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Abstract

We present a novel, purely affinity-based natural image
matting algorithm. Our method relies on carefully defined
pixel-to-pixel connections that enable effective use of infor-
mation available in the image and the trimap. We control
the information flow from the known-opacity regions into
the unknown region, as well as within the unknown region
itself, by utilizing multiple definitions of pixel affinities. This
way we achieve significant improvements on matte quality
near challenging regions of the foreground object. Among
other forms of information flow, we introduce color-mixture
flow, which builds upon local linear embedding and ef-
fectively encapsulates the relation between different pixel
opacities. Our resulting novel linear system formulation
can be solved in closed-form and is robust against several
fundamental challenges in natural matting such as holes
and remote intricate structures. While our method is pri-
marily designed as a standalone natural matting tool, we
show that it can also be used for regularizing mattes ob-
tained by various sampling-based methods. Our evaluation
using the public alpha matting benchmark suggests a sig-
nificant performance improvement over the state-of-the-art.

1. Introduction

Extracting the opacity information of foreground objects
from an image is known as natural image matting. Natural
image matting has received great interest from the research
community through the last decade and can nowadays be
considered as one of the classical research problems in vi-
sual computing. Mathematically, image matting requires
expressing pixel colors in the transition regions from fore-
ground to background as a convex combination of their un-
derlying foreground and background colors. The weight, or
the opacity, of the foreground color is referred to as the al-
pha value of that pixel. Since neither the foreground and
background colors nor the opacities are known, estimating
the opacity values is a highly ill-posed problem. To alleviate
the difficulty of this problem, typically a trimap is provided
in addition to the original image. The trimap is a rough seg-
mentation of the input image into foreground, background,

Figure 1. For an input image (a) and a trimap (b), we define sev-
eral forms of information flow inside the image. We begin with
color-mixture flow (c), then add direct channels of information
flow from known to unknown regions (d), and let effective share
of information inside the unknown region (e) to increase the matte
quality in challenging regions. We finally add local information
flow to get our spatially smooth result (f).

and regions with unknown opacity.
Affinity-based methods [4, 5, 11] constitute one of the

prominent natural matting approaches in literature. These
methods make use of pixel similarities to propagate the al-
pha values from the known-alpha regions to the unknown
region. They provide a clear mathematical formulation, can
be solved in closed-form, are easy to implement, and typ-
ically produce spatially consistent mattes. However, cur-
rent methods fail to effectively handle alpha gradients span-
ning large areas and spatially disconnected unknown re-
gions (i.e. holes) even in simple cases as demonstrated in
Figure 2. This is because a straightforward formulation us-
ing the pixel-to-pixel affinity definitions can not effectively
represent the complex structures that are commonly seen in
real-life objects.

In order to alleviate these shortcomings, we rely on a
careful, case-by-case design of how alpha values should
propagate inside the image. We refer to this propagation as
information flow. The key idea of our paper is a novel strat-
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egy for controlling information flow both from the known
trimap regions to the unknown region, as well as within the
unknown region itself. We formulate this strategy through
the use of a variety of affinity definitions including the
color-mixture flow, which is based on local linear embed-
ding and tailored for image matting. Step-by-step improve-
ments on the matte quality as we gradually add new build-
ing blocks of our information flow strategy are illustrated in
Figure 1. Our final linear system can be solved in closed-
form and results in a significant quality improvement over
the state-of-the-art. We demonstrate the matting quality im-
provement quantitatively, as well as through a visual inspec-
tion of challenging image regions. We also show that our
energy function can be reformulated as a post-processing
step for regularizing the spatially inconsistent mattes esti-
mated by sampling-based natural matting algorithms.

2. Related work
Opacity estimation in images is an active research topic

with a diverse set of applications, such as green-screen
keying [1], soft color segmentation [2, 17], reflection re-
moval [16], and deblurring [12]. In this paper, we aim to
estimate the opacity channel of objects in front of a complex
background, a problem referred to as natural image matting.

