
Designing Inflatable Structures

Mélina Skouras1,2 Bernhard Thomaszewski2 Peter Kaufmann2 Akash Garg3 Bernd Bickel 2

Eitan Grinspun 3 Markus Gross1,2

1ETH Zurich 2Disney Research Zurich 3Columbia University

Figure 1: An overview of our design system: the user provides a target shape (left) and sketches seams to indicate desired segment boundaries
(2nd from left). Our system automatically computes flat panels such that the inflated structure (middle) is as close as possible to the target.
The generated panels (2nd from right) can be used to fabricate a physical prototype (right).

Abstract

We propose an interactive, optimization-in-the-loop tool for de-
signing inflatable structures. Given a target shape, the user draws
a network of seams defining desired segment boundaries in 3D.
Our method computes optimally-shaped flat panels for the seg-
ments, such that the inflated structure is as close as possible to
the target while satisfying the desired seam positions. Our ap-
proach is underpinned by physics-based pattern optimization, ac-
curate coarse-scale simulation using tension field theory, and a spe-
cialized constraint-optimization method. Our system is fast enough
to warrant interactive exploration of different seam layouts, includ-
ing internal connections, and their effects on the inflated shape. We
demonstrate the resulting design process on a varied set of simu-
lation examples, some of which we have fabricated, demonstrating
excellent agreement with the design intent.
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tern optimization, seam design
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1 Introduction

Inflatables are structures made of flat membrane elements that as-
sume complex curved shapes when pressurized. Thanks to their
lightweight nature, rapid deployment, and cost efficiency, they en-
joy widespread popularity in entertainment, advertisement, engi-
neering, and architecture. From foil balloons to parade floats, in-

flatable furniture to portable architectural structures—myriad ap-
plications abound.

Designing inflatable structures requires solving a complicated pat-
terning problem: what is the shape of the flat panels that we must
cut, and how must we interconnect the panels, such that the final as-
sembly inflates to the desired curved shape? This task is extremely
challenging since the designer must anticipate, and invert, the ef-
fects of pressure on the shape of the structure, while simultane-
ously taking into account the aesthetics of seams. The combination
of functional and aesthetic requirements make patterning the most
difficult aspect of current manual design processes.

We propose a computational approach for the interactive design of
inflatable structures. We assume that the designer already has a cer-
tain target shape at hand, perhaps acquired from real world data,
designed via modeling software, or provided as a specification by a
client. Our goal is to help the designer to make plans for an inflat-
able structure that corresponds to the given target.

Our approach ensures that the designer retains full control over
aesthetic considerations; to do so, we lay aside fully automated
approaches in favor of an interactive, optimization-in-the-loop
methodology. As the designer sketches the proposed placement of
seams, the underlying optimizer alleviates the iterative and error-
prone tasks of reverse-engineering the physics of inflation, propos-
ing a set of panels that best accommodate the desired seams and
target shape.

The simplicity of this user experience requires some complex ma-
chinery under the hood. We develop a fast physics-based model for
inflatable membranes motivated by tension field theory, and we em-
ploy a dedicated optimization method for computing the shape of
the 2D patterns. We demonstrate the resulting design process on a
set of inflatable structures with complex shapes and elaborate seam
layouts. Finally, we validate the feasibility of our designs on three
physical prototypes.

2 Related Work

Fabrication-Oriented Computational Design seeks to develop
software, typically based on a mix of interaction- and optimization-
based approaches, that facilitates the design of artifacts, taking
into account not only considerations of functionality and aesthet-
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ics, but also manufacturing and assembly. Recently, several ap-
proaches have been presented for translating functional goals such
as appearance [Hullin et al. 2013], articulation [Bächer et al. 2012;
Calı̀ et al. 2012], deformation behavior [Bickel et al. 2012; Skouras
et al. 2013], kinematic motion [Zhu et al. 2012; Coros et al. 2013;
Ceylan et al. 2013], or a combination of these [Chen et al. 2013]
into manufacturable designs. While many design problems admit
fully automatic approaches, many others require that the user re-
main in the loop. In such cases, interactive systems can help their
users to explore complex design spaces, for instance to create phys-
ically valid furniture [Umetani et al. 2012; Lau et al. 2011].

