seams and attenuates view-dependent color
changes (Figure 6 (d)).

5.2 High-Frequency Color

As mentioned previously, the proxy geometry is only a coarse ap-
proximation of the hair volume, and averaging high-frequency color
from multiple views as described for the low-frequency compo-
nents would lead to blurry results and exhibit ghosting (Figure 6
(d)). We therefore sample the high-frequency details only from the
single-best view j∗, which we consider to be the one with the high-
est foreshortening angle wj (Figure 6 (e)).

5.3 Contrast Equalization

Local contrast or dynamic range is directly related to incident light
intensity. When averaging the low-frequency color from multiple
views, the resulting intensity l might be very different from the
low frequency intensity lj

∗
in the single-best view used to extract

the high-frequency component hj∗ due to view dependent effects;
this results in a perceived loss of contrast when frequencies are re-
combined (Figure 6 (f)). To alleviate this problem, we perceptually
adjust the intensity value of the high frequency components h as

h = ξhj∗ =
l

lj∗
hj∗ . (2)

In the case that the combined l is darker than lj
∗

we use 1/ξ instead,
since the goal here is to increase the contrast.

Figure 6 (g) shows the effect of equalizing the contrast when com-
pared to Figure 6 (f). The impact is most apparent in areas around
the seams, where the averaged low-frequency intensity l differs sub-
stantially from the intensity found in the single-best view lj

∗
.

Finally, contrast may be boosted globally by uniformly scaling h to
help color stylization (Figure 6 (h)).

6 Color Stylization

As motivated in the introduction, our intent is to create a represen-
tation of the hair that can be miniaturized and printed. However, the
level of detail of real hair is overwhelmingly high, and we thus need
to find a means to reduce the complexity while preserving its defin-
ing features. We approach this problem by employing a specialized
stylization filter.

Recently, Kyprianidis and Kang [2011] have proposed an
anisotropic, feature-preserving stylization filter for images, which
exhibits interesting color stylization effects in hair regions. Their
2D filter can successfully reduce hair complexity, while still main-
taining the overall appearance of a hair-style. Unfortunately, their
method is not immediately suited for stylizing hair in 3D, since (i)
it requires a regular 2D-domain, while our hair proxy constitutes
an irregular manifold embedded in 3-space; and (ii) it is designed
for single-image processing, while we operate within a multi-view
scenario, where consistency between different views is essential.
Nevertheless, the 2D filter of Kypriandis and Kang contains several
of the properties we desire in our application of stylized hair cap-
ture, and thus we propose to employ a similar mathematical foun-
dation in a novel multi-view stylization algorithm that operates on
irregular manifolds in 3D. Our approach will be to couple 2D and
3D stylization. Therefore, we will first provide an overview of the
foundations for feature-preserving stylization in 2D (as presented
by Kypriandis and Kang), and then proceed to describe the key ex-
tensions that enable color stylization of hair in 3D.



6.1 Feature-Preserving 2D Filter

Feature-preserving or enhancing directional filters are based on
three main components [Kang et al. 2009; Kang and Lee 2008]:
The estimation of the local structure, an integration/smoothing op-
eration to reduce complexity, and a sharpening operator to enhance
the desired features. In the following, we describe how these com-
ponents are achieved, focusing first on a single image.

Local Structure Estimation. Estimating the directionality of
features in a 2D image has been studied before, with some specific
applications to hair [Paris et al. 2004; Kang and Lee 2008; Luo et al.
2012]. Given its fast computation and proven effectiveness in styl-
ization contexts, we first compute the structure tensor S(x) [Brox
et al. 2006] at each pixel x. To attenuate noise, we filter the struc-
ture tensor using an isotropic 2D Gaussian [Kyprianidis and Kang
2011] with standard deviation σd = 4.

