
Computer-assisted Authoring for Natural Language Story Scripts

Rushit Sanghrajka
Disney Research

Wojciech Witoń
Disney Research

Sasha Schriber
Disney Research

Markus Gross
Disney Research

Mubbasir Kapadia
Disney Research

Rutgers University

Abstract
In order to assist scriptwriters during the process of
story-writing, we have developed a system that can ex-
tract information from natural language stories, and
allow for story-centric as well as character-centric rea-
soning. These inferencing capabilities are exposed to
the user through intuitive querying systems, allowing
the scriptwriter to ask the system questions about story
and character information. We introduce knowledge
bytes as atoms of information and demonstrate that
the system can parse text into a stream of knowledge
bytes and use these mentioned reasoning capabilities
through logical reasoning.

1 Introduction
Story-writing requires creative focus, as the writer
needs to focus on making sure that their story is logical,
and does not have any inconsistencies and plot-holes
(Ryan 2009). Moreover, for stories that may take place
in large pre-existing fictional story worlds, such as the
Harry Potter world or Star Wars world, it becomes es-
sential to maintain consistency with the existing laws of
the world. For franchises like Star Wars, fact-checking
is essential to ensure that there is no redundancy while
introducing new characters or species of creatures which
may have already had a minor appearance or reference
in the past. Moreover, fictional universes like Harry Pot-
ter may have additional rules of their own, for example,
the lack of use of electricity and technology in the Wiz-
arding World (Rowling 2005).

Such book-keeping of story worlds often detracts
story-writers from the creative story-writing process it-
self. Most computer-assisted writing software have fea-
tures such as automatic spelling and grammar check-
ing features. Applications such as Final Draft (Final
Draft 1990) are widely used for screen-writing purposes
for organization and efficiency in script and screenplay
writing. However, commercially available options do not
provide any reasoning or fact-checking capabilities on
the story and characters.

Our goal is to provide an interactive intelligent sys-
tem that can support screenwriters with feedback about
Copyright c© 2018, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

the story by understanding the events and interactions
in the narrative. The system should also allow them
to interact with their story by asking questions, set up
rules for their desired story world, and look at the belief-
desire based conflicts being recognized by the system.
Our current system supports scripts or screenplays and
is an emerging technology. Handling of unstructured
stories like novels is an exciting avenue of future ex-
ploration.

There are various challenges that exist to this prob-
lem. Natural language capabilities pose a challenge in
information retrieval from complex stories: natural lan-
guage understanding has a long way to go before being
able to match the level of inferencing the human brain
can make from reading a story. Another challenge lies
in the ability to analyze, compare and sort information
extracted from a screenplay or a script. The field of
computational narratives has advanced greatly to rep-
resent narratives with the help of story graphs (Riedl
and Young 2006), but these current data structures can-
not be formed directly from a text-based story.

The central aspect of our proposed solution is the
ability to extract meaningful information directly from
the story itself, without any additional author supervi-
sion. We are able to understand characters, their beliefs
and desires, interactions, and their relations with other
characters, along with information about the narrative
arc of the story. We introduce knowledge bytes to repre-
sent the information encapsulated in the script. Knowl-
edge bytes can be defined as atomic structures which
can represent a granular segment of information about
the narrative. We also introduce a cross-knowledge base
reasoning approach that is capable of reasoning across
various character knowledge bases, the story knowledge,
as well as knowledge about the story world. By build-
ing these different knowledge bases and sharing streams
of knowledge bytes across them, the reasoning system
can make inferences and respond to the user’s queries
in real-time during the process of story writing.

2 Related Work
There are detailed studies that focus on extracting a
knowledge base from stories, such as Scheherazade (El-
son 2012) and ASM (Finlayson 2012), and even create

Figure 1: An overview of our framework.

fictional story worlds (Poulakos et al. 2015).
Boyang Li’s work in generating narrative intelligence

and determining causal links from a crowd-sourced nar-
rative is an interesting approach to creating a script of
a narrative (2012). Shoulson et al. (2013) discuss an
event-centric planning approach to story creation for
animation stories. There are also various planning based
algorithms for story planning, which rely on a structure
of story elements (Ware and Young 2011). Kapadia et
al. focus on the authoring of narratives with the help of
Interactive Behavior Trees (2015).