The numerous natural matting methods in the litera-
ture can be mainly categorized as either sampling-based or
affinity-based. In this section, we briefly review methods
that are the most relevant to our work and refer the reader
to a comprehensive survey [19] for further information.

Sampling-based methods [8, 9, 10, 15] typically seek to
gather numerous samples from the background and fore-
ground regions defined by the trimap and select the best-
fitting pair according to their individually defined criteria
for representing an unknown pixel as a mixture of fore-
ground and background. While they perform well espe-
cially around remote and challenging structures, they re-
quire affinity-based regularization to produce spatially con-
sistent mattes. Also, our experience with publicly available
matting code suggests that implementing sampling-based
methods can be challenging at times.

Affinity-based matting methods mainly make use of
pixel similarity metrics that rely on color similarity or spa-
tial proximity and propagate the alpha values from regions
with known opacity. Local affinity definitions, prominently
the matting affinity [11], operate on a local patch around the
pixel location to determine the amount of local information
flow and propagate alpha values accordingly. The matting
affinity is also widely adopted as a post-processing step in
sampling-based methods [8, 10, 15] as proposed by Gastal
and Oliveira [9].

Methods utilizing nonlocal affinities similarly use color
similarity and spatial proximity for determining how the al-
pha values of different pixels should relate to each other.

KNN matting [4] determines several neighbors for every un-
known pixel and enforces them to have similar alpha values
relative to their distance in a feature space. The manifold-
preserving edit propagation algorithm [5] also determines a
set of neighbors for every pixel, but represents each pixel as
a linear combination of its neighbors in their feature space.

Chen et al. [6] proposed a hybrid approach that uses the
sampling-based robust matting [18] as a starting point and
refines its outcome through a graph-based technique where
they combine a nonlocal affinity [5] and the matting affin-
ity. Cho et al. [7] combined the results of closed-form mat-
ting [11] and KNN matting [4], as well as the sampling-
based method comprehensive sampling [15], by feeding
them into a convolutional neural network.

In this work, we propose color-mixture flow and discuss
its advantages over the affinity definition utilized by Chen
et al. [5]. We also define three other forms of information
flow, which we use to carefully distribute the alpha informa-
tion inside the unknown region. Our approach differs from
Chen et al. [6] in that our overall information flow strategy
goes beyond combining various pixel affinities, as we dis-
cuss further in Section 3, while requiring much less memory
to solve the final system. Instead of using the results of other
affinity-based methods directly as done by Cho et al. [7],
we formulate an elegant formulation that has a closed-form
solution. To summarize, we present a novel, purely affinity-
based matting algorithm that generates high-quality alpha
mattes without making use of a sampling-based method or
a learning step.

3. Method
Trimaps are typically given as user input in natural mat-

ting, and they consist of three regions: fully opaque (fore-
ground), fully transparent (background) and of unknown
opacity. F , B and U will respectively denote these regions,
and K will represent the union of F and B. Affinity-based
methods operate by propagating opacity information from
K into U using a variety of affinity definitions. We define
this flow of information in multiple ways so that all the pix-
els inside U receives information effectively from different
regions in the image.

The opacity transitions in a matte occur as a result of the
original colors in the image getting mixed with each other
due to transparency or intricate parts of an object. We make
use of this fact by representing each pixel in U as a mixture
of similarly-colored pixels and defining a form of informa-
tion flow that we call color-mixture flow (Section 3.1). We
also add connections from every pixel in U to both F and
B to facilitate direct information flow from known-opacity
regions to even the most remote opacity-transition regions
in the image (Section 3.2). In order to distribute the infor-
mation from the color-mixture and K-to-U flows, we de-
fine intra-U flow of information, where pixels with simi-
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Figure 2. We created two duotone 500x500 images and blurred them to get soft transitions between regions. The numbers show the sum
of absolute differences between the estimated alpha mattes and the ground truth. Closed-form matting [11] uses local information flow,
KNN Matting [4] uses HSV- or RGB-based similarity measure, and manifold-preserving edit propagation [5] uses LLE weights [14]. We
observe a performance improvement in large opacity gradients even when only the color-mixture flow (CMF) is used (Section 3.1). Notice
also that both large gradients and holes are recovered with high precision using our final formulation. See text for further discussion.