The design of inflatable balloons was recently investigated by Sk-
ouras et al. [2012]. However, they focused on rubber balloons
which (a) stretch significantly during inflation, (b) have 3D rest
shapes fabricated by dipping a mold into liquid rubber, and (c) are
typically pliant even when maximally inflated. By contrast, our in-
flatable structures (a) have great membrane stiffness and negligible
stretching strain, yield more durable artifacts; (b) are manufactured
by assembly of piecewise flat rest shapes, facilitating maintenance
and repair, allowing for larger physical dimensions, and permitting
decoration with paint, ink, or other appliques using standard print-
ing methods; and (c) can be quite stiff when inflated, expanding the
potential functionality beyond the realm of purely decorative. Fi-
nally, the space of designs we consider is richer than that spanned
by rubber balloons, including complex shapes with sharp creases.
The wrinkling behaviour of inflated membranes was studied by Ba-
ginski et al. [2008], who used forward simulations on simple pat-
terns to determine the shape of high altitude scientific balloons. In-
spired by their work, we also employ tension field theory.

Tools to computationally design objects made of flat patterns have
already been proposed in the past. Umetani et al. [2011] presented
Sensitive Couture, an interactive tool for garment design; Mori and
Igarshi proposed Plushie to create custom plush toys [2007], which
was extended to non-stretchy materials by Futura et al. [2010].
However, some fundamental differences distinguish our tool from
Plushie. Whereas Plushie projects begin with a blank canvas, our
projects begin with a given target shape. Plushie helps the user
to focus on the modeling task, whereas our work helps the user
to focus on the control of seam placement and panel shape, es-
sential for obtaining compelling designs for myriad organic forms,
and for geometric shapes such as simple sphere (see Fig. 6). In
that sense, the workflow of our system draws inspiration from Pil-
low’s [Igarashi and Igarashi 2008]. However, unlike our method,
Pillow employs flattening that does not include an inflation-based
metric, nor warrants satisfaction of fabrication constraints. This
target-driven approach also shares some similarities with the one
employed by Wang and Tang [2010] in the context of compression
garment design. However, the underlying goals and problems dif-
fer substantially: their system aims at producing clothing with pre-
scribed strains and normal pressures, whereas our method focuses
on matching an inflated shape while adhering to user-provided seam
constraints.

Automatic Segmentation and Parametrization techniques
seek to create mappings with low distortion [Hormann et al. 2007].
For example, DCharts [Julius et al. 2005] segments models into
almost developable patches, which can then be flattened using
ABF++ [Sheffer et al. 2005] to create approximately conformal
parametrizations with small stretch. Flattening multiple panels in-
dependently generally produces incompatible seam lengths, requir-
ing alterations such as pleats or cuts that complicate fabrication and
impose a very particular visual appearance. To address this point,
Wang [2008] considered flattening subject to both minimal stretch
and seam length compatibility. We draw inspiration from Wang’s
approach to compute initial guesses for pattern optimization.

An alternative approach is to approximate a 3D shape by a set of
ruled surfaces such as cones and planes [Shatz et al. 2006], gener-
alized cylinders [Massarwi et al. 2007]), or paper strips [Mitani and
Suzuki 2004]. Also, there are a number of tools for modeling de-
velopable surfaces. Kilian et al. [2008] use curved creases to design
complex-shaped surfaces from planar sheets. Solomon et al. [2012]
describe an interactive design system that exactly satisfies discrete
developability conditions at all times. While these methods work
well for designing physically-realizable surfaces made, e.g., out of
paper, developability does not guarantee that the object’s surface
is in equilibrium under pressure. We directly optimize for devel-
opable patches that, when joined together and inflated, approximate
a desired 3D shape at equilibrium. However, our method does not
necessarily lead to an inflated shapes with zero Gaussian curvature
and therefore does not guarantee a piecewise developable surface.

Cloth and Shell Simulation Similar to inflatables, cloth buckles
at the onset of compression. This behavior leads to the charac-
teristic folding patterns that define the typical appearance of real
textiles, but it is inherently difficult to treat numerically: com-
pression gives rise to negative eigenvalues in the force Jacobian
and thus slows or even breaks most linear solvers. Choi and Ko
[2002] proposed a mass-spring model that turns off force and Jaco-
bian contribution from compressed springs and replaces them with
custom-tailored buckling springs. Another approach to combat in-
definiteness was presented by Teran et al. [2005], who clamp neg-
ative eigenvalues of elemental stiffness matrices. Instead of trying
to avoid indefiniteness, the method of Rohmer et al. [2010] exploits
the compression field extracted from elemental deformation tensors
in order to add detailed wrinkles to a coarse simulation. Inspired by
tension field theory [Pipkin 1986; Steigmann 1990], we propose a
fast physics-based model that addresses the difficulty of wrinkling
analysis with a relaxed energy formulation that fades to zero before
compressive stresses can occur.