Previous works have also focused on extracting in-
formation from scripts, focusing on various different
approaches (Schank and Abelson 2013) and stories
(Chaturvedi, Iyyer, and Daumé III 2017; Mateas and
Stern 2003; Lehnert 1981; Goyal, Riloff, and Daumé III
2010; Valls-Vargas, Zhu, and Ontanon 2016). Sanghra-
jka et al. introduce LISA, a Lexically Intelligent Story
Assistant, which uses logical inferencing for simple in-
formation extraction (2017).

Our work intends to expand upon the existing work
by proposing a framework to extract event-centric and
character-centric information and perform reasoning
with it in real-time. It serves to bridge the gap between
these eloquent planning algorithms used for story plan-
ning, and other data structures focused on representing
different aspects of narratives.

3 Framework Overview
A framework overview of the proposed system is shown
in Figure 1.
Knowledge Extraction Our system takes input from
the scriptwriting interface and performs natural lan-
guage understanding to create a stream of knowledge
bytes – the atoms of information – that serves as input
to story world knowledge, story knowledge, and char-
acter knowledge bases.
Knowledge Bases The story knowledge base stores
all the knowledge bytes that are present in the script.
Character knowledge bases – one for each character in
the story – store snapshots of the story in a form of

knowledge bytes as a representation of what each char-
acter perceives of the world around them and allow for
reasoning about the story from character’s perspective.
Story world knowledge stores rules and error definitions
specified by the user.
Cross-Knowledge Base Reasoning The knowledge
reasoning system is the core of the framework as it
gathers information from story world knowledge, story
knowledge, and character knowledge bases in form of a
stream of knowledge bytes. It performs logical inference
based on a specific query from the user and creates a
response/feedback to send back to the user.

4 Knowledge Extraction
The scriptwriting interface accepts a script in natu-
ral language, which consists of a main story plot, i.e.,
actions and dialogs (described in Section 4.2). It also
accepts metadata, i.e., rules and error definitions (de-
scribed in Section 5.4), and background information
about characters, i.e., stories occurring before the ac-
tual story, to be used for characters’ reasoning capabil-
ities.

In order to demonstrate the features and capabilities
of our system, we decided to use it on a short snippet of
a story based on the Disney movie Tangled (Greno and
Howard 2010). An excerpt of the script is presented in
the left-most column of Figure 2. Part of our example
script involves two characters, Flynn and Patchy, es-
caping from authority for stealing a crown. Flynn ends
up stealing the crown and escaping, and in a second
scene, another character named Rapunzel encounters
Flynn and takes the crown away from him. In the sec-
ond scene, Rapunzel and her mother converse regarding
Rapunzel’s wishes to watch the lights in the sky. We use
these examples throughout this paper to demonstrate
our framework.

4.1 Knowledge Bytes
We introduce the concept of a Knowledge Byte in or-
der to be able to store information from the script. A
Knowledge Byte can be defined as the smallest unit
of information about a narrative. It can represent any
kind of information present in a script, such as action,
dialog, or questions. Moreover, the knowledge byte also
has support to store the location, time point, and the
coordinates where it takes place, in order to process
knowledge for spatial reasoning, which could be used to
support newer forms of storytelling.

The knowledge byte β can be defined as a tuple in
the following form: β :=<t, l,Π>. t stands for the time
point in the narrative at which this knowledge byte was
first produced. l denotes the coordinates and location
information of the knowledge byte to allow for spatial
reasoning and location-based reasoning of knowledge
bytes. Π is the tuple of parser labels, which have been
defined in Section 4.2.