Based on the structure tensor we introduce the orientation tensor
O(x) ∈ R2x2, which consists of the two eigenvectors of S scaled
by their respective eigenvalues. For our purposes O(x) is equiva-
lent to S(x) but has some advantages when extending to multiple
views, as we will see in Section 6.3. For ease of notation, we will
omit the pixel (x) in the orientation tensor and refer simply to O
in the rest of this discussion. The first row of the orientation tensor
Og , corresponds to the image gradient, while the second row Ot

coincides with the tangent. The gradients and tangents will be used
for directional smoothing and directional sharpening as described in
the following. We will use ~Og,t to indicate the normalized gradient
and tangent directions, respectively.

Directional Smoothing/Integration. Once we have a smooth
orientation field, stylization starts by performing directional
smoothing following the tangents ~Ot. This operation consists of a
line integral convolution [Cabral and Leedom 1993]. To obtain the
resulting color I ′(x0) of a given pixel x0, additional color samples
I(x±k ) are interpolated from both directions of the flow, and then
averaged using a 1D Gaussian function G(dk) of standard devia-
tion σ̃t, where dk represents the geodesic distance from the sam-
pling point xk to x0. We aim to filter with a standard deviation
σt = 10, and account for local anisotropy by computing σ̃t as

σ̃t =
1

4
σt

(
1 +
‖Og‖ − ‖Ot‖
‖Og‖+ ‖Ot‖

)2

. (3)

We then have:

I ′(x0) =
1

w

[
G(0)I(x0) +

l∑
k=1

G(dk)
[
I(x+

k ) + I(x−k )
]]
, (4)

where I(x) is the original color of a pixel x, w =
∑l

k=−lG(dk)

is a normalization factor, and l = d2σ̃te represents the cut-off of
G(dk). Equation 4 is applied to each HSV channel independently.
Several ways to compute I(x±k ) have been proposed [Kang et al.
2009; Kyprianidis and Kang 2011]; we have found that a second-
order Runge-Kutta integration scheme provides the best results in
our context. Figure 7 (center) shows the result after this step for an
image patch of hair (left).

Directional Sharpening. To further stylize certain features, a di-
rectional shock filter can be applied in the direction of the gradi-
ent ~Og [Osher and Rudin 1990; Kang and Lee 2008]. This filter

Figure 7: A schematic visualization of the smoothing and shocking
operations. Left: Input image. Center: Line integral convolution
following the tangents (in blue). Orange dots show integrated sam-
ples I(x±k ) for pixel x0 (green). Right: Application of the shock
operator in the direction of the gradients (shown in red).

consists of morphological operations of dilation and erosion, which
create ruptures between local maxima and minima, while enhanc-
ing flow-like patterns in the image [Weickert 2003]. For efficiency,
it can be approximated by a min/max filter applied over a neigh-
borhood of radius r, depending on the sign of a luminance-based
Laplacian of Gaussian (LoG) with standard deviation σg [Kypri-
anidis and Kang 2011]. In our case, we apply the LoG over the
value channel in HSV space. We use r = σg = 3 for the results
shown in this paper. Figure 7 (right) shows the final result, after
both directional smoothing and sharpening.

6.2 Extension to Irregular Manifolds in 3-Space

This section describes how the stylization filter defined on a regular
2D image domain can be extended to operate on an irregular man-
ifold embedded in 3-space. Color processing over manifolds has
been studied before for applications like de-noising [Sochen et al.
2003]. Here we extend a different set of operators that addition-
ally deal with per-vertex information obtained from several input
images, which need to be processed in a coherent way.

A possible alternative would be to compute a UV-parameterization
that maps the manifold into 2-space, and then use the 2D stylization
filter. However, we discarded such an approach for two reasons.
First, the mesh proxy is far from being a developable surface, which
would cause distortions in the mapping. These distortions would
vary spatially and so the stylization operators would have to take
them into account. Second, the proxy may have arbitrary genus,
which can occur due to curls or ponytails (for example, see Fig-
ure 12), which would cause a discontinuous parameterization and
require cutting the mesh - a challenging problem on its own. Fur-
thermore, the stylization operators would have to be adapted to han-
dle the discontinuity caused by such cuts. While these approaches
can be found in previous work on texture synthesis [Lefebvre and
Hoppe 2006; Wei and Levoy 2001], we avoid these challenges by
operating directly in 3-space.

