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Distinguishing Texture Edges from Object
Boundaries in Video

Oliver Wang, Martina Diimcke, Aljoscha Smolic, Markus Gross

Abstract—One of the most fundamental problems in image
processing and computer vision is the inherent ambiguity that
exists between texture edges and object boundaries in real-world
images and video. Despite this ambiguity, many applications in
computer vision and image processing often use image edge
strength with the assumption that these edges approximate object
depth boundaries. However, this assumption is often invalidated
by real world data, and this discrepancy is a significant limitation
in many of today’s image processing methods.

We address this issue by introducing a simple, low-level, patch-
consistency assumption that leverages the extra information
present in video data to resolve this ambiguity. By analyzing how
well patches can be modeled by simple transformations over time,
we can obtain a indication of which image edges correspond to
texture versus object edges.

We validate our approach by presenting results on a variety of
scene types and directly incorporating our augmented edge map
into an existing optical flow-based application, showing that our
method can trivially suppress the detrimental effects of strong
texture edges. Our approach is simple to implement and has
the potential to improve a wide range of image and video-based
applications.

I. INTRODUCTION

We introduce a simple method to distinguish texture edges
from object boundaries by analyzing patch-based changes over
time. Methods that benefit from our approach can be found in
all areas of image processing. Some examples are applications
that use object boundaries to propagate sparse information,
such as colorization, markup, and image editing, applications
that incorporate edge-based regularization, such as optical
flow, stereo vision, and image stitching, and applications that
segment objects in video, including object tracking, pedestrian
detection, and gesture recognition.

All of the above approaches are similar in that they rely on
image edges as a form of scene understanding. However, im-
age edges alone cannot distinguish between object boundaries
and texture edges, as often times the type of edge depends on
the context of the edge, rather than its appearance. Consider a
photograph of a room with multiple objects at different depths
levels. In this image, both texture and object boundaries exist.
However, a photograph of this photograph, can look exactly
identical to the original image, but in the second case all image
edges correspond to texture edges. Clearly a single image
cannot tell us what the source of the image edges are, and
more information is needed in order to differentiate the two.
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To overcome this inherent “photograph-ambiguity” in single
images, we present an approach that leverages extra informa-
tion available in video data. We create a restricted definition
of texture and object edges, and propose a simple but effective
metric to quantify edge type in terms of this definition.
Our method is based off of what we refer to as the Parch
Consistency assumption. This assumption states that an image
patch corresponds to a texture edge if over time its appearance
can be well modeled by a set of basic 2D transformations
such as translation, rotation and scale while patches on object
boundaries, on the other hand, cannot be as easily modeled.
This is because of disocclusions, occlusions, and multiple
object motions that occur within a single window can occur at
object boundaries. The Patch Consistency assumption is moti-
vated in part by how we as humans perceive object separation,
and has been known for a long time as the ‘common fate”
Gestalt principle [1], which states that a coherent object is
one that moves together.

We note that our assumption is a simplification of real
world object boundaries, as not all object boundaries exist
where motion is present. But without additional sources of
information, stationary objects in video suffer from the same
“photograph ambiguity” as single images, and such nothing
can be done in these regions. However, as it is possible
to detect regions where our assumption cannot be resolved
(textureless or motionless), we propose an optional refinement
step that propagates estimates from more confident regions.

In practice, we quantify edges by computing patch cor-
respondences over time by leveraging a recent fast nearest-
neighbor search method called PatchMatch [2], and evaluate
a gradient-based difference metric to quantify how the video
content changes within these patches. We apply our method to
a variety of scene types, and provide additional validation by
incorporating our output in an existing state-of-the-art optical-
flow application.

In summary, the main contribution of our work is a simple
and novel assumption that we show can help differentiate
object boundaries from texture edges in a video sequence. Our
method is easy to implement, requires no additional sources
of data, and can directly be used in a large number of image-
processing algorithms.

II. RELATED WORK
A. Edge detection

Much effort has been spent in the last five decades on
the detection of edges in images, and it remains one of the
most fundamental image understanding tasks. Early algorithms
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focus on finding local maxima in the image first derivative,
such as the Prewitt [3] and Sobel operators, or zero-crossings
of the second derivative [4]. Despite being among the oldest
techniques in image processing, many of these algorithms are
still widely used today. These methods often make the assump-
tion that the strength of local image derivatives correlates to
object edge likelihood, which is often not the case.

