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ABSTRACT

Compositing is an essential tool in modern film making. Estab-
lished workflows exist for single-view video compositing, how-
ever new problems that demand new solutions arise when consid-
ering stereoscopic compositing. We investigate new methods for
compositing live action stereo 3D, given two stereo camera sys-
tems and a corresponding depth map. We break the process up
into three main steps; First, we show how to use trifocal tensors to
robustly project 3D content from one video into another. Second,
we analyze different image-based rendering methods for drawing
objects to be composited into the new video. Finally, we describe
a novel super-pixel based depth-test that increases robustness to
errors in depth map accuracy. A user study was conducted to val-
idate different steps of this process.

Index Terms — Image fusion, Stereo image processing

1. INTRODUCTION
Stereoscopic 3D is an important focus of the entertainment in-
dustry, creating new possibilities and new challenges. Despite
its many advances, producing stereo content remains significantly
more restrictive than traditional monoscopic content [1]. These
difficulties arise due to the tight relationship between stereo views
that need to be correctly maintained during editing operations. In
this work, we address the task of compositing, combining objects
from different stereo sources into one single stereo output. We
want to present a method that makes this process more robust
and therefore also cheaper in production. The lack of an exist-
ing widespread stereoscopic editing pipeline is the fundamental
motivation for our work.

Stereo compositing requires projecting pixels from the source
stereo pair into a virtual stereo view, as defined by the target pair.
This projection requires knowledge of the geometric relation be-
tween stereo cameras, and the object depths, which we assume
to be given beforehand, in the form of a depth map. While there
exist numerous methods for computing depth maps, it is an under-
constrained problem, and state of the art methods will contain er-
rors. Our system is therefore designed to generate convincing re-
sults even in the presence of moderate errors in depth-maps.

Our method can be broken up into three steps. First, we trans-
fer pixels belonging to an object from one stereo camera pair into
a second camera pair, through a new application of the trifocal
tensor. Second, we draw the object using these projected points
to guide our rendering. Without a full 3D model, image-based ap-
proaches can only approximate this new view, and there will be
a trade-off between distortion and accuracy. Therefore, we con-
duct a small user study to evaluate a set of different potential fit-
ting approaches. Finally, when compositing the new footage, a
novel super-pixel based segmentation method is proposed to en-
force similar depth tests of local regions.

2. RELATED WORK
Stereo cinematography is a well-studied area; the challenges of
current stereoscopic and 3D video post-productions was presented
by Starck et al. [2]. Smolic et al. [3] gave an additional overview
of the state of current 3D production research.

“Stereoscopic 3D Copy&Paste” shown in [4] represents a sys-
tem that projects object billboards into new views. Another lay-
ered approach to stereo reconstruction [5] divides the depth map
into multiple approximately planar layers. They are limited to bill-
board representations of objects, which can fail in examples with
strong perspective change. We explore a more flexible image-
warping approach for computing perspective deformations.

Free-viewpoint depth image based rendering is a common ap-
proach t project information into new virtual views [6, 7, 8]. Our
method performs a similar task, but uses the trifocal transfer in co-
operation with image-based rendering. With this, we avoid the di-
rect computation of 3D points, which is often performed by other
methods but usually inaccurate due to depth map errors.

For monoscopic images, recoloring and relighting for seam-
less compositing [9, 10] have been well studied. However, these
methods create unpredictable results for objects with tight bor-
ders and can lead to color bleeding artifacts. We address a sim-
pler problem where alpha mattes are available through blue- and
green-screen methods well established in industry.

The composition of different masked objects was proposed
by [11] and uses robust handling of layers defined by user or-
dering. We present an application tailored for interactive systems
where the layering is not yet clear and is determined by object
depth. Further, we introduce an automatic super-pixel based lay-
ering approach to enforce local consistency, without requiring a
higher level object segmentation.

3. METHOD
Traditional DIBR based methods operate by projecting and re-
projecting pixels to 3D world space, creating a pixel cloud. How-
ever doing so requires calibrated cameras as well as accurate depth
maps and complex hole-filling strategies due to disocclusions.

In the following, we present our image domain re-projection
method that does not require the full camera calibration. We first
transfer a subset of stable image features from the source cam-
era system to the target camera system. We call them “guidance
points”. These are then used to optimize for a dense 2D image de-
formation that maps the source compositing object into the target
footage.

3.1. Guidance point transfer
Epipolar transfer [12] is often used to compute pixel coordinates
in a novel view. However, this approach exhibits numerical in-
stability for (common) stereo setups with parallel or near parallel
cameras. Instead, we perform a trifocal point transfer from a given
source stereo camera pair to one novel new view.



Figure 1. Visualization of all the system-related transformations for the
camera matrix calculation. The user is allowed to define object positioning
userrepos and object depth userdispchange.