3 System Overview

The goal of our system is a workflow that makes the design of in-
flatable structures intuitive and efficient for the user. We start the
description by making precise the notion of inflatable structures.

3.1 Anatomy of Inflatable Structures

Inflatable structures are made from flat panels, i.e., thin layers of
metallic foil, vinyl, or textile. While our approach does not exclude
stretchy materials such as rubber per se, we target structures that
show little stretch but large bending deformations. We therefore
focus on quasi-inextensible materials that exhibit a high resistance
to stretching, but are compliant to bending.

A connection between two panels is called a seam. Depending on
the type of material, seams are created through gluing, heat seal-
ing, or stitching. As an important design constraint, the segments
forming the seam should have the same length on both panels; oth-
erwise, the design must be altered during manufacturing using cuts
or pleats.

The shape of inflatable structures is governed by the requirement
that they have to be stable under pressure: the pressure forces must
be balanced by membrane forces in every point on the surface. This
equilibrium constraint puts limits on what kind of shapes can be ob-
tained with a structure that consists of a single closed surface. How-
ever, the space of possible designs can be significantly enlarged by
allowing for internal connections (see Fig. 2). Such internal con-
nections can be used to attach parts of the surface to each other that



Figure 2: Internal connections (left) allow the designer to realize
shapes with sharp creases and concave features (middle) that would
be poorly approximated without internal structures (right).

would otherwise be pushed apart by the pressure forces. They can
also be used to generate creased feature curves.

3.2 Design Loop

Interface The design interface consists of three views: the in-
flated view, target view, and pattern view (see Fig. 3). Each new
design session starts by loading a closed triangle mesh that repre-
sents the 3D target shape. The user incrementally builds a seam
layout that partitions the target mesh into a set of segments. Once
a seam layout or edit is committed, our system flattens the corre-
sponding segments. The inflated view immediately shows a pre-
liminary shape for the resulting structure, obtained by inflating the
model with the current patterns in simulation (Sec. 4). Meanwhile,
the system continuously optimizes the pattern (Sec. 5). Both views
are continuously updated while the optimization proceeds in the
background.

Seam Design The user draws seams directly on the target model
using a spline tool that implements a geodesics metaphor, i.e., con-
nects seam points by taking an approximately shortest path on the
surface. We represent seam curves using cubic Hermite splines that
are defined through a coarse set of 3D control points. For segmen-
tation, we simply project the spline curve onto the surface mesh.
The seam tool supports snap-on functionality in order to link new
seams to existing ones. In addition, the user can also edit existing
seams by simply dragging control points.

Generally, some of the seams will have aesthetic purposes or re-
quirements, while others simply subdivide a larger region in order
to increase the shape approximation quality. For each of the seams,
the user can therefore specify a weight that indicates how important

Figure 3: Our design interface, showing the inflated view (top left),
target view (top right), and pattern view (bottom).

it is for the seam to remain in its original location with respect to
the target shape. These conditions are then enforced through corre-
sponding objectives during pattern optimization.

Internal Connections As a necessary condition for a given shape
to be a feasible balloon, it has to be stable under pressure. Clearly,
this requirement limits the space of shapes that can be realized as
balloons. However, the design space can be significantly enlarged
by allowing for internal connections, i.e., panels that are not visi-
ble from the outside and serve a purely functional purpose. Internal
connections are created by connecting existing seams on the sur-
face as indicated by the user. Technically, internal connections are
no different from the other, visible patches. However, paired with
our optimization, they provide a powerful tool for creating complex
shapes with distinct features (see Fig. 2).