lar colors inside U share information on their opacity with
each other (Section 3.3). Finally, we add local informa-
tion flow, a pixel affecting the opacity of its immediate spa-
tial neighbors, which ensures spatially coherent end results
(Section 3.4). We formulate the individual forms of infor-
mation flow as energy functions and aggregate them in a
global optimization formulation (Section 3.5).

3.1. Color-mixture information flow

Due to transparent objects as well as fine structures and
sharp edges of an object that cannot be fully captured due
to the finite-resolution of the imaging sensors, certain pixels
of an image inevitably contain a mixture of corresponding
foreground and background colors. By investigating these
color mixtures, we can derive an important clue on how to
propagate alpha values between pixels. The amount of the
original foreground color in a particular mixture determines
the opacity of the pixel. Following this fact, if we represent
the color of a pixel as a weighted combination of the colors
of several others, those weights should also represent the
opacity relation between the pixels.

In order to make use of this relation, for every pixel in U ,
we find KCM = 20 similar pixels in a feature space by an
approximate K nearest neighbors search in the whole image.
We define the feature vector for this search as [r, g, b, x̃, ỹ]T ,
where x̃ and ỹ are the image coordinates normalized by im-
age width and height, and the rest are the RGB values of
the pixel. This set of neighbors, selected as similar-colored
pixels that are also close-by, is denoted by NCM

p .
We then find the weights of the combination wCM

p,q that
will determine the amount of information flow between the
pixel p and q ∈ NCM

p . The weights are defined such that
the colors of the neighbors of a pixel gives the original pixel
color when combined:

argmin
wCM

p,q

∥∥∥∥∥∥cp −
∑

q∈NCM
p

wCM
p,q cq

∥∥∥∥∥∥
2

, (1)

where cp represents the 3x1 vector of RGB values. We
minimize this energy using the method by Roweis and
Saul [14]. Note that since we are only using RGB values,
the neighborhood correlation matrix computed during the
minimization has a high chance of being singular as there
could easily be two neighbors with identical colors. So, we
condition the neighborhood correlation matrix by adding
10−3IKCM×KCM

to it before inversion, where IKCM×KCM

is the identity matrix.
Note that while we use the method by Roweis and

Saul [14] to minimize the energy in (1), we do not fully
adopt their local linear embedding (LLE) method. LLE
finds a set of neighbors in a feature space and uses all the
variables in the feature space to compute the weights in or-
der to reduce the dimentionality of input data. Manifold-
preserving edit propagation [5] and LNSP matting [6] algo-
rithms make use of the LLE weights directly in their formu-
lation for image matting. However, since we are only in-
terested in the weighted combination of colors and not the
spatial coordinates, we exclude the spatial coordinates in the
energy minimization step. This increases the validity of the
estimated weights, effects of which can be observed even
in the simplest cases such as in Figure 2, where manifold-
preserving weight propagation and CMF-only results only
differ in the weight computation step.

We define the energy term representing the color-mixture
flow as:

ECM =
∑
p∈U

αp −
∑

q∈NCM
p

wCM
p,q αq

2

. (2)

3.2. K-to-U information flow

The color-mixture flow already provides useful informa-
tion on how the mixed-color pixels are formed. However,
many pixels in U receive information present in the trimap
indirectly through their neighbors, all of which can possibly
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Figure 3. Direct information flow from both F and B to even the most remote regions in U increases our performance around holes
significantly (top inset). Using confidences further increases the performance, especially around regions where foreground and background
colors are similar (bottom inset).