The importance of breaking information down into
knowledge bytes is that these knowledge bytes represent

Figure 2: An excerpt of our script along with the Knowledge Bases is shown here. In the left-most column, the Story
World Knowledge, along with character background and the script text is input. Story knowledge and the character
knowledge bases are also shown, with the parser result tuples shown in the story knowledge. The sentences in the
character knowledge systems are flagged to show which facts get processed as beliefs or desires. Various example
queries are also shown in the end.

information in the forms of beliefs or desires, and can
be stored across multiple characters’ knowledge bases.
This linking of knowledge bytes across various charac-
ters’ knowledge bases allows for interesting inferences,
which is discussed in Section 6. Moreover, the introduc-
tion of knowledge bytes as a data structure for handling
information about stories allows for many useful opera-
tions. These knowledge bytes can be sorted and oriented
based on different parameters. They can be aligned
spatially with respect to locations as well as tempo-
rally, depending on the amount of information the user
chooses to provide to the system through the input.
Alternatively, the knowledge bytes can also be clus-
tered based on the characters’ knowledge, with some
knowledge bytes being shared across multiple knowl-
edge bases.

4.2 Parsing System
Knowledge bytes are extracted with the help of Natural
Language Understanding on the script, consisting of ac-
tions and dialogs, using a Stanford CoreNLP framework
(Manning et al. 2014). We introduce a parser result tu-
ple Π :=<s, r, o, n, rm, ro, rq, sp>, where the fields are
defined as:

s : Subject (a noun)
r : Relation (a verb)
o : Object (often a noun)
n : Negation Flag (boolean)
rm : Relational Modifier (e.g. “from”, “to”)
ro : Relational Object (often a noun)
rq : Relational Question (e.g. “who”, “where”)
sp : Character speaking in a dialog

We mark empty fields as ∅and can support a shorter
representation where the rm, ro, rq and sp fields are
assumed to be empty. Additionally, in a tuple, empty
fields towards the end of the tuple can be discarded.
Knowledge bytes are shown in Fig 2.
Co-reference resolution We assume that users in-
put script text in segments consisting of one “thought”,
i.e., a set of logically connected sentences. A first step of
parsing any segment involves applying co-reference res-
olution – it is focused on assigning the real names of ac-
tors/objects/places to personal pronouns (“he”, “they”,
“it”, etc.) based on previously analyzed sentences. An
example input “Rapunzel wants to watch the lights in
the sky. She wants to visit the lanterns, and see them in
person.” would be then translated into “Rapunzel wants
to watch the lights in the sky. Rapunzel wants to visit
the lanterns, and see the lanterns in person.”. We use a
neural-network approach for co-reference resolution.
Actions After applying the co-reference resolution, the
text is then split into individual sentences, which are
later tokenized – single words (tokens) are extracted.
Each token is usually related to the others what is
resembled in tree-like constituency and dependency
graphs (Chen and Manning 2014). We used the latter
ones in a form of Enhanced++ Dependencies using En-
hanced English Universal Dependencies (Schuster and
Manning 2016).

We extract subjects, relations and objects – relation
triples. We created our own pipeline, extracting fields
in parse result tuple Π as follows: s – forms subj depen-
dency with r; r – usually a root of dependency tree; o
– forms obj dependency with r; n – “true” iff r, o or ro
has any neg dependency; rm – usually precedes ro and
forms case dependency with it (e.g. “go to someone”);
ro – usually forms nmod dependency with r (e.g. “go
to someone”); rq – described in Section 6.1.

There are some exceptions to these rules. The most
common case is while using a verb “to be”, as it can
have different meanings depending on the context – an
auxiliary verb (aux), e.g., in continuous tenses, a pas-
sive auxiliary verb (auxpass), e.g., in passive voice, or a
copula (cop), used mainly for describing s.
It is worth mentioning that o either may not be set or

can be a verb, e.g., when r and o are connected by open
clausal complement (xcomp). For sentences with more
than one subject, relation or object several triples can
be created, each consisting of one s, one r and one/no
o. Some examples are presented in Table 1.
Each paragraph and each sentence in the paragraph

is indexed, which is used to assign a proper time point
t to knowledge byte β. All actions generated from one
sentence have the same t and are believed to occur si-
multaneously.
DialogsWhile analyzing dialogs we also fill the sp field.
During co-reference resolution any usage of a personal
pronoun with lemma “I” is matched to the name of the
character.
Confidence resolution While analyzing actions and
dialogs we infer how confident a character is about some