Pattern Optimization tightly integrates with simulation in order
to compute flat panels that allow for an optimal approximation of
the target shape. Whenever a seam layout or edit is committed by
the user, the involved segments are first flattened in order to obtain
an initial guess for the pattern shape (Sec. 5.2). Afterwards, the
shapes of the flat panels are computed by optimizing various objec-
tives, including shape approximation and seam quality (Sec. 5.1).
In order to deal with the overall nonlinear nature of the problem and
the large changes in pattern shapes, our system uses an iterative op-
timization algorithm based on Sequential Quadratic Programming
(SQP) with integrated remeshing (Sec. 5.3). Although this method
can take some time to fully converge, the results are typically vi-
sually stable after just a few seconds. The user can thus quickly
explore different seam layouts without a disruptive delay.

4 Simulation

As a core component of our design system, we must be able to
rapidly compute the deformed shape of inflatable structures. Like
many other thin structures, inflatables exhibit a strong resistance to
stretching but will wrinkle at the onset of compression. This behav-
ior poses challenges that our simulation must confront efficiently.

4.1 Origins of Compression

As a didactic example, consider the simple foil balloon depicted
in Fig. 4, assembled from two disc-shaped panels. When inflat-
ing the balloon, we expect that (1) the distance between the centers
of the two panels increases due to pressure; (2) the seam remains
on its original plane due to symmetry; (3) each radial line, extend-
ing from the center to the seam, will remain unstretched due to
inextensibility. To meet these requirements the diameter must de-
crease during inflation. Correspondingly, the circumference must
shrink, implying a compressive deformation on the seam that is re-
solved through the typical wrinkles observed in foil balloons (Fig.
4, right). Wrinkling is a characteristic trait of thin surface struc-
tures, but a major struggle for simulation codes. First, compres-
sions give rise to negative eigenvalues in the energy Hessian, thus
breaking the fundamental assumption of most fast linear solvers,
i.e., a positive-definite matrix. Second, since the location of wrin-
kles can usually not be predicted, a simulation mesh with uniformly
high resolution is required. Clearly, both these properties are highly
detrimental to efficiency.

The problem of compressions in thin surfaces is not new to graph-
ics. For example, Choi and Ko [2002] proposed a modified mass-
spring system that allows for stable animations of buckling cloth.
Both the original work and its extension to triangle meshes [Choi
and Ko 2003] handle compressions along buckling springs that con-



nect pairs of particles that are at topological distance two. How-
ever, in order to provide accurate results even for coarse simulation
meshes, we would like a model that is able to handle compressions
along arbitrary directions, irrespective of mesh structure.

4.2 Tension Field Theory

The wrinkling of membranes has been intensively studied in mathe-
matical and physical sciences [Pipkin 1986; Steigmann 1990]. The
difficulty of wrinkling analysis stems from the fact that the elastic
energy density is not convex in the presence of compressions, jeop-
ardizing the uniqueness and existence of solutions. Tension field
theory offers a solution to this problem by postulating a relaxed
energy density that reflects the average energy value in wrinkled
regions and fades to zero before compressive stresses can occur.
The underlying reasoning is that while wrinkled regions can carry
longitudinal loads, they do not exhibit resistance to transversal de-
formations. This formulation enables a macroscopic treatment of
wrinkling that accurately captures the deformation behavior on the
coarse level but abstracts away geometric detail. There are two im-
portant advantages of this approach, both of which translate directly
into computational efficiency: it requires fewer elements and it re-
moves the problems due to indefiniteness. It is furthermore worth
noting that, although the tension field approach does not directly
provide geometric information on the wrinkles, the compression
field does give strong indications on the locations and the direc-
tions of the expected wrinkles. We found these regions to be in
very good correspondence with both the locations predicted by a
high-res simulation of the full model and our actual, fabricated pro-
totypes.

Relaxed Energy Density The deformation around a given point
on the surface is described by the deformation gradient F. With a
view to the relaxed strain energy density, we introduce the 2 × 2
right Cauchy Green tensor

C = FTF = λ1N1N
t
1 + λ2N2N

t
2 , (1)

in terms of its principal stretches λ1, λ2 and corresponding eigen-
vectors N1, N2. Without loss of generality, we assume that
λ1 ≥ λ2. Assuming that the material is incompressible and does
not exhibit transverse shearing, we can expand C to the 3×3 tensor

Ĉ =

[
C 0
0 J−1

]
, (2)

Figure 4: Compression-induced wrinkling in a simple foil balloon.