Input No K-to-U flow With K-to-U flow

Figure 4. K-to-U flow does not perform well when the foreground
object is highly-transparent. See text for discussion.

be in U . This indirect information flow might not be enough
especially for remote regions that are far away from K.

In order to facilitate the flow of information from both
F and B directly into every region in U , we add connec-
tions from every pixel in U to several pixels in K. For
each pixel in U , we find KKU = 7 similar pixels in both
F and B separately to form the sets of pixels NFp and NBp
with K nearest neighbors search using the feature space
[r, g, b, 10 ∗ x̃, 10 ∗ ỹ]T to favor close-by pixels. We use
the pixels in NFp and NBp together to represent the pixel
color cp by minimizing the energy in (1). Using the result-
ing weights wFp,q and wBp,q , we define an energy function to
represent the K-to-U flow:

EKU =
∑
p∈U

αp −
∑

q∈NF
p

wFp,qαq −
∑

q∈NB
p

wBp,qαq

2

(3)

Note that αq = 1 for q ∈ F and αq = 0 for q ∈ B. This fact
allows us to define two combined weights, one connecting
a pixel to F and another to B, as:

wFp =
∑

q∈NF
p

wFp,q and wBp =
∑

q∈NB
p

wBp,q (4)

such that wFp + wBp = 1, and rewrite (3) as:

EKU =
∑
p∈U

(
αp − wFp

)2
. (5)

The energy minimization in (1) gives us similar weights
for all q when cq are similar to each other. As a result, if
NFp and NBp have pixels with similar colors, the estimated
weights wFp and wBp become unreliable. We account for
this fact by augmenting the energy function in (5) with con-
fidence values.

We can determine the colors contributing to the mixture
estimated by (1) using the weights wFp,q and wBp,q:

cFp =

∑
q∈NF

p
wFp,qcq

wFp
, cBp =

∑
q∈NB

p
wBp,qcq

wBp
, (6)

and define a confidence metric according to how similar the
estimated foreground color cFp and background color cBp
are:

ηp =
∥∥cFp − cBp ∥∥2 /3. (7)

The division by 3 is to get the confidence values between
[0, 1]. We update the new energy term to reflect our confi-
dence in the estimation:

ẼKU =
∑
p∈U

ηp
(
αp − wFp

)2
. (8)

This update to the energy term increases the matting quality
in regions with similar foreground and background colors,
as seen in Figure 3.

It should be noted that theK-to-U information flow is not
reliable when the foreground object is highly transparent, as
seen in Figure 4. This is mainly due to the low representa-
tional power of NFp and NBp for cp around large highly-
transparent regions as the nearest neighbors search does not
give us well-fitting pixels for wFp,q estimation. We construct
our final linear system accordingly as we discuss further in
Section 3.5.

3.2.1 Pre-processing the trimap

Prior to determining NFp and NBp , we pre-process the in-
put trimap in order to facilitate finding more reliable neigh-
bors, which in turn increases the effectiveness of theK-to-U
flow. Trimaps usually have regions marked as U despite be-
ing fully opaque or transparent, as drawing a very detailed
trimap is a very cumbersome and error-prone job. Several
methods [8, 10] refine the trimap as a pre-processing step
by expanding F and B starting from their boundaries with
U as proposed by Shahrian et al. [15]. Incorporating this
technique improves our results as shown in Figure 5(d). We
also apply this extended F and B regions after the matte
estimation as a post-processing. Since the trimap trimming
method by Shahrian et al. [15] propagates known regions
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Figure 5. The trimap is shown overlayed on the original image (b)
where the extended foreground regions are shown with blue (CS
trimming [15]) and cyan (patch-search) and the extended back-
ground regions with red (CS trimming) and yellow (patch-search).
CS trimming makes the fully opaque / transparent regions cleaner,
while our trimming improves the results around remote structures.

only to nearby pixels, in addition to this edge-based trim-
ming, we also make use of a patch-based trimming step.