As described in Section 5, we compute and store color information
directly on the mesh, and will do the same for orientation tensors.
Operations such as directional smoothing and shock filtering are
then performed on a per-vertex basis, using the geodesic distance
on the mesh surface. To do so, analogous to 2D directional smooth-
ing, we require to look up the color value along a direction t at a
geodesic distance δ from the current vertex x on the mesh. Since
the mesh is not planar, the point x′k = x + δt might be off surface
and needs to be projected back on to get xk (Figure 8 (a)). If δ is
larger than the local tessellation of the mesh, then xk will not reside
in the one-ring neighborhood of x and the process is repeated recur-
sively using the closest point xe on the edge of the one-ring as new
starting point and subtracting ‖xe−x‖ from δt, effectively rolling



down the original vector δt onto the mesh. Figure 8, b shows this
roll-down schematically. Once xk is computed, the value is inter-
polated using barycentric coordinates.

The important parameter in this process is the step size δ, which
should be similar to the local vertex density to avoid sampling is-
sues. Fortunately, our meshes have very uniform vertex density
allowing us to use a global δ that corresponds to the average edge
length of the mesh.

a) b)

Figure 8: a) A point x′k in the direction of the tangent t at distance
δ from x may be off surface, and thus needs to be projected back on
(xk) in order to sample interpolated vertex information. b) If the
sampling distance δ (blue) is larger than the local tesselation, the
sampling point xk will reside outside of the direct neighbourhood of
x. In this case the process is repeated recursively using the closest
point xe on the edge of the one-ring as new starting point x (green)
and adjusting δ accordingly, effectively rolling down the original
vector δt onto the mesh.

6.3 Extension to Multiple Views

As motivated in Section 5, information from different views will
be naturally misaligned since the proxy geometry is an approx-
imation of the hair volume and the appearance of hair may dif-
fer substantially in different views. Consequently we merge low-
frequency color information by averaging the contributions of the
individual views to avoid color seams (Section 5.1), but we must
combine high-frequency components using the single-best view to
avoid blurring (Section 5.2). As a result, the high-frequency color
information on the mesh will contain seams, and this can adversely
impact orientation tensor computation if performed directly on the
mesh. This is demonstrated in Figure 9 on a synthetic mesh patch.
The high-frequency components are sampled from three different
views (color-coded for better visualization) using the single-best
view per vertex (Figure 9 (a)). The seams are clearly visible due to
the change in orientation of the features. If we compute the orienta-
tion tensor on the mesh, it will inevitably follow such seams and so
will do the directional smoothing (Figure 9 (b) and (f)). As a con-
sequence, we will compute the orientation tensors from the images
and transfer them to the mesh vertices.

Since the orientation tensors capture the continuous style of the
hair, their spatial variation is essentially low-frequency, even
though they are computed from the high-frequency components of
the images. Analogously to vertex colorization discussed in Sec-
tion 5, computing per-vertex orientation tensors from the single-
best view would lead to strong seams (Figure 9 (c) and (g)), and
thus we need to combine the tensors from multiple views using an
averaging scheme instead (Figure 9 (d)). In the following section
we will explain how to combine them to produce a smooth tensor
field on the mesh.

Orientation Tensor Backprojection. Similar to Paris et
al. [2008], transferring an orientation tensor Oj from a view j to a
point x in space happens via backprojection, although our proxy
geometry makes the process more straightforward. We project
the normalized gradient direction ~Og onto the tangent plane at x.
The tangent direction ~Ot is computed as the orthogonal vector

e f g h
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Figure 9: Synthetic example with high-frequency values from dif-
ferent views (color-coded for better visualization). a) Using only
the single-best view will cause sharp transitions (blue-red, green-
red). b) These transitions would adversely impact orientation ten-
sor computation (colors encode the dominant orientation). c) Com-
puting and transferring the tensor from the single-best view avoids
these artifacts, but exhibits the same discontinuities. d) Using the
proposed tensor combination yields a smooth tensor field. f,g,h)
Tensor fields (b,c,d) applied to (a). The orientation is only continu-
ous in (h) but the spatial frequencies are attenuated around seams
as the colors dont match the tensor anymore. e) The final gather-
ing step re-establishes this consistency and smoothly combines the
structural elements from the different views without degradation.

in the tangent plane. Both vectors are re-scaled to their original
magnitudes ‖Oj

g,t‖. Note that the sign of these vectors is arbitrary.
We thus ensure consistency of the direction vectors of all views
by reversing vectors that do not agree with the orientation of the
single-best view. In the following,O will denote this backprojected
orientation tensor.