facts by checking for usage of one of the confidence
words presented in Table 2, where each confidence word
is assigned a value in a range from 0, i.e., improbable
action, to 1, i.e., surety that an action happened (val-
ues are arbitrarily set and future work would focus on
studying discourse to test accuracy). For example, the
sentence “Patchy thinks that Flynn owns the crown”
would result in creating a knowledge byte containing a
belief “Flynn owns the crown” with a confidence of 0.6.
Desire resolution We distinguish between beliefs and
desires. The latter are recognized by looking for words
such as “want”, “wish”, “need” in a provided sentence,
either in a script or a dialog. As a result, sentences
“Rapunzel visits lanterns.” and “Rapunzel wants to visit
lanterns” would create similar knowledge bytes with the
former resolved as Rapunzel’s belief and the latter as
Rapunzel’s desire to visit lanterns. For desires, the con-
fidence is assumed to be 1 because characters always
are sure about their desires for simplicity.

5 Knowledge Bases
5.1 Knowledge Facts
The knowledge bases store information from the knowl-
edge bytes β in the form of logical reasoning facts,
known as Knowledge Facts, which are described below.
Belief facts ψ: These facts store the most important
information from the knowledge byte and store it as
a belief. They take two forms: belief(Id, s, r, o,
n), or belief(Id, s, r, o, n, rm, ro, rq).
Desire facts δ: These facts store the same information
as the belief facts, but they store the information as a
desire. They also have two forms: desire(Id, s, r,
o, n), or desire(Id, s, r, o, n, rm, ro, rq).
Location facts λ: These facts store locations or scene
information, and reference to the knowledge byte ID.
They are of the form location(Id, Location).
Coordinates facts ω: The coordinates facts can store
information about the spatial coordinates of the knowl-
edge byte taking place in the system. They are of the
form coordinates(Id, X, Y, Z).
Confidence facts χ: The confidence facts store the
confidence level as a floating value from 0 to 1. They
have the form confidence(Id, Confidence).
Time facts τ : Time facts allow us to build reason-
ing systems with temporal reasoning capabilities. Time
facts take the form timeof(Id, Time).

5.2 Story Knowledge
The Story Knowledge Σ stores all the knowledge bytes
that are present in the script, along with references to
the various characters as well. Every knowledge byte
from the script is fed to the knowledge base for the
story knowledge, and this allows for reasoning on the
information stored in this knowledge base as well.

5.3 Character Knowledge
We implement Character Knowledge bases Υ as a
means for the application to form a knowledge base for

Table 1: Examples of Parsed Knowledge Bytes
Type Sentence Knowledge Byte

Continuous tense/no object Rapunzel is hiding behind a curtain. <rapunzel,hide,∅,false,behind,curtain>
Passive voice The lanterns are meant for Rapunzel. <lanterns,be,meant,false,for,rapunzel>
Description/two subjects Flynn and Patchy are panicked. <flynn,be,panicked,false>, <patchy,be,panicked,false>
Object as verb Rapunzel enjoys watching the lights. <rapunzel,enjoy,watch,false,∅,lights>
Negation in dialog Mother: “Rapunzel, you will not see the lanterns.” <rapunzel, see, lanterns, true, ∅, ∅, ∅, mother>

Table 2: Confidence Words
Verb sure confident know state say think feel suppose believe assume presume expect

Confidence 1.0 1.0 0.8 0.6 0.6 0.6 0.4 0.2 0.2 0.2 0.2 0.1

the information possessed by each character. This al-
lows the reasoning system to let each character work
on their own set of beliefs and desires in the story
world. The benefit of having separate character knowl-
edge bases for each character is that it allows scriptwrit-
ers to ask questions to each character and gauge the dif-
ference in their responses based on the information that
the character system possess. These knowledge bases
are created transparently while the user is writing the
story. This facilitates an interactive script writing pro-
cess and does not disrupt a creative flow of the writer.

Moreover, each character knowledge base stores
knowledge bytes with some wrapper information which
describes a relation between the character knowledge
base and the knowledge byte. The relation-specific
wrapper contains information about the character’s
confidence about the knowledge, the time point that
the character learns about the information, and flags
that denote whether the knowledge byte is a belief or a
desire. Feedback from the character’s reasoning system
is also stored to provide back to the user interface.