Relative camera matrices We first describe the camera matrices
of the system (Figure 1), assuming the origin of the coordinate
systems to be set to the left camera of the source camera pair. The
left source camera matrix is defined by rotation and projection, the
right by translation, rotation and projection, as shown in Figure 1.

POL = P (fO)R(cO),

POR = P (fO)R(cO)TT (bO).
(1)

Part of a compositing operation is a user-controlled repositioning
and scaling of the different objects. All of these possible editing
operations can be modeled as a movement of the target camera
system pair (e.g. moving an object left is equivalent to moving the
virtual camera right). Similarly, depth scaling can be achieved by
changing the target baseline. The target camera matrices are then
dependent on user input and can be defined as:

PTL =P (fT )R(cT )T (userrepos),

PTR =P (fT )R(cT )TT (bT )T (userdispchange)

T (userrepos).

(2)

For this method, only the baseline b, the converging angle c and
the focal length f have to be known, rather than the full camera
calibration matrices.

Normalized Camera Matrices In [12], it was shown that, for
simplicity, the point transfer should be computed in a canoni-
cal/normalized setup. For this, we transform the previously cre-
ated matrices of when we project points. For the left output PTL

we multiply all matrices with the pseudo-inverse HOL of POL.
This yields P ′OL = [ I | 0 ], P ′OR = PORHOL, P ′TL = PTLHOL.

Computing the Trifocal Tensor As shown in [12], the trifocal
tensor for the left output view is then defined as:

T (k,j,i) = P
′(j,i)
OR ∗ P ′(k,3)TL − P

′(j,3)
OR ∗ P ′(k,i)TL . (3)

Point Transfer Finally, we can transfer the guidance points
p from source to the target system. For transferring left source
points into the left target view, we take the following steps:

(i) Having POL = [ I | 0 ] and POR = [ M |m ] we calculate
the fundamental matrix with FLR = [ m ]×M . [ m ]× is
the sqew-symmetric matrix calculated from m [12].

(ii) For every point pOL, compute the line l′ which goes through
pOR and is perpendicular to l′e = FLRpOL. If l′e = (l1, l2, l3)
and x′ = (x1, x2, 1) then l′ = (l2,−l1,−x1l2 + x2l1).
One could also directly use l′ = (1, 0,−x1) for nearly
parallel systems. This l′ is a vertical line through point x′.

(iii) Get the transferred point by pkTL =
∑

ij p
i
OLl
′
jT

jk
i .

This gives us a sparse set of guidance points in the target view,
which can be used to drive an interpolation of all other pixels.

(a) DIBR point (b) DIBR mesh

Figure 2. (DIBR) image transfers done with the point-based method (a)
and the mesh method (b). As expected, we result in disoccluded regions
without image information. These points represent the guidance points.

Figure 3. In this image we see the effects of perspective change on the
original pixel cloud of the left source object. As a result, we see point
overlaps and disocclusions at the target location.

(a) Elephant with grid (b) Warped band

Figure 4. Applying the vision-aware warping method to the elephant ex-
ample (a) and two copies of the guitar player (b). Blurriness comes from
interpolation due to magnification of the object (parts).

3.2. Rendering
To accomplish this interpolation, we explore multiple image-based
approaches: point- and mesh-based rendering, warping and fitting
matrix transformations [10].

Direct Pixel Transfer A simple naive pixel-rendering approach
with (Figure 2(b)) and without (Figure 2(a)) an interpolation mesh,
provides accurate point locations, but holes or distortion at disoc-
clusions. Subsequent methods analyze the trade-off between the
correct projective result (Figure 3) and these local distortions.

Fitting By fitting the initial image to these points with a reduced
degree of freedom, we can ensure that the warped objects appear
realistic, and reduce the effect of noise in the projected points.
We analyzed deformation models with various degrees of free-
dom; uniform and non-uniform translation in x- and y-direction
plus scaling, affine and finally perspective transformations. This
fitting is computed as a least square solution x, with ‖x‖ = 1,
of a homogeneous system similar to Mx = 0 by using the SVD
(UΣV T ) of M . We therefore use RANSAC to find the best of
multiple solutions from random point subsets.

Warping In addition to low-degree of freedom models, we can
compute a mesh-warping approach to fit the image to the guid-
ance points, using visual saliency to hide distortions [13, 14]. The
warp is a mesh deformation densely mapping input points to a
new output destination. It is computed by minimizing smoothness
constraints that reduces overall distortion and overlaps, while en-



(a) Depth map inaccuracies (b) Band

Figure 5. Pixel-based compositing errors due to depth maps are shown in
image (a). Figure (b) shows the application of SLIC super-pixel segmen-
tation to one of our test images.