0.5 
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Figure 5: Wrinkling analysis using the full model (left), compres-
sive deformations from the tension field model (middle), real-world
prototype (right). Colors indicate compressed elements with defor-
mations ranging from λ2 = 0.5 to λ2 = 1.

where J = λ1λ2 is the determinant of C. This deformation mea-
sure is amenable to standard material models and we opt for a Neo-
Hookean material, whose strain energy density is defined as

ψ = κ
(

tr(Ĉ)− 3
)

= κ

(
λ1 + λ2 +

1

λ1λ2
− 3

)
, (3)

where κ is the stiffness coefficient. As described above, the essence
of tension field theory can be condensed into a relaxed strain energy
density

ψ̃(λ1, λ2) =


0 λ1 < 1, λ2 < 1

ψ(λ1, λ̃2(λ1)) λ1 ≥ 1, λ2 < λ̃2(λ1)

ψ(λ1, λ2) λ1 ≥ 1, λ2 ≥ λ̃2(λ1)

, (4)

where λ̃2 is the energetic minimum of λ2,

λ̃2(λ1) = argmin
λ2

ψ(λ1, λ2) =
1√
λ1

. (5)

The three cases listed in (4) are illustrated in the inset fig-
ure. For the first case (a), the surface is assumed to be slack,
i.e., both stretches are negative and the energy is set to zero.
The second case (b) corresponds to wrin-
kling and the original model is applied
with the compressive stretch replaced by
its energetically optimal value. The third
case (c) corresponds to a taught surface
with both stretches positive for which the
original model can be applied without
modifications. Since the first and second
cases are energetically optimal with re-
spect to compressive stretch, the material
model will never give rise to compressive
stresses.

It is worth noting that the modified energy
density ψ̃ is convex but only C1 continu-
ous. Although we did not notice any adverse effects when solving
for equilibrium states, the discontinuous force derivatives pose a
significant problem for optimization. We therefore smooth the tran-
sitions between the different regimes using quadratic interpolation
as described in the supplemental material.

4.3 Discretization

Notation Let m denote the number of external and internal pan-
els of the inflatable structure. The geometry of each panel in its



undeformed state is described by a triangle mesh Pi. The deformed
mesh, comprising all panels, is denoted byM. Furthermore, we let
x ∈ R3n denote the vector of deformed positions for the n nodes
of the surface. Likewise, X ∈ R2N holds the positions of the N
undeformed panel vertices in their two-dimensional domain. Note
that N > n since, for each deformed vertex on a panel boundary in
M, there are at least two corresponding undeformed vertices from
boundaries of different panels.

Forces We use a standard finite element approach based on Con-
stant Strain Triangles for discretizing (4) and its derivatives. The
internal forces f int

i at each node are obtained as

f int
i = −

∑
e∈Fi

∂ψ̃e

∂xi
Ve = −

∑
e∈Fi

(
∂ψ̃e

∂λe1

∂λei
∂xi

+
∂ψ̃e

∂λe2

∂λe2
∂xi

)
hAe ,

where Fi denotes the set of triangle elements incident to the vertex
i, Ae is the initial area of element e, h is the thickness of the panels
and Ve = hAe is the volume of e. It is evident from this expression
that the gradient and Hessian of (4) require the first and second
derivatives of the principal stretches. We provide the corresponding
derivations and other details in the supplemental document.

The pressure forces are defined directly in the discrete setting as

fp
i = p

∂V

∂xi
=
∑
e∈Fi

1

3
pAene , (6)

where p is the pressure value and ne andAe are the outward normal
and the area of element e. The shape of the inflated structure can
then be computed by solving the static equilibrium problem

f int
i (x,X) + fp

i (x) = 0 , 1 ≤ i ≤ n . (7)

5 Automatic Pattern Generation

Our system combines user-guided seam design with automatic pat-
tern generation. During seam design, the user will repeatedly in-
voke the pattern optimization scheme in order to explore the effect
of a given layout or edit on the inflated structure.

Formally, given a target mesh T and a set of seam lines segmenting
the mesh into m parts, we seek to find optimal panel shapes X for
each part such that the distance between the inflated meshM and
the target mesh T is as small as possible. We cast this goal into the
form of a constrained minimization problem,

min
x,X

E(x,X) s.t. f(x,X) = 0 , (8)

where the constraints f(x,X) = 0 require force equilibrium in
every node and E(x,X) summarizes various objective terms. We
solve this optimization problem using the Sequential Quadratic Pro-
gramming (SQP) method described by Byrd et al. [2010], which
guarantees progress even in non-convex regions.