5.4 Story World Knowledge
Story World Knowledge Ω stores rules and error def-
initions provided by scriptwriters in natural language.
The former ones enable automatic inferencing of infor-
mation about the story and characters, and the latter
ones can be used to ensure consistency of the story.
Rules and errors also use the concept of types, where
the type fact type(flynn, goon) assigns a type "goon"
to Flynn, so rules for the goon type can apply to Flynn
as well (Sanghrajka et al. 2017).

Rules and errors, which the user types in the natu-
ral language, are translated into the structure required
by knowledge reasoning system described in Section 6.
During parsing we make use of TokensRegex framework
(Chang and Manning 2014) to create regular expres-
sions over (a sequence of) tokens. We can check for
properties of single tokens extracted by TokenizerAnno-
tator – lemma, named entity and a part of speech. The
main patterns used for regular expressions are Type
pattern, Inference pattern and Error pattern, shown
in Table 3. Sentences with subject and/or object in
all UPPERCASE make general rules for every subject
and/or object, otherwise we create rules for specific sub-

ject and/or object. We can combine patterns, use co-
references, resolve desires and negations, include infor-
mation about a location and time of an action. Example
sentences with created rules are shown in Table 4.

5.5 Knowledge Base Construction
For every knowledge byte, we extract ψ, λ, ω, χ and τ ,
and send it to the system’s story knowledge Σ. Then
we look at the s, o, ro variables to check if any of them
refer to a character name. For all the characters refer-
enced, we extract either the ψ or the δ depending on
the parsing system’s information, and then add it to
each referenced character’s knowledge base ΥC (where
C is the character) along with the λ, ω, χ and τ .

6 Cross-Knowledge Base Reasoning
6.1 Knowledge Query Extraction
As soon as a story is written and knowledge bases are
created, a scriptwriter can type questions in natural lan-
guage to get information stored in either story or char-
acter knowledge bases. We analyze questions in simi-
lar way as actions, filling rq field of parser result tu-
ple Π with relational question words, such as interroga-
tive pronouns “who”, “what”, and pro-adverbs “when”,
“where” etc. A question κ can be defined as a set of in-
complete knowledge bytes, where the rq field contains
a question word, and there are one or more fields that
contain question marks. An example question “Patchy,
who owns the crown?” queries Patchy’s knowledge base
with a knowledge byte. Equations 1 through 3 show the
query and knowledge byte. Another example question
“Who all have contradictory desires regarding owning
the crown?” creates a query with multiple knowledge
bytes, shown in equations 4 through 8.

κ1 = {β1} (1)
β1 =< t1, l1,Π1 > (2)

Π1 =<?, own, crown, false,∅,∅, who,∅> (3)
κ2 = {β2, β3} (4)

β2 =< t2, l2,Π2 > (5)
β3 =< t3, l3,Π3 > (6)

Π2 =<?, own, crown,?,∅,∅, who,∅> (7)
Π3 =<?, own, crown,?,∅,∅, who,∅> (8)

Table 3: Regular Expressions for Story World Knowledge Patterns
Pattern Regular Expression
Type (?$subj [tag:/NN.*/]+) [lemma:/be/] [tag:/DT.*/]+ [!tag:/NN.*/]* (?$type [tag:/NN.*/]+)
Inference /if/ (?$cond [!lemma:/then|,/]+) /then|,/+ (?$res []+)
Error /show/ [tag:/DT.*/]* /error/ (?$err []+) /if/ (?$cond []+)

Table 4: Examples for Story World Knowledge Patterns
Sentence Rule

Flynn is a happy-go-lucky goon. type(flynn, goon).
If PERSON enters scene at time T1 and PER-
SON exits scene at time T2, then PERSON
is onstage from T1 to T2.

type(X, onstage, T1, T2) :- belief(Id1, PERSON, enters,
scene, false), timeof(Id1, T1), belief(Id2, PERSON,
exits, scene, false), timeof(Id2, T2).

If PERSON steals OBJECT, then PERSON
owns OBJECT.

belief(Id1, PERSON, own, OBJECT, false) :-
↪→ belief(Id2, PERSON, steal, OBJECT, false).