To this end, we extend the transparent and opaque re-
gions by relying on patch statistics. We fit a 3D RGB
normal distribution Np to the 3 × 3 window around each
pixel p. In order to determine the most similar distribution
in F for a pixel p ∈ U , we first find the 20 distributions
with closest mean vectors. We define the foreground match
score bFp = minq∈F B(Np, Nq), where B(·, ·) represents
the Bhattacharyya distance between two normal distribu-
tions. We find the match score for background bBp the same
way. We then select a region for pixel p according to the
following rule:

p ∈


F̂ if bFp < τc and bBp > τf

B̂ if bBp < τc and bFp > τf

Û otherwise
(9)

Simply put, an unknown pixel is marked as F̂ , i.e. in fore-
ground after trimming, if it has a strong match in F and no
match in B, which is determined by constants τc = 0.25 and
τf = 0.9. By inserting known-alpha pixels in regions far
away from U-K boundaries, we further increase the matting
performance in challenging remote regions (Figure 5(e)).

3.3. Intra-U information flow

Each individual pixel in U receives information through
the color-mixture andK-to-U flows. In addition to these, we
would like to distribute the information inside U effectively.
We achieve this by encouraging pixels with similar colors
inside U to have similar opacity.

For each pixel in U , we find KU = 5 nearest neigh-
bors only inside U to determine N̂Up using the feature
vector defined as v = [r, g, b, x̃/20, ỹ/20]T . Notice that
we scale the coordinate members of the feature vector we
used in Section 3.1 to decrease their effect on the near-
est neighbor selection. This lets N̂Up have pixels inside
U that is far away, so that the information moves more
freely inside the unknown region. We use the neighborhood

NUp = N̂Up ∪ {q | p ∈ N̂Uq } to make sure that information
flows both ways between p to q ∈ N̂Up . We then deter-
mine the amount of information flow using the L1 distance
between feature vectors:

wUp,q = max
(
1− ‖vp − vq‖1 , 0

)
∀q ∈ NUp . (10)

The energy term for intra-U information flow then can be
defined as:

EUU =
∑
p∈U

∑
q∈NU

p

wUp,q (αp − αq)
2
. (11)

The information sharing between the unknown pixels in-
creases the matte quality around intricate structures as
demonstrated in Figure 1(e).

KNN matting [4] uses a similar affinity definition to
make similar-color pixels have similar opacities. However,
relying only on this form of information flow alone for the
whole image creates some typical artifacts in the resulting
alpha mattes. Depending on the feature vector definition
and the image colors, the resulting alpha values may erro-
neously underrepresent the smooth transitions (KNN - HSV
case in Figure 2) when the neighbors of the pixels in U hap-
pen to be mostly in only F or B, or create flat, constant al-
pha regions instead of subtle gradients (KNN - RGB case in
Figure 2). Restricting information flow to be applied solely
based on color similarity fails to represent the complex al-
pha transitions or wide regions with an alpha gradient.

3.4. Local information flow

Spatial connectivity is one of the main cues for informa-
tion flow. We connect each pixel in U to its 8 immediate
neighbors denoted by NL

p to ensure spatially smooth mat-
tes. The amount of local information flow should also adapt
to strong edges in the image.

To determine the amount of local flow, we rely on the
matting affinity definition proposed by Levin et al. [11].
The matting affinity utilizes the local patch statistics to de-
termine the weights wL

p,q , q ∈ NL
p . We define our related

energy term as follows:

EL =
∑
p∈U

∑
q∈NL

p

wL
p,q (αp − αq)

2
. (12)

Despite representing local information flow well, matting
affinity by itself fails to represent large transition regions
(Figure 2 top), or isolated regions that have weak or no spa-
tial connection to F or B (Figure 2 bottom).