5.1 Objectives

Distance to Target In order to quantify the distance between the
inflated mesh M and the target mesh T , we construct a distance
field on T using implicit moving least squares [Öztireli et al. 2009].
The distance penalty is defined as

Etarget(x) =
∑
i

∑
k nk · (xi − ck)φk(x)∑

k φk(x)
, (9)

where φk(x) =
(

1− ||x−Xk||22
h2

)4

are locally-supported kernel
functions that vanish beyond their support radius h, that we set to
twice the average length of the target mesh edges, while ck and nk
denote the vertex positions and normals of T , respectively. This
measure allows the vertices ofM to slide freely over T , whereas
a simpler pair-wise vertex distance would lead to bias and thus un-
necessarily restrict approximation quality.

Seam Locations Seams are critical to the aesthetics of inflatable
structures. Our interface provides tools that allow the user to rapidly
create seam layouts on the target surface. Some of these seams sim-
ply split larger areas into smaller parts, in which case their exact
location is not critical. Our optimization can leverage such freedom
for better shape approximation. Others, however, serve an impor-
tant aesthetic role that the final inflatable structure has to respect
by adhering to the shape and location of the seams. We therefore
let the user specify the importance of a given seam Si by assigning
a weight σi to it that determines how strongly the corresponding
seam vertices on M are attracted to their target locations on Si.
We define the penalty function based on vertex-wise L2-distance as

Eiseam(x) = σi
∑
j∈Sj

||xj − sj ||22 , (10)

where sj denotes the target position for xj on the seam. It is worth
noting that the seam vertices are not restricted to be a subset of the
vertices ofM—seams can run freely across the target surface.

Fabrication Constraints In order for two panels Pj and Pk to
join in a seam, the corresponding boundary segments must have the
same length on both panels. Otherwise, discrepancies have to be
corrected a posteriori using cuts or pleats, which increases fabrica-
tion time and degrades the visual quality of the product. We enforce
this equal-length requirement per seam as

Elength(X) =

se∑
i=1

(Lij(X)− Lik(X))2 , (11)

where se is the number of seam edges in M and Lij and Lik are
the lengths of corresponding edge vectors on the boundaries of Pj
and Pk. While the lengths of the boundary segments have to be the
same, they can exhibit different curvatures. Nevertheless, bound-
aries should still remain smooth, which we encourage with a corre-
sponding penalty term,

Esmooth(X) =

m∑
i=1

bi∑
j=1

||Qi
l − 2Qi

j + Qi
r||22 , (12)

where bi is the number of non-corner boundary vertices Qi of panel
Pi, whereas Qi

l and Qi
r denote the left and right neighbors of

boundary vertex Qi
j .

Regularization The distance energy (9) allows the vertices x to
slide on the target surface, but this freedom comes at the price of
a nullspace: for any displacement of a given internal panel ver-
tex Xi, there is a corresponding world-space displacement xi such
that neither objectives nor constraints change. In order to obtain a
well-posed problem, we use a Laplacian regularizer that asks for a
smooth distribution of internal panel vertices as

Elaplace(X) =

m∑
i=1

ni∑
j=1

L(Xj) , (13)

where L(Xj) is the Tutte Laplacian [Tutte 1963]. As a desirable
side effect, this regularizer also promotes well-shaped elements.



Figure 6: Pattern optimization for a spherical balloon. The balloon
(left) and its patterns (right) are shown for the initial guess (top),
and after optimization (bottom).

5.2 Initial Flattening

The final shape of the patterns is obtained by solving the con-
strained minimization problem (8). However, a good initial guess is
crucial for rapid convergence. In principle, any mesh parametriza-
tion method can be used to create an initial guess. A particular
aspect of our setting is, however, that the shapes of the panels are
entirely defined by their boundary vertices—the shape of interior
elements is, to a large extent, an afterthought. Among the many ex-
isting methods, we therefore took inspiration in one that preserves
the lengths of the segment boundaries [Wang 2008].