Show error “Cannot steal something they al-
ready own” if PERSON has OBJECT and
PERSON steals it.

error(Id1, Id2, ’Stealing something owned’) :-
↪→ belief(Id1, PERSON, have, OBJECT, false),
↪→ belief(Id2, PERSON, steal, OBJECT, false).

6.2 Reasoning Approach
When a query is received in the knowledge reasoning
system, the reasoning system performs two actions. The
reasoning system first uses logical reasoning in order to
generate a set of knowledge bytes which are responses
to the query provided. For implementation, we use the
GNU Prolog for Java as our logical knowledge reasoning
system (Diaz and Codognet 2000). After the resultant
knowledge bytes are constructed from the logical rea-
soning system, we then perform cross-knowledge base
reasoning to understand possible relations for each pair
of resultant knowledge bytes. We then generate the re-
sult. The resultant function α(κ) takes in a query κ and
produces a resultant set of completed knowledge bytes
{β∗1 , ...β∗N}. R(i,j) gives the relationship between a pair
of knowledge bytes β∗i and β∗j in the resultant set.
Logical Reasoning All the character knowledge bases
and the story knowledge base have their own logical rea-
soning environment. The facts which contain the miss-
ing values in the βs from the κ are queried to the log-
ical environment, and the resultant β∗ is constructed.
In our example, Patchy’s knowledge base believes that
Flynn owns the crown. The resultant β∗ contains the
completed information, as shown in equations 9 and 10.

β∗1 =< t1, l1,Π∗1 > (9)
Π∗1 =< flynn, own, crown, false,∅,∅,∅,∅> (10)

Determination of Relationships Reasoning across
knowledge bases involves comparison of knowledge
bytes in the various knowledge bases in order to dis-
cern whether they have a similarity or a contradiction.
Looking for a possible connection between knowledge
bytes is the core for the system’s ability to infer across
knowledge bases. Using WordNet (Miller 1995), we ex-
tract synonyms and antonyms for the relations used in
knowledge bytes and compare the knowledge bytes to
form relations between them.

Time points and confidence measures are also taken
into account to analyze relationships between knowl-
edge bytes. By default, we decided to assign a 0.8 weight

to confidence and 0.2 weight to time, in order to make
the impact of confidence stronger than time. In some
cases, for some pairings of knowledge bytes, there is the
ability to specify custom values for the weights for confi-
dence and time, in cases where one may require different
level of impact of the difference in time or confidence of
the two knowledge bytes on the possibility that the two
knowledge bytes are indeed related. Let the time and
confidence values for a knowledge byte be denoted by
Tx and Cx respectively. We assume that N is the final
time point of the script.

A relational factor θ′ is calculated based on the lexical
comparison of two knowledge bytes, which is a measure
of how related they are. θ′ varies from −1 to +1, with
−1 denoting contradictory relation, a +1 denoting sim-
ilarity between the knowledge bytes, and a θ′ closer to
0 representing that the knowledge bytes may be unre-
lated. The algorithm to calculate the relational factor is
shown in Algorithm 1. Once we find that the two knowl-
edge bytes are related, then we compare their links, to
obtain the following types of relationships:

Input : A pair of Knowledge Bytes β∗1 and β∗2 ;
Output: Relational Factor θ′;
if Π1 = Π2 or (r1 ' r2, s1 = s2, o1 = o2) then

θ ← 1;
else if r1 and r2 are antonyms, s1 = s2, o1 = o2 then

θ ← −1;
else if r1 ' r2, o1 = o2, s1 6= s2 then

θ ← −0.5;
else if r1 ' r2, s1 = s2, o1 6= o2 then

θ ← 0.5;
else

θ ← 0, which implies they are likely to be unrelated

θ′ =
|C2−C1|CW + |T2−T1|

TN
TW

θ

return θ′

Algorithm 1: Relational factor calculation

• If β∗1 and β∗2 are both desires and 0 < θ′ < 1, we
consider this to be a similarity in desires between

two character knowledge bases Υ1 and Υ2.
• If β∗1 and β∗2 are both desires and −1 < θ′ < 0, we
consider this a contradiction or competition in desires
between two character knowledge bases Υ1 and Υ2.

• If β∗1 and β∗2 are both beliefs and 0 < θ′ < 1, we
consider this to be a similarity in beliefs between two
character knowledge bases Υ1 and Υ2.

