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Deep Video Color Propagation
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Abstract. Traditional approaches for color propagation in videos rely
on some form of matching between consecutive video frames. Colors are
then propagated both spatially and temporally. These methods, however,
are computationally expensive and do not take advantage of semantic
information of the scene. In this work we propose a deep learning frame-
work for color propagation that combines a local strategy, to propagate
colors frame-by-frame ensuring temporal stability, and a global strategy,
using semantics for color propagation within a longer range. Our evalua-
tion shows the superiority of our strategy over existing video and image
color propagation methods.

1 Introduction

Color propagation is an important problem in video processing and has many
applications ranging from color modification for artistic purposes in movies to
restoration and colorization of heritage footage. Furthermore, the ability to faith-
fully propagate colors in videos can have a direct impact on video compression.

Traditional approaches for color propagation rely on optical flow computa-
tion to propagate colors in videos either from scribbles or fully colored frames,
which is computationally expensive and error prone. Inaccuracies in optical flow
can lead to color artifacts which accumulate over time. Recently, deep learning
methods have been proposed to take advantage of semantics for color propaga-
tion in images [1] and videos [2]. Still, these approaches have some limitations
and do not yet achieve satisfactory results on video content.

In this work we propose a framework for color propagation in videos that
combines local and global strategies. Given the first frame of a sequence in
color, the local strategy warps these colors frame by frame based on the motion.
However this local warping becomes less reliable with increasing distance from
the reference frame. To account for that we propose a global strategy to transfer
colors of the first frame based on semantics, through deep feature matching.
These approaches are combined through a fusion and refinement network to
synthesizes the final image. The network is trained on video sequences and our
evaluation shows the superiority of the proposed method over image and video
propagation methods as well as neural style transfer approaches, see Figure 2.

2 Approach

I order to colorize a gray scale image sequence by propagating the given color of
the first frame, our proposed approach takes into account two complementary
aspects: short range and long range color propagation, see Figure 1.
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Fig. 1. Overview. To propagate colors in a video we use both short range and long
range color propagation. The results of these two steps and the gray scale image are
the input to the fusion and refinement network which estimates the final color frame.

The objective of the short range propagation network is to propagate colors
on a frame by frame basis. It takes as input two consecutive gray scale frames
and estimates a warping function. This warping function is used to transfer the
colors of the previous frame to the next one. We choose to use spatially adaptive
kernels that account for motion and re-sampling simultaneously [3], but other
approaches based on optical flow could be considered as well.

For longer range propagation, simply smoothing warped colors according to
the gray scale guide image is not sufficient. Semantic understanding of the scene
is needed to transfer color from the first colored frame of the video to the rest of
the video sequence. In our case, we find correspondences between pixels of the
first frame and the rest of the video. Instead of matching pixel colors directly we
incorporate semantical information by matching deep features extracted from
the frames. These correspondences are then used in order to sample colors from
the first frame. To maintain good quality for the matching, while being computa-
tionally efficient, we adopt a two stage coarse-to-fine matching. regions that have
similar semantics, whereas the fine matching step considers texture-like statistics
that are more effective once a region of interest has been defined. Besides the
advantage for long range color propagation, this approach also helps to recover
missing colors due to occlusion/dis-occlusion.

To combine the intermediate images of these two parallel stages, we use a
convolutional neural network for the fusion and refinement stage. As a result,
the final colored image is estimated by taking advantage of information that is
present in both intermediate images, i.e. local and global color information.

3 Results

For our evaluation we used various types of videos. This includes videos from
DAVIS [4, 5], as well as HD videos from the video compression dataset [6].

Ablation Study. To show the importance of both the local and global strat-
egy, Figure 3 (a) shows an example where color propagation is not possible due
to an occluding object, and a global strategy is necessary.



090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Deep Video Color Propagation 3

Ref. (f = 0) Image PropNet [1] Style transfer [7] SepConv [3] Video PropNet [2]

Ground Truth (f = 30) Phase-based [8] Bil.Solver [9] Flow-based [10] Ours

Fig. 2. Color propagation at f = 30. Our approach is superior to existing strategies
for video color propagation.

Comparisons. To show the advantage of our approach, we run compare to a
large range of methods including color propagation in images [1, 9] and video [2,
8, 10] as well as photo-realistic style transfer [7], see Figure 2.

Photo-realistic style transfer methods [7] propagate colors of a reference im-
age to replicate the global look but struggle to transfer the exact colors.

Given a partially colored image, propagating the colors to the entire image
can be achieved using the bilateral space [9] or deep learning [1]. To extend these
methods to video, we compute optical flow between consecutive frames [11] and
use it to warp the current color image. These methods achieve satisfactory color
propagation on the first few frames but the quality quickly degrades.

Relying on optical flow to propagate colors in a video is the most common
approach such as Xie et al. [10]. However, their costly method is limiting as
processing 30 HD frames requires several hours. We achieve similar or better
quality in one minute. Instead of optical flow, spatially adaptive kernel can be
used to account for the motion [3]. This corresponds to the local only baseline.
Phase-based representation can also be used for edit propagation in videos [8].
This original approach to color propagation is however limited by the difficulty
in propagating high frequencies. Recently, video propagation networks [2] were
proposed to propagate information forward through a video. But by relying
on standard bilateral features (i.e. colors, position, time) colors can be mixed
and propagated from incorrect regions, which leads to the global impression of
washed out colors. Furthermore, their performance vary largely depending on
the sequence leading to a reduced numerical performance, see Figure 3(b).

Quantitative evaluation. Our test set consists of 69 videos which span
a large range of scenarios with videos containing various amounts of motions,
occlusions/dis-occlusion, change of background and object appearing/disappearing.
In Figure 3(b) we plot the temporal behavior of the different methods, as error
evolution over time averaged for all sequences. On the first frames, our results
are almost indistinguishable from a local strategy but we quickly see the benefit
of the global strategy. Our approach consistently outperforms related approaches
for every frame and is able to propagate colors within a much larger time frame.
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Reference (f = 0) Local Only

Full method Global Only

(a) Ablation study (b) Average error per frame as PSNR

Fig. 3. (a) Using local color propagation only preserve details but is sensitive to
occlusion/dis-occlusion. Using only global color transfer does not preserve details and
is not temporally stable. (b) The average error per frame shows the temporal stability
of our method and its ability to maintain a higher quality over a longer period.

4 Conclusions

In this work we have presented a new approach for color propagation in videos.
Thanks to the combination of a local strategy, that consists of a frame by frame
image warping, and a global strategy, based on feature matching and color trans-
fer, we have augmented the temporal extent to which colors can be propagated.
Our extended comparative results show that the proposed approach outperforms
recent methods in image and video color propagation as well as style transfer.
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