3.5. Linear system and energy minimization

Our final energy function is a combination of the four en-
ergy definitions representing each form of information flow:

E1 = ECM +σKUEKU+σUUEUU+σLEL+λET , (13)



Input Ground-truth Sampling-based α̂ [15] Regularization by [9] Our regularization

Figure 6. The matte regularization method by Gastal and Oliveira [9] loses remote details (top inset) or fills in holes (bottom inset) while
our regularization method is able to preserve these details caught by the sampling-based method.

where σKU = 0.05, σUU = 0.01, σL = 1 and λ = 100
are algorithmic constants determining the strength of corre-
sponding information flows, and

ET =
∑
p∈F

(αp − 1)
2
+
∑
p∈B

(αp − 0)2

is the energy term to keep the known opacity values con-
stant. For an image with N pixels, by defining N × N
sparse matrices WCM , WUU andWL that have non-zero el-
ements for the pixel pairs with corresponding information
flows and the vector wF that has elements wFp for p ∈ U ,
1 for p ∈ F and 0 for p ∈ B, we can rewrite (13) in matrix
form as:

E1 =αTLIFMα+ (α−wF )TσKUH(α−wF )+
(α−αK)TλT (α−αK),

(14)

where T is an N ×N diagonal matrix with diagonal entry
(p, p) 1 if p ∈ K and 0 otherwise,H is a sparse matrix with
diagonal entries ηp as defined in (7), αK is a row vector
with pth entry being 1 if p ∈ F and 0 otherwise, α is a
row-vector of the alpha values to be estimated, and LIFM

is defined as:

LIFM =(DCM −WCM )T (DCM −WCM )+

σUU (DUU −WUU ) + σL(DL −WL),
(15)

where the diagonal matrix D(·)(i, i) =
∑

j W(·)(i, j).
The energy in (14) can be minimized by solving

(LIFM + λT + σKUH)α = (λT + σKUH)wF . (16)

We define a second energy function that excludes the K-
to-U information flow:

E2 = ECM + σUUEUU + σLEL + λET , (17)

which can be written in matrix form as:

E2 = αTLIFMα+ (α−αK)TλT (α−αK), (18)

and can be minimized by solving:

(LIFM + λT )α = λT αK. (19)

We solve the linear systems of equations in (16) and (19)
using the preconditioned conjugate gradients method [3].

As mentioned before, the K-to-U information flow is
not effective for highly transparent objects. To determine
whether to include the K-to-U information flow and solve
for E1, or to exclude it and solve for E2 for a given image,
we use a simple histogram-based classifier to determine if
we expect a highly transparent result.

If the matte is highly transparent, the pixels in U are ex-
pected to mostly have colors that are a mixture of F and
B colors. On the other hand, if the true alpha values are
mostly 0 or 1 except for soft transitions, the histogram of U
will likely be a linear combination of the histograms of F
and B as U will mostly include very similar colors to that
of K. Following this observation, we attempt to express the
histogram of the pixels in U , DU , as a linear combination
of DF and DB. The histograms are computed from the 20
pixel-wide region around U in F and B, respectively. We
define the error e, the metric of how well the linear combi-
nation represents the true histogram, as:

e = min
a,b
‖aDF + bDB −DU‖2. (20)

Higher e values indicate a highly-transparent matte, in
which case we prefer E2 over E1.

4. Matte regularization for sampling-based
matting methods

Sampling-based natural matting methods usually select
samples for each pixel in U either independently or by pay-
ing little attention to spatial coherency. In order to obtain
a spatially coherent matte, the common practice is to com-
bine their initial guesses for alpha values with a smooth-
ness measure. Multiple methods [8, 9, 10, 15] adopt the
post-processing method proposed by Gastal and Oliveira [9]
which combines the matting affinity [11] with the sampling-
based alpha values and corresponding confidences. This
post-processing technique leads to improved mattes, but
since it involves only local smoothness, the results can still
be suboptimal as seen in Figure 6(d).