• If β∗1 and β∗2 are both beliefs and −1 < θ′ < 0, we
consider this to be a contradiction in beliefs between
two character knowledge bases Υ1 and Υ2.

• If β∗1 and β∗2 are a belief and a desire and θ′ 6= 0,
we consider this to be a misconception between two
character knowledge bases Υ1 and Υ2.
In our example, for the query κ2 in Section 6.1, a re-

sultant response would seeing contradictions in desires
regarding the ownership of the crown among Flynn and
Patchy. Equations 11 through 14 show the resultant
knowledge bytes β∗2 and β∗3 , and Equation 15 shows the
relationship R(2,3) flagged as “contradictory desires”.

β∗2 =< t2, l2,Π∗2> from Flynn’s Υ as desire (11)
β∗3 =< t3, l3,Π∗3> from Patchy’s Υ as desire (12)

Π∗2 =< flynn, own, crown, false,∅,∅,∅,∅> (13)
Π∗3 =< patchy, own, crown, false,∅,∅,∅,∅> (14)

R(2,3)= “contradictory desires” (15)

7 Application

Figure 3: A developed prototype. Left Window: Script.
The user asks “Who owns the crown?”, and the response
is “Flynn with a confidence of 1.0”. Top Right: User
enters information about the mother to her character
base. Bottom Right: The parsed information.

Our proposed framework contributes to emerging
technology for assisting story-writers real-time. A
scriptwriter would start by adding the story world
knowledge to the system, which defines the rules for
the story world. The scriptwriter would then proceed to
write his story, using the system as a guide for reference.
Additionally, the system ensures that the narrative is
within the bounds defined by the story world. The au-
tomatic extraction and construction of the knowledge

bases enable the possibility to interact with the story
and characters during story creation.

We performed internal experiments with our system
with scripts of moderate complexity. An excerpt of an
example script has been shown in Figure 2, and vari-
ous examples of different features have been discussed
throughout this paper. Additionally, an image of our
prototype system developed is shown in Figure 3. Our
system is able to autonomously construct the various
knowledge bases from the script and allows authors to
specify the rules for the world in which the story oc-
curs. The character knowledge bases have information
specific to the character, and this encapsulation of in-
formation can be clearly observed in the different re-
sponses. Referring to the queries in Figure 2, the ques-
tion “Who owns the crown?” is directed to the story in
question 1 but to the character of Patchy in question 2.
A difference in the responses can be observed, due to
Patchy’s character knowledge base having information
known to his character. We were also able to perform
cross-knowledge base reasoning, where we asked the sys-
tems various questions and received expected responses.
For example, in the script shown, questions 3, 8, and 9
are questions which involve looking for relations across
multiple knowledge bytes, which can be seen in the re-
sults obtained.

8 Conclusion
In proposing a new structure for representation and rea-
soning in narratives with the help of knowledge bytes,
knowledge bases, rules and errors definition, we set up
ground for various directions in natural language under-
standing and linguistic reasoning, assisted story writ-
ing, and computational narratives.

Our application demonstrated that the introduced
concepts work well for an example story, but we are
aware that the implementation still needs some im-
provements before becoming a solution ready for de-
ployment. The reasoning capabilities of our system are
highly dependent on the capabilities of the mechanism
analyzing rules to be able to completely reason about
the story world knowledge. While this can be quite spe-
cific for story worlds like Star Wars or Toy Story, there
is still a need for adding world knowledge rules. Auto-
matic rule generation is an avenue that needs to be ex-
plored and a challenge that needs to be solved to make
the creation of story world knowledge less cumbersome.

The future goals include analyzing more complicated
(real) movie scripts and creating advanced rules and
error definitions. We have implemented the theoretical
concepts proposed in this work and are building to-
wards a large-scale deployment of the tool and intend
to perform detailed user studies in the future.

9 Acknowledgements
This work has been funded in part by NSF IIS-1703883,
NSF S&AS-1723869, and DARPA SocialSim-W911NF-
17-C-0098.