Orientation Tensor Combination. Unlike structure tensors,
which are oriented absolutely with respect to each view, orientation
tensors from different views can be directly combined since they
are oriented with the gradients. The combined gradient direction
~Og is thus computed as

~Og =
1

w

∑
j∈V

ωjθj ~Oj
g, (5)

where V is the set of views and w =
∑

j∈V ω
jθj is the normaliza-

tion factor. The contributions are weighted using foreshortening ω
as defined in 5.1 as well as the misalignment θ, which is computed
as the discrepancy between the orientation tensors of the view j and
the single-best view j∗

θj =
〈
~Oj
g, ~Oj∗

g

〉
. (6)

Given the gradient direction ~Og on the mesh, the tangent direction
~Ot can again be derived since they are orthogonal.

Finally, the magnitudes of the vectors are computed as

‖Og,t‖ =
1

w

∑
j∈V

ωjθj‖Oj
g,t‖, (7)

using the same weights and normalization as in Equation 5.
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Figure 10: The proposed color stylization pipeline couples 2D im-
age (bottom row) with 3D mesh stylization (top row). The final
output is the mesh-proxy with stylized per vertex colors.

Directional Gathering And Smoothing. In the previous section
we described how to combine the orientation tensors from the dif-
ferent views to produce a continuous orientation tensor field on the
mesh (Figure 9 (d)). Unfortunately, since the high-frequency color
information has been computed from the single-best view and the
orientation tensors are produced by averaging multiple views, the
two will be inconsistent around seams. This discrepancy will cause
the directional smoothing to filter across color boundaries in these
areas and produces blurry results (Figure 9 (h)). To overcome this
problem, we propose an approach to update the color information,
using a measure of the discrepancy between the gradient computed
from the mesh colors ~O′g and the gradient from the combined multi-
view orientation tensor ~Og as

β = 1−
〈
~Og, ~O′g

〉
. (8)

Given this measure, we introduce a gathering step, which ensures
that color is consistent with the combined orientation tensor field.
For a vertex with discrepancy β larger than a given threshold τ , we
search along the tangent field in both directions for color samples
with low discrepancies, using the same second-order Runge-Kutta
scheme as for directional smoothing. The vertex color c is then up-
dated by linearly interpolating between those color samples based
on their geodesic distance from the current vertex. The discrepancy
β is then updated in the same way. Overall, discrepancy is usually
lower than 0.1 in our examples, and we found a value of τ = 0.02
produces sufficient consistency. The updated discrepancy β is fur-
ther used as weighting factor to attenuate these samples during di-
rectional smoothing.

The final result is a smooth orientation tensor field with consistent
coloring, the required basis for our stylizations (Figure 9 (e)) as it
preserves the important structural elements from the different view-
points while combining them together in a continuous way.

6.4 Coupled Mesh-View Stylization

Now that we have explained all the components required for multi-
view hair stylization on a manifold in 3D, we present the complete
stylization pipeline, as shown conceptually in Figure 10. It is im-
portant to see that the final result is based on coupled stylization of
both the mesh and the input views. This is required to keep the ori-
entation tensor, which is computed from the views, consistent with
the colors on the mesh, which are stylized using this tensor.

The degree of stylization is emphasized by iteratively re-applying
the method, which allows for direct artistic control. We use two to
three iterations for the results presented in this paper. After styliza-
tion, an antialiasing step is employed to refine the color transitions.
The final output is the mesh-proxy with stylized per vertex colors.

7 Geometry Stylization

Up to this point, we have stylized high-frequency information in
HSV color space over the mesh. We wish to also stylize the ge-
ometric details of the hair, such that they are consistent with the
color style. To this end, we will compute spatially-varying surface
offsets d(x), and displace the vertices of the proxy geometry along
the normal direction n(x) by d(x)n(x).