Our approach with multiple forms of information flow
can also be used for post-processing in a way similar to that
of Gastal and Oliveira [9]. Given the initial alpha values α̂p

and confidences η̂p found by a sampling-based method, we
define the matte regularization energy:

ER = E2 + σR
∑
p∈U

η̂p(αp − α̂p)
2, (21)



Table 1. Our scores in the alpha matting benchmark [13] together with the top-performing published methods at the time of submission. S,
L and U denote the three trimap types, small, large and user, included in the benchmark. Bold and blue numbers represent the best scores
obtained among all the published methods in the benchmark∗.

Average Rank∗∗ Troll Doll Donkey Elephant Plant Pineapple Plastic bag Net

Overall S L U S L U S L U S L U S L U S L U S L U S L U S L U

Sum of Absolute Differences

Ours 2.1 2.8 1.6 2.0 10.3 11.2 12.5 5.6 7.3 7.3 3.8 4.1 3 1.4 2.3 2.0 5.9 7.1 8.6 3.6 5.7 4.6 18.3 19.3 15.8 20.2 22.2 22.3

DCNN [7] 3.2 4.6 1.6 3.4 12.0 14.1 14.5 5.3 6.4 6.8 3.9 4.5 3.4 1.6 2.5 2.2 6.0 6.9 9.1 4.0 6.0 5.3 19.9 19.2 19.1 19.4 20.0 21.2
CSC [8] 10 13.5 6.4 10.3 13.6 15.6 14.5 6.2 7.5 8.1 4.6 4.8 4.2 1.8 2.7 2.5 5.5 7.3 9.7 4.6 7.6 6.9 23.7 23.0 21.0 26.3 27.2 25.2

LNSP [6] 10.7 7.3 10.3 14.6 12.2 22.5 19.5 5.6 8.1 8.8 4.6 5.9 3.6 1.5 3.5 3.1 6.2 8.1 10.7 4.0 7.1 6.4 21.5 20.8 16.3 22.5 24.4 27.8

Mean Squared Error

Ours 3.5 5.0 2.1 3.4 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.3 0.2 0.1 0.1 0.1 0.4 0.4 0.6 0.2 0.3 0.3 1.3 1.2 0.8 0.8 0.8 0.9

DCNN [7] 3.7 4.5 1.9 4.6 0.4 0.5 0.7 0.2 0.3 0.4 0.2 0.3 0.2 0.1 0.1 0.1 0.4 0.4 0.8 0.2 0.4 0.3 1.3 1.2 1.0 0.7 0.7 0.9

LNSP [6] 9.2 6.6 8.6 12.4 0.5 1.9 1.2 0.2 0.4 0.5 0.3 0.4 0.2 0.0 0.1 0.2 0.4 0.5 0.8 0.2 0.3 0.4 1.4 1.2 0.8 1.0 1.1 1.5

KL-D [10] 11.6 11.0 10.5 13.3 0.4 0.9 0.7 0.3 0.5 0.5 0.3 0.4 0.3 0.1 0.2 0.1 0.4 0.4 1.2 0.4 0.6 0.6 1.7 2.0 2.1 0.8 0.8 0.9
∗ Some columns do not have a bold number when the best-scoring algorithm for that particular image-trimap pair is not among the top-ranking methods included here.
∗∗ The ranks presented here only take the already-published methods at the time of the submission into account, hence could differ from the online version of the benchmark.

where σR = 0.05 determines how much loyalty should be
given to the initial values. This energy can be written in the
matrix form as

ER =αTLIFMα+ (α− α̂)TσRĤ(α− α̂)+
(α−αK)TλT (α−αK)

(22)

and minimized by solving

(LIFM + λT + σRĤ)α = (λT + σRĤ)α̂. (23)

Figure 6 shows that this non-local regularization of mattes
is more effective especially around challenging foreground
structures such as long leaves or holes as seen in the in-
sets. In the next section, we will numerically explore the
improvement we achieve by replacing the matte regulariza-
tion step with ours in several sampling-based methods.

5. Results and discussion
We quantitatively evaluate the proposed algorithm using

the public alpha matting benchmark [13]. At the time of
submission, our method ranks in the first place according to
the sum-of-absolute-differences (SAD) and mean-squared
error (MSE) metrics. The results can be seen in Table 1.
Our unoptimized research code written in Matlab requires
on average 50 seconds to process a benchmark image.