References
Chang, A. X., and Manning, C. D. 2014. TokensRegex:
Defining cascaded regular expressions over tokens. Technical
Report CSTR 2014-02, Department of Computer Science,
Stanford University.
Chaturvedi, S.; Iyyer, M.; and Daumé III, H. 2017. Unsu-
pervised learning of evolving relationships between literary
characters. In AAAI, 3159–3165.
Chen, D., and Manning, C. 2014. A fast and accurate
dependency parser using neural networks. 740–750.
Diaz, D., and Codognet, P. 2000. The gnu prolog system
and its implementation. In Proceedings of the 2000 ACM
Symposium on Applied Computing - Volume 2, SAC ’00,
728–732. New York, NY, USA: ACM.
Elson, D. 2012. Modelling Narrative Discourse. Ph.D. Dis-
sertation, Columbia University.
1990. Final draft. http://www.http://finaldraft.com.
Finlayson, M. M. A. 2012. Learning narrative structure
from annotated folktales. Ph.D. Dissertation, Massachusetts
Institute of Technology.
Goyal, A.; Riloff, E.; and Daumé III, H. 2010. Automati-
cally producing plot unit representations for narrative text.
In Proceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, 77–86. Association for
Computational Linguistics.
Greno, N., and Howard, B. 2010. Tangled. Moore, M. and
Levi, Z.: Walt Disney Animation Studios.
Kapadia, M.; Falk, J.; Zünd, F.; Marti, M.; Sumner, R. W.;
and Gross, M. 2015. Computer-assisted authoring of inter-
active narratives. In Proceedings of the 19th Symposium on
Interactive 3D Graphics and Games, i3D ’15, 85–92. New
York, NY, USA: ACM.
Lehnert, W. G. 1981. Plot units and narrative summariza-
tion. Cognitive Science 5(4):293–331.
Li, B.; Lee-Urban, S.; Appling, D. S.; and Riedl, M. O. 2012.
Crowdsourcing narrative intelligence. Advances in Cognitive
Systems 2(1).
Manning, C. D.; Surdeanu, M.; Bauer, J.; Finkel, J.;
Bethard, S. J.; and McClosky, D. 2014. The Stanford
CoreNLP natural language processing toolkit. In Associ-
ation for Computational Linguistics (ACL) System Demon-
strations, 55–60.
Mateas, M., and Stern, A. 2003. Façade: An experiment in
building a fully-realized interactive drama. In Game devel-
opers conference, volume 2.
Miller, G. A. 1995. Wordnet: A lexical database for english.
COMMUNICATIONS OF THE ACM 38:39–41.
Poulakos, S.; Kapadia, M.; Schüpfer, A.; Zünd, F.; Sumner,
R. W.; and Gross, M. 2015. Towards an accessible interface
for story world building. In Eleventh Artificial Intelligence
and Interactive Digital Entertainment Conference.
Riedl, M. O., and Young, R. M. 2006. From linear story gen-
eration to branching story graphs. IEEE Computer Graphics
and Applications 26(3):23–31.
Rowling, J. K. 2005. Harry Potter and the Goblet of Fire.
Ryan, M.-L. 2009. Cheap plot tricks, plot holes, and narra-
tive design. Narrative (1):56.
Sanghrajka, R.; Hidalgo, D.; Chen, P. P.; and Kapadia, M.
2017. Lisa: Lexically intelligent story assistant. Proceedings

of the 13th Artificial Intelligence and Interactive Digital En-
tertainment Conference.
Schank, R. C., and Abelson, R. P. 2013. Scripts, plans,
goals, and understanding: An inquiry into human knowledge
structures. Psychology Press.
Schuster, S., and Manning, C. D. 2016. Enhanced english
universal dependencies: An improved representation for nat-
ural language understanding tasks. In LREC.
Shoulson, A.; Gilbert, M. L.; Kapadia, M.; and Badler, N. I.
2013. An event-centric planning approach for dynamic real-
time narrative. In Proceedings of Motion on Games, 121–
130. ACM.
Valls-Vargas, J.; Zhu, J.; and Ontanon, S. 2016. Error
analysis in an automated narrative information extraction
pipeline. IEEE Transactions on Computational Intelligence
and AI in Games.
Ware, S. G., and Young, R. M. 2011. Cpocl: A narrative
planner supporting conflict. In AIIDE.