We start by converting the user-provided seams, represented by
smooth spline curves, into sets of edge vectors, defining a parti-
tioning of the target mesh T . For each partition, we first flatten
its boundary qi by minimizing an objective function that penalizes
squared differences in edge lengths and internal angles as

Efl(Qi) =

bi∑
j=1

1
lij

(Lij(Q
i)− lij)2 + lj(Θj(Q

i)− θj)2 , (14)

where Lij are the lengths of the boundary edges of panel Pi and
lij are the corresponding lengths in T . Moreover, Θj is the sum of
internal angles around Qi

j , θj is the corresponding quantity on T ,
and lj is the average length of the two edges incident to qij . The
resulting nonlinear problem is solved with a few iterations of New-
ton’s method. Keeping the boundary vertices fixed, the positions of
the internal vertices are then computed by minimizing a Laplacian
energy analogous to (13), which amounts to a single linear solve.

We note that, although a good initial guess helps speed conver-
gence, our optimization scheme is not very sensitive to this choice.
The example shown in Fig. 6 puts this robustness to a test, using D-
Charts and ABF++ (see [Julius et al. 2005]) as initial guess for the
three panels of a spherical balloon. Here, the lengths of the panel
boundaries are very different from the corresponding lengths on the
target shape. Nevertheless, our method is able to find panel shapes
that allow for a close approximation of the target. It is also worth
noting that, since the seams were not restricted to stay in place, the
final patterns are very different from the initial guess, revealing a
surprisingly symmetric and elegant solution.

5.3 Remeshing

Fig. 6 exemplifies the potential difference between initial and fi-
nal patterns. In order to robustly handle such extreme changes
in size and shape, we integrate the optimization with a remeshing
method that maintains well-shaped elements at all times. A num-
ber of works in graphics have explored the integration of remesh-
ing and simulation, either globally [O’Brien and Hodgins 1999;
Bargteil et al. 2007; Wojtan and Turk 2008] or in a locally adap-
tive manner [Wicke et al. 2010; Narain et al. 2012]. Since our
mesh sizes are comparatively small, we opt for a global remesh-
ing scheme that builds on Triangle [Shewchuk 1996]. Remeshing
is invoked whenever the aspect ratio of an element falls below a
given threshold. We first resample the boundaries of the patches
to satisfy a minimum- and maximum-length criterion on the edges,
maintaining correspondence between adjacent patches. We then in-
voke Triangle to remesh the interior of each patch and carbon-copy
all changes to the inflated mesh as well as the target mesh.

6 Results

We used our design system to create a diverse set of inflatable struc-
tures, seven of which we present and discuss in this section. For
validation, we also created physical prototypes for three of these
examples. The design interface and the results are demonstrated
in detail in the accompanying video and in Fig. 8 and Fig. 9. The
fabricated models are made out of PVC plastic sheets. The opti-
mized patches generated by our system were cut with a computer-
controlled cutting machine and then manually hot-sealed. In the
following, we validate some of our design decisions and discuss
our results in more detail.

Simulation We compared our relaxed energy density based on
tension field theory to a full simulation using the strain energy den-
sity of an incompressible Neo-Hookean material as described by
3. The full simulation for the Teddy model shown in Fig. 7 with
≈59k elements took more than two hours, whereas our relaxed en-
ergy density is computationally more efficient because it requires
fewer elements and avoids problems due to indefiniteness. We
tested our simulation approach with several different resolutions,
ranging from ≈3k elements to ≈59k elements, and report the ap-
proximation error in Fig. 7. The computation for the three meshes
of ≈3k, ≈15k and ≈59k elements took 4.5, 77 and 157 seconds,
respectively. In practice, we observed that already with a coarse
mesh we are able to obtain satisfactory accuracy. Although the re-
laxed energy formulation inhibits wrinkles in the simulated geome-
try, the regions in which wrinkling occurs can be inferred from the

Figure 7: Comparison of simulations with relaxed energy model
on meshes with resolutions of 3k, 15k, and 59k elements to a refer-
ence simulation using the original energy on the 59k mesh. Colors
indicate per-vertex difference for a unit size model.



compression field. By displaying this information as a color-coded
overlay, we can provide the user with feedback on wrinkle location
and amplitude during seam design.