We also compare our results qualitatively with the
closely related methods in Figure 7. We use the results
that are available on the matting benchmark for all except
manifold-preserving matting [5] which we implemented
ourselves. Figure 7(c,d,e) show that using only one form of
information flow is not effective in a number of scenarios
such as wide unknown regions or holes in the foreground
object. The strategy DCNN matting [7] follows is using
the results of closed-form and KNN matting directly rather
than formulating a combined energy using their affinity def-
initions. When both methods fail, the resulting combination
also suffers from the errors as it is apparent in the pineap-
ple and troll examples. The neural network they propose

Table 2. Performance improvement achieved when our matte reg-
ularization method replaces the method by Gastal and Oliveira [9]
in the post-processing steps of 3 sampling-based methods. The
training dataset [13] of 27 images and 2 trimaps per image (S and
L) was used for this comparison.

Sum of Absolute Differences Mean Squared Error

Overall S L Overall S L

KL-D [10] 24.4 % 22.4 % 26.5 % 28.5 % 25.9 % 31.0 %

SM [9] 6.0 % 3.7 % 8.4 % 13.6 % 8.5 % 18.8 %

CS [15] 4.9 % 10.0 % -0.1 % 18.7 % 25.5 % 11.8 %

also seems to produce mattes that appear slightly blurred.
LNSP matting [6], on the other hand, has issues around
regions with holes (pineapple example) or when the fore-
ground and background colors are similar (donkey and troll
examples). It can also oversmooth some regions if the true
foreground colors are missing in the trimap (plastic bag ex-
ample). Our method performs well in these challenging sce-
narios mostly because, as detailed in Section 3, we carefully
define intra-unknown region and unknown-to-known region
connections which results in a more robust linear system.

We also compare the proposed post-processing method
detailed in Section 4 with the state-of-the-art method by
Gastal and Oliveira [9] on the training dataset provided
by Rhemann et al. [13]. We computed the non-smooth
alpha values and confidences using the publicly avail-
able source code for comprehensive sampling [15], KL-
divergence sampling [10] and shared matting [9]. Table 2
shows the percentage improvement we achieve over Gastal
and Oliveira [9] for each algorithm using SAD and MSE as
error measures. Figure 8 shows an example for regularizing
all three sampling-based methods. As the information com-
ing from alpha values and their confidences found by the
sampling-based method is distributed more effectively by
the proposed method, the challenging regions such as fine
structures or holes detected by the sampling-based method
are preserved when our method is used for post-processing.



Figure 7. Several examples from the alpha matting benchmark [13] are shown (a) with trimaps overlayed onto the images (b). The mattes
are computed by closed-form matting [11] (c), KNN matting [4] (d), manifold-preserving edit propagation [5] (e), LNSP matting [6] (f),
DCNN matting [7] (g) and the proposed method (h). See text for discussion.

Input and ground-truth Regularization of KL-D [10] Regularization of SM [9] Regularization of CS [15]

Figure 8. Matte regularization using the proposed method (cyan) or [9] (magenta) for three sampling-based methods (yellow). Our method
is able to preserve remote details while producing a clean matte (top inset) and preserve sharpness even around textured areas (bottom).

6. Conclusion

In this paper, we proposed a purely affinity-based nat-
ural image matting method. We introduced color-mixture
flow, a specifically tailored form of LLE weights for nat-
ural image matting. By carefully designing flow of infor-
mation from the known region to the unknown region, as
well as distributing the information inside the unknown re-
gion, we addressed several challenges that are common in
natural matting. We showed that the linear system we for-

mulate outperforms the state-of-the-art in the alpha matting
benchmark. We also showed that our formulation can be
used to replace the commonly used matte refinement step in
sampling-based matting methods to achieve an increase in
the final matte quality.
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