To remedy this problem, alternative strategies have been
introduced, such as defining edges as borders between regions
with different repeated textures. These regions can be found by
convolving images with filter banks based on Gabor filters [5]-
[7], or by looking at texture patches directly [8]. These
methods assume that object edges are restricted to texture-
texture boundaries. However, natural images can have object
edges where no such boundaries exist, and texture edges
between textures as well.

Machine learning has also been proposed as a means to
try to differentiate edge types, for example using boosting [9].
This method derives features from multiscale pixel patches and
shows promising results, but is applicable only to scenes with
edges that share similar features to those used for training.

All of the above assumptions suffer from the single im-
age “photograph-ambiguity”, which we address using video
information. Other methods try to overcome this ambiguity by
leveraging additional information, such as structured light [10],
or a modified camera with physically offset light sources [11].
While both of these methods yield high quality results, they
require extra hardware and modification of the original scene,
which is not possible in all use cases.

An obvious approach to find depth edges would be to simply
to compute a depth map for the scene and then look for
local discontinuities. However, computing high quality depth
maps from a single video source is a highly under-constrained
problem, and no robust solutions exist today. Most successful
methods rely again on additional scene information, such as
multiple cameras [12], or active illumination [13]. Our method
requires no additional sources of information other than what
is available in a short temporal window around a frame.

B. Motion Estimation

We are not the first to propose motion as a cue to resolve
edges. Many methods have leveraged motion fields computed
by optical-flow methods to assist in segmenting objects. This
class of approaches is often known as motion segmenta-
tion [14], which attempt to group regions with similar flow
vectors, for example using normalized cuts [15].

If perfect motion fields were known, then indeed finding
object boundaries would be possible. However, in practice
finding motion fields requires solving optical flow. The prob-
lem with these approaches, is that optical flow methods
inherently suffer from a serious chicken-and-egg problem in
regards to isolating object boundaries. Because optical flow
(which models the motion of pixels from one frame to the
next), is explicitly undefined in areas that contain occlusions
and disocclusions, no meaningful correspondences can exist
at these locations. Therefore, methods must rely on regu-
larization to fill in information, and this regularization step
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Fig. 1: First, we find best-match patch correspondences in a
temporal window. Here we show possible matches for one
patch I} over a window of 5 frames.

]

is most commonly driven by image edges [16], again under
the assumption that they match object boundaries. Therefore,
high-level cues, such as motion fields, already assumes some
knowledge of object borders in their computation.

Unlike motion segmentation methods, our approach can
be computed from local, low-level information, without reg-
ularization, and does not suffer from the chicken-egg prob-
lem. Instead, we leverage a recent approach called Patch-
Match [2], which efficiently computes a dense patch-based
nearest-neighbor field between two images. This approach has
several advantages; it does not require a regularization step,
which greatly simplifies computation and reduces prediction
errors at boundary regions, and (as a direct result), is able
to model additional degrees of patch transformations, such as
rotation and scale [17]. These additional degrees of freedom
are an important part of our Patch Consistency assumption,
and are currently not modeled by motion fields, which describe
only translation. As evidence to the difference in approach, we
show that the additional information gained by our approach
can be used trivially, to improve the quality of state-of-the-art
optical flow methods.

III. METHOD

In this work, we refer to “edge-maps” in the sense of
a real-value per pixel edge magnitude, rather than a binary
edge descriptor, however performing thresholding operators on
these edge maps is a straightforward extension.

A. Algorithm Overview

The goal of our method is to compute a map that corre-
sponds to the likelihood of a pixel belonging to an object
boundary P given an input video sequence I. We define a
patch on at frame j centered at pixel ¢ as I]. Our algorithm
consists of two main steps. The first step is to find, for every
patch I7, its closest match I, f for all k neighboring frames of
7, given a set of restricted transformations; shift, scale, and
rotation (Figure 1). Next, we determine how well the patch
transformation models the data by applying a difference metric
¢ on I and the set of I} (Figure 2).