Most of the perceived high-frequency contrast is encoded in the
value channel while hue and saturation vary less substantially in
general. This contrast can be largely attributed to shading changes
caused by hair geometry, which is why we look to the stylized color
intensity to determine the structural offsets. This is the underly-
ing motivation for operating in HSV color space. Converting the
high-frequency stylized intensity offsets v(x) defined in the range
of [−1, 1] to displacements d(x) is essentially a tone mapping ap-
plication

d(x) = ϕΦ(v(x)), (9)

where ϕ is an artistic parameter that controls the strength of the
shape stylization. For the results in this paper, ϕ varies between 3
and 6, and as tone mapping operator Φ, we apply a simple gamma
correction with γ ranging between 0.5 and 0.7.

Wisp Profiles. The shock operation in color stylization has the
property of creating uniform intensities (and thus uniform displace-
ment values) for all the vertices within a shock, in the direction
of the gradient (Figure 11, a), producing wisps with a locally flat
appearance (Figure 11, c). While this is often sufficient to create
successful hair stylizations, additional geometric styles can be ob-
tained by modulating the displacements artistically.

Our idea is to find the relative position of each vertex within the
cross-section of a wisp, and use this position to modulate displace-
ment according to a user-defined wisp profile. To this end, for each
vertex we search for discontinuities in intensity following the di-
rection of the gradient ~Og (as done previously for the shock fil-
ter) by checking the relative change in intensity with respect to the
starting vertex. Discontinuities in each direction mark the cross-
sectional boundaries b1,2 of the wisp (Figure 11, a). We then apply
a 1D-window function to the geometry offsets to control its profile.
In this paper, we employ three different wisp profile functions -
box, sinusoidal and custom - which produce different artistic looks
(Figure 11, b-d). Defining additional profile functions is straight-
forward, providing a simple way to artistically control the style of
the hair. To reduce aliasing, the modulated displacements can be
smoothed in the direction of the tangents using the same directional
smoothing operator explained in Section 6.

a) Stylized Colors b) Box c) Sinusoidal d) Custom

b1 b2x

1

0
b1 b2x

1

0
b1 b2x

1

0

Figure 11: a) As a consequence of the shock filter, vertices along
the gradient will have the same color within the boundaries b1,2 of
a wisp. This enables to compute the relative position x of a vertex x
within the cross-section and to apply different wisp profile functions
(b,c,d) to artistically alter the geometric appearance.



All-Frequency Color and Geometric Information. After ap-
plying the stylized high-frequency displacements, low- and high-
frequency color information is combined and converted from HSV
to RGB, obtaining the final colored and sculpted result, which is
suitable for miniaturization and physical reproduction using tradi-
tional 3D printing processes.

8 Results

We demonstrate the robustness and versatility of our method by
capturing several subjects with widely varying hair-styles, and
show that the proposed technique fits naturally in traditional
pipelines for personalized figurine creation by physically reproduc-
ing several figurines with stylized hair.

A primary goal of our algorithm is to reconstruct an individual’s
hair in a way that captures the identifying characteristics of the
hair-style. Not only should the result be recognizable as a replica
of a particular person, but it should be clearly recognized as a re-
construction of that person with their hair in a particular style. Our
technique successfully achieves this goal, which we demonstrate by
capturing the same two subjects each with four different hair-styles,
as shown in Figure 12. Each hair-style is clearly recognizable in
both shape and color, even though it is captured in a stylized and
3D-printable way.

We show the robustness of our approach in Figure 13, by capturing
several different subjects with a wide range of hair-styles and hair
colors. Our method can even stylize the reconstruction of facial
hair, as seen for the subjects in the bottom two rows.

In Figure 14 we further demonstrate the versatility of the proposed
technique, by capturing stylized reconstructions of non-human hair.
In these examples, we capture a fur collar and a stuffed toy dog.
Despite their complexity, both reconstructions are stylized manifold
surfaces, suitable for 3D printing.