Performance of Optimization To evaluate the performance of
our optimization, we start from a given seam layout and measure
the required time for convergence when no later edit is performed.
This comprises the initial flattening, initialization of all data struc-
tures, remeshing operations and subsequent data structure updates,
as well as optimization. The optimization is the most expensive step
of the process but the evaluation of the different involved quantities
largely dominates the linear solves. All computations were done on
a standard desktop computer with 3.20 GHz and 12 cores. Our pro-
totype implementation is written in C++ and, except for the linear
solver, not parallelized, leaving ample room for performance im-
provements. As a stopping criterion, we require the infinity-norm
of the gradient of the Lagrangian corresponding to (8) to be smaller
than tol = 10−3, whereas a tighter tolerance of tol = 10−5 is used
for the forces. We use the same thresholds for all models presented
in this paper. Table 1 lists detailed performance numbers for all ex-
amples, including the number of elements, the number of required
remeshing steps, and the number of SQP iterations. In practice, we
observed that already after a few iterations the result is close to the
final solution. We therefore opted to visualize the incremental steps
of the optimization to the user, providing fast visual feedback and
intuition about the quality of the seam placement. As shown in Ta-
ble 1, after less than a minute, the relative error measured between
the starting point of the optimization and the final converged result
is below 5%, providing sufficient accuracy for pre-visualization.

Seam Placement The approximation quality, i.e., how well a
given inflatable structure matches its target shape, depends on the
number of patches as well as the seam layout. In our experiments
we observed that there is a tradeoff between shape approximation
and aesthetic requirements. As illustrated in Fig. 6, seams can slide
significantly during the optimization on the target surface. We al-
low the user to intuitively control the admissible amount of sliding
by adjusting the weight of the corresponding penalty term (10). If
seams are assigned a small weight, they can move such as to op-
timize the overall shape approximation. If seams are assigned a
high weight, they stay close to their target location in 3D. As the
location of the seams is generally very important for the aesthetics
of the inflatable structure, we used relatively high weights for all
models, except for the “Sphere”. This approach proved particularly
important and effective for modeling the “Fox” (Fig. 8), for which
characteristic features such as the eyes and eyelids were delineated
by corresponding seams.

Our interface allows non-expert users to efficiently add, edit, and
replace seams and explore the impact of these operations on the
inflated shape in an interactive manner. A demonstration of the de-
sign process can be found in the accompanying video. On average,
designing a foil balloon took between 8 minutes for simple models
(“Teddy”) and less than half an hour for sophisticated models with
internal connections (“Fox”).

Internal Connections Several of our models (“Fox”, “Elephant”,
“Flower”, “Twisty”) rely on internal connections, which are created
by connecting existing seams on the surface as indicated by the user.
As shown in Fig. 2, internal connections can be used, for example,
to create sharp concave creases—a salient feature for many models.
Fig. 8 and Fig. 9 visualize the internal patches generated by our
method and demonstrate that the resulting inflated shapes are in
very good agreement with the desired behavior.

7 Limitations and Future Work

We have presented a design system for creating inflatable structures
made from flat panels. The enabling technology of our system is
an automatic physics-based pattern generation method, combining
fast simulation based on tension field theory and robust constraint
optimization. Combined with an intuitive user interface, even non-
expert users are able to design and explore intricate structures by
simply drawing and editing seams on an input model. As demon-
strated by our results, our system also supports internal connec-
tions, thus significantly broadening the range of shapes that can be
designed. Nevertheless, our system has some limitations and many
exciting opportunities for future work remain. In particular, input
meshes that flatten to exceedingly thin panels pose challenges for
subsequent remeshing and optimization. It would be helpful to au-
tomatically update the segments connectivity during the optimiza-
tion and merge thin panels to adjacent panels automatically. Also,
we make no attempt at inferring the location of internal connections
in an automatic way nor automatically consider geometric proper-
ties of our input model such as ridges, symmetries or curvature.
Future work could include higher-level tools that exploit this infor-
mation for supporting the seam placement or for auto-completion
of partially drawn seams. Although we have not observed colli-
sions or self-intersecting panels during optimization, we currently
do not explicitly prevent these cases. Finally, even with internal
connections, there is a limit on what kind of shapes can be obtained
with an inflatable structure. For example, planar regions and sharp
convex edges (as shown in the “Twisty” example, Fig. 9) are inher-
ently difficult to reproduce. For future work, it would be interesting
to indicate at the beginning of the design process infeasible regions
and limits on achievable approximations.
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