B. Patch Consistency Assumption

Our main assumption is that patches on object boundaries
cannot be modeled by simple patch transformations over
time, while texture edges can (within a short time-frame). In
Figure 3, we show an example demonstrating this assumption.
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Fig. 2: Second, we apply a difference metric ¢ on these patches
to estimate an object contour probability p]. The computed
probabilities are assembled into a probability map P, which
is the final output of our algorithm.

Fig. 3: Best-matched patches at object boundaries exhibit
different properties than at texture edges. The orange circle
corresponds to a texture edge, which remains more similar
over time when compared to a patch at an object boundary
(lime). This is visible in the color-mappped (blue to red) patch
differences shown each set of matched patches.

Two patches are shown from a frame of video, along with their
best matched patches in a temporal window. Below each row
is a color-mapped patch-difference visualization.

C. Finding Patch Correspondences

We use the PatchMatch approach to find correspondences
over frames [17]. Because we expect the offset for patches to
be small when matching between in consecutive frames, we
restrict the search window to a maximal of 20 pixel in order
to improve matches and reduce running time. We compute, for
all patches i € I/, the best matched patch b in neighboring
frames (we note that b is also a function of k as it is different
in each frame, but we leave the notation off for clarity).

IF = PATCHMATCHy e v () (17, I¥) (1)

where N (j) are neighbor frames in a temporal window around
7, excluding the current frame j.

D. Object Boundary Metric

We then define a metric that computes an object boundary
probability value p] for each patch as a function of these
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Fig. 4: The effect of patch size on P. Larger patch sizes exhibit
less noise, but lose edge resolution.
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where n is the temporal window width. The goal of this
metric is to distinguish a set of patches that correspond to
texture edges from those that belong to object boundaries.
We experimented with different functions for ¢, including
common difference metrics such as normalized cross corre-
lation, histogram difference, bimodality, mean/median L1 and
L2 differences. In the end, we use a combination of color and
gradient differences, as this approach matches structure details
well and is somewhat invariant to lighting changes (although
we note that a simple mean-of-means approach also yields
good results). In other words,

o, 1) =
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where V is the gradient operator, and patch differences are
averaged over all pixels. For empirical validation, we show
results of P in Figure 7 on a variety of datasets. These include
scenes with a fixed camera and moving objects, moving
cameras and fixed objects, and both moving cameras and
objects.

We provide an analysis of different patch sizes in Figure 4.
Large patches give more reliable measurements, but lose
detail, as all patches that overlap object edges validate our
assumption. Similarly, while larger temporal windows could
in theory give more reliable results, beyond a few frames the
quality of matching degrades significantly so as to introduce
additional noise. In all results shown here, we use a patch size
of 15x15 pixels and a temporal window of n = 2.

E. Edge Refinement

We note that P becomes visibly fuzzy, as a result of
the chosen patch size. While this P may be sufficient for
many applications, if more accurate edges are required, we
present an optimization-based method to refine the initial
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Fig. 5: By refining P, we obtain P. This refinement is driven by the confidence map C' and the original image edges F. It
has the effect of aligning P to image edges, while filling in gaps that arise due to textureless or static regions (inset). In both
examples, high P values are correlated to image edges, while the texture edges (the distant mountains in both left and right

images, and cactus lines in the right image) are suppressed.

object boundary. A straightforward approach would be to
simply modulate the current edge map E by P, e.g.,

P, = P,E; €

However, we observe that our patch-consistency assumption
is invalidated in several cases; when patches have no image
texture, and when no motion has occurred. We can therefore
compute a confidence map C, that is derived from these two
assumptions;

1
NG

where J(4, b) is a function that is proportional to the Euclidean
distance between locations ¢ and b (i.e., the amount of motion
between the pixel and its match), and var(I}) computes the
variance of the patch. We use

Ci = > (80, b) + var (1)) ©)

kenN(j)

5(i,8) = Zmin(|li ~ b2, 7). ©)
This implies that motions greater than 7 pixels are considered
equally confident. In all results we use a small value of 7 = 3
to penalize only nearly static regions. Additionally, var([é")
is low when the texture content of the patch is low.

By using C' to propagate P, low confidence regions can
“borrow” information from more confident neighbors, and
propagate this along image edges. If we consider images to
be vectors with length | = width * height, we can write this
concept in vector form as:

E(P)= (P - P)TG(P - P)+ APTLP (7)
where G is a diagonal matrix of size ! by [ whose el-
ements are equal to C, L is the Matting Laplacian [18],

and A is a regularization parameter. The weighted data term

(P P)TG(P-P) preserves the similarity of the refined map
(P) to the modulated one (P) in regions where the confidence
(C) is high. The elements of L are computed from the edge
image FE, such that the smoothness term PT P enforces that
neighboring values in P are similar only if they are also similar
in E.