Figure 6. The three test sets evaluated by the 25 participants. Brighter
colors represent methods with more degrees of freedom. The x-axis repre-
sents the three test sets and y-axis the amount of participants which voted
for this method. Higher scores are better.

forcing a data constraint that maps guidance points to their target
location ((Figure 4). Please see [13] for an extended description.

3.3. Compositing
Finally, we composite the transferred image in the virtual camera
with the target content. To do this, we need to update the disparity
map to match the virtual view, before we can apply a depth z-test.

For the specific guidance points, we know exactly how the
disparity is changing during transfer, and for in between points,
we can interpolate disparities based on the fitting approach used.
This is done by updating the source disparity map with target dis-
parities, followed by the application of the transformation already
used on the image content. In this process, disparities are auto-
matically interpolated between the target pixel positions.

Super-Pixel Z-Test Real world disparity maps are often inaccu-
rate and their direct use for z-test can introduce notable artifacts
(Figure 5(a)). We therefore present a super-pixel approach to de-
crease the compositing’s sensitivity to noise by enforcing neigh-
borhood similarity similar to cross-bilateral filtering. In images,
object borders are not discrete and usually blur over a few pixels.
Additionally, they do not always correspond to object edges in the
depth map. Using a mixture of image and depth edges, we extract
super-pixels [15] (Figure 5(b)) for the object and target image. In
contrast to other filtering, we then assign a super-pixel its underly-
ing median depth and require that an entire super-pixel is classified
as either “over” or “under” the target stereo footage during the z-
test. In addition, we enforce corresponding super-pixels in the left
and right image have the same “over” or “under” property.

3.4. User Study
We conducted a user study to analyze the perceptual trade-off be-
tween image distortion artifacts and adherence to the perspective
transformation. In particular, we were interested which image do-
main deformation for fitting the guidance points gives best com-
positing impression for viewers. This user study was composed
of 25 individuals, 5 of whom were very familiar with 3D content,
and 20 of whom had some experience with 3D. The first group
evaluated the results on an interlaced 3D display, while the second

group used anaglyph glasses on corresponding anaglyph images.
One participant was removed due to lack of 3D vision.

In the user study, three test sets were used (Figure 6). In each
set, participants were able to choose their best compositing so-
lution of all the methods while not having any reference to the
source object for comparison. Amongst other things, this is why
participants were generally less influenced by missing perspective
changes in the projection. Although, the composited objects in test
sets did not show very strong distortions, already small unnatural
distortion artifacts caused warping to only score two votes.

4. RESULTS
Figure 7 shows the application of different fitting methods on ob-
jects. In these visualizations, the distortion introduced due to a
strong perspective change of the object is clearly shown. The
point- and mesh-based DIBR transfers provide an approximation
of the optimal distortion, but with holes. Only the warping deliv-
ers a result similar to the mesh-based DIBR rendering.

Disparity noise influences the performance of the point and
image transfer method as well as the compositing. The unpro-
cessed results show that super-pixels can counter a fair amount of
noise in image regions and borders (Figure 8).

5. CONCLUSIONS AND FUTURE WORK
We have presented a pipeline for depth image based stereoscopic
compositing. We introduced a novel use of the trifocal tensor for
robust object mapping, analyzed a set of rendering approaches,
and proposed a final robust compositing technique. All of these
together form a fully functional stereoscopic compositing work-
flow. However, we found that while disparity noise can be coun-
tered to some extent, occasionally depth prediction causes large
regions to have incorrect disparity. These cases remain problems
even with our techniques. Furthermore, if the perspective change
is very strong or changes the silhouette of the object the warping
approach can create strong unwanted artifacts.

In order to improve quality, additional lighting and color cor-
rections as well as image-based shadows should be considered.
Some artifacts in the rendering could be additionally reduced by
using a discontinuous warping method [16]. Finally, we analyzed
images but a video approach would be a logical next extension.
Most work in this area goes into stabilizing the object’s target po-
sition and fitting in the presence of errors.
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(a) Original (b) Point Transfer (c) Mesh Transfer (d) Scale & Translate

(e) Uniform Scale & Translate (f) Affine (g) Perspective (h) Warping

Figure 7. All fitting methods under the effect of strong perspective change of the object are shown in images (a) to (h). We chose artificially created
objects with a large depth volume. This intentionally increases the effect and improves the visibility of each method’s advantages and disadvantages. The
images of (b) and (c) can be used as ground truth approximations for the image transfers of (d) to (h).
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Figure 8. Super-pixels are used to enforce spatial similarity in the presence of noisy depth maps. (a) (b) and (c) show common depth map errors around
object borders that lead to incorrect depth tests. These are fixed in the superpixel approach. (d) shows an example of a noisy depth map that can be fixed
by using a spatial similarity assumption, while (e) shows an example where the depth map is too incorrect to be corrected.
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