In this paper we describe a data acquisition step (Section 4) to
build a low-resolution proxy surface. However, our hair styliza-
tion method can be applied to any proxy geometry with available
camera views. This is demonstrated in Figure 15, where we apply
stylization to a dataset provided by Luo et al. [2012]. As can be
seen in the zoom regions, the benefit of our approach over Luo et
al. [2012] is that we capture the important structural and color ele-
ments of the hair-style, even starting from a proxy that only coarsely
approximates the hair.

Different levels of stylization can be achieved by changing the
shock filter width, as shown in Figure 17 (a-c). These styles can
even be combined in any artistic way, which we show in Fig-
ure 17 (d). As mentioned, our technique can be applied naturally
in physical reproduction pipelines for manufacturing personalized
figurines. We miniaturized and 3D-printed several of our results,
as shown in Figure 1 (right), Figure 3 (rightmost), and Figure 18.
Physical printouts were created using a ZCorp printer. Our method
can produce smaller figurines or handle lower-resolution printers
by creating coarser hair wisps, as seen in Figure 17 (c).

For a better assessment of our contribution to capturing and styl-
izing hair, we illustrate the intermediate steps of our pipeline in
Figure 16, for a subset of our datasets. This figure shows the proxy
mesh generated by Beeler et al. [2010], the proxy with initialized
colors, both our color and geometry stylization results on their own,
and the final combined result of our algorithm. Our method in-
creases the color and structural elements of the hair-style substan-
tially compared to the initial proxy reconstruction.

We computed our results on a desktop PC with a six-core Intel
3930K CPU. It took our prototype implementation 4-7 hours to pro-

Figure 13: Our stylized hair capture technique can reconstruct a
wide range of hair-styles, including the facial hair on the subjects in
the bottom two rows. Here we show one of the input images (left),
the stylized geometry without color (center), and the final result
with stylized shape and color (right).

cess meshes between 300K and 600K hair vertices; however, we
believe this could be substantially improved using optimized data
structures and by exploiting the extremely parallelizable nature of
the problem on the GPU (following Kyprianidis et al. [2011]). The
parameters given in Subsection 6.1 were determined for input im-
ages of 2592 x 1728 pixels and transferred to the mesh domain for
the 3D filter via re-projection onto the proxy geometry.

Discussion. In our implementation, the total processing time and
the overall quality of the results depend on the mesh discretization.
It is preferable to operate on uniform triangulations with reasonable
resolution. In particular, we found that between 300K and 600K



Figure 12: Here we show four different captured hair-styles for two people (left and right). For each style we show the final result with both
color and geometry stylization, as well as the result without color in order to best visualize the geometry stylization. Our method is able to
faithfully capture the essence and identifying characteristics of each hair-style, even when the subject is the same.

hair vertices are sufficient to obtain sharp color and geometry de-
tails. Most multi-view capture techniques require many viewpoints
when reconstructing complex objects with strong self-occlusions,
which is why we used 40 viewpoints for the initial proxy recon-
struction. For stylization, however, we found that a subset of about
8 views is sufficient. We expect the global shape of the hair to
be provided by the proxy geometry, which might fail to reproduce
some of the finer structures such as individual curls. Identifying
and addressing such structures would be an interesting area for fu-
ture research.

In conclusion, we present the first method for stylized hair capture,
a technique to reconstruct an individual’s actual hair-style in a man-
ner suitable for physical reproduction. Our method generates hair

as a closed-manifold surface, yet contains the structural and color
elements stylized in a way that captures the defining characteristics
of the hair-style.
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Figure 14: Our approach is versatile, and can be used for stylized
capture of more than just human hair. Here we show additional
examples of a stuffed toy dog (top) and fur (bottom).

Figure 15: Although we do not share the same final goal, we show
our method applied over a dataset from Luo et al. [2012]. From left
to right: one of the input views. Initial coarse reconstruction. Re-
constructed results by Luo et al. Our stylized results starting from
the same low-resolution proxy. In addition to sculpted geometry,
our method generates also stylized color information. Our detailed
stylization improvements over Luo et al. are clearly visible in the
zoomed regions.
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