This can be solved as a sparse system of equations, gener-
ating a refined mapping P, with values that are similar to the
original estimates, but are propagated along image edges in
regions of low confidence. In Figure 5, we show some results
from this refinement step.

IV. APPLICATION

As further validation, we embed P into an existing state-
of-the-art optical flow approach for which Matlab code was
publicly available [16]. This work computes optical flow
by minimizing the standard data-plus-smoothness term E =
Ejata+AEsmooth- It proposes a non-local smoothness weight-
ing where A = w;, is a spatially varying weight for each
pixel ¢, summed over a window (u is the motion vector). We
modify this method by directly using our modified edge map
P to modulate the weighted non-local term, e.g. A = Pw; .

This has the effect of increasing the weight of the edge-
based smoothness term where color differences corresponds
to texture edges, while decreasing it at object boundaries.

We show the results using a color-coded optical flow visu-
alization in Figure 6. Using P, we can see that lowering the
regularization effect of texture edges relative to object edges
reduces noise and improves coherence to object boundaries.
For example, optical flow vectors of the frog blur into the
background in the original implementation, while the shape
is better maintained using our method. Additionally, texture
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edges inside the fish confuse the regularization, causing incor-
rect motion artifacts, while using our edges, the motion of the
whole object is more consistent.

V. CONCLUSION

We have introduced a simple, easy to implement patch-
consistency assumption that allows for texture/object boundary
separation. In addition, we proposed an optimization based
refinement step, and showed how our approach can trivially
improve a sample optical-flow application.

The running time of our method is largely dependent on
the speed of PatchMatch, as computing the difference metric is
trivial. Using our non-optimized Matlab implementation, com-
puting P for a 1-Megapixel image with a temporal window
of 5 frames requires roughly 30 seconds, however as newer
methods for computing nearest neighbor fields have been
shown to operate up to 30 times faster than PatchMatch [19],
a much faster version should be theoretically possible. The
refinement step requires solving a large linear system, which
again using a direct solve in Matlab takes roughly an additional
30 seconds.

Our method is not without limitations. While we make use
of the available information in video sequences, often times
this cannot be sufficient to truly determine all object bound-
aries. For example, when no motion exists, we again have the
photograph-ambiguity, in that edges cannot be distinguished
from video alone. In addition, we require there to be some
degree of visual features in the scene for differences in motion
and occlusions to be detected. When objects are uniform in
color, motion cannot be correctly determined.

To overcome these issues, we presented a confidence-
based refinement step, but note that better treatment of these
limitations is area for future research. One possible area could
be to more extensively use the available video information.
Our method operates on a sliding temporal window, producing
P independently per-frame. A method that jointly estimates
object boundary probabilities over multiple frames would have
much more information to work with, but at the cost of
computational complexity.

Finally, we note that the performance of our algorithm
is strongly dependent on the quality of output from Patch-
Match. Fortunately, this approach has shown to be remarkably
robust in a number of different applications. Furthermore,
PatchMatch is an actively developing area, and since our
implementation, more recent versions have been proposed that
generate faster and more reliable matches [20], and account
for additional geometric and color transformations [21]. These
properties should greatly help with tracking patches over time,
and future work includes analyzing the performance gains
from these extensions.

In summary, we have presented a very simple method that
is capable of distinguishing object boundaries edges from
texture edges in video. We believe that this simple idea has
the potential to help a wide range of applications. It is simple
to implement, and performs well on a variety of datasets.
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Image Optical flow Optical flow using P

Fig. 6: Here we show the result of applying a state-of-the-art optical flow method [16] with and without our object boundaries.
Using P, we can see less noise from textured edges, while motion vectors adhere more to object edges.
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Input Frame 1 Sobel Response F Object boundary probability P

Fig. 7: Comparisons between Sobel edge magnitudes and our object boundary probabilities P. Edge maps are color-mapped
for visibility, but may lose detail in the printing process. We recommend readers view images on-screen and zoomed-in.



