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Figure 1: Our method extends high-resolution facial performance capture with a reconstruction approach that targets eyelids. We produce
detailed, spatio-temporal eyelid reconstructions, even during complex deformation and folding that occur in the eye region. The result can be
used to create high-fidelity digital doubles, as shown on the right.

Abstract

In recent years we have seen numerous improvements on 3D scan-
ning and tracking of human faces, greatly advancing the creation
of digital doubles for film and video games. However, despite
the high-resolution quality of the reconstruction approaches avail-
able, current methods are unable to capture one of the most impor-
tant regions of the face - the eye region. In this work we present
the first method for detailed spatio-temporal reconstruction of eye-
lids. Tracking and reconstructing eyelids is extremely challenging,
as this region exhibits very complex and unique skin deformation
where skin is folded under while opening the eye. Furthermore,
eyelids are often only partially visible and obstructed due to self-
occlusion and eyelashes. Our approach is to combine a geometric
deformation model with image data, leveraging multi-view stereo,
optical flow, contour tracking and wrinkle detection from local skin
appearance. Our deformation model serves as a prior that enables
reconstruction of eyelids even under strong self-occlusions caused
by rolling and folding skin as the eye opens and closes. The out-
put is a person-specific, time-varying eyelid reconstruction with
anatomically plausible deformations. Our high-resolution detailed
eyelids couple naturally with current facial performance capture ap-
proaches. As a result, our method can largely increase the fidelity
of facial capture and the creation of digital doubles.
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Generation—Digitizing and scanning;
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1 Introduction

The human face is the most important part of a person for conveying
identity and emotion and therefore of central interest when creating
realistic digital humans for computer games and films. Even sub-
tle face motions can reveal information about the internal state of
a person, where their attention is focused, the intention of actions,
and interpretation of (non-)verbal communication. In recent years,
we have witnessed tremendous progress in facial scanning, perfor-
mance capture, and skin rendering. Stunning attempts to achieving
a photorealistic actor such as The Curious Case of Benjamin But-
ton or The Digital Ira Project [Alexander et al. 2013] are exam-
ples that high-resolution face scanning processes are key to cross
the ”uncanny valley” that divides a synthetic-looking face from a
photo-realistic virtual person.

For identifying emotions, humans mainly use a consistent selective
sampling of visual information from the eye region and, to a lesser
extent, the mouth region [Smith et al. 2005; Peterson and Eck-
stein 2012]. Subtle details such as the twitch of an eyelid and the
formation of small wrinkles significantly contribute to the realism
of human faces and the perception of emotions. However, despite
the important role of the eye region, existing capture technology
is usually not able to provide an adequate level of geometric de-
tail and motion to reproduce these subtleties. In practice, achieving
realistic eyelid motions and skin deformation of the surrounding
area requires significant manual modeling efforts by highly skilled
artists.

Acquiring this region is extremely challenging due to several rea-
sons. In an expressive performance, eyelids undergo extreme defor-
mations and wrinkling. The skin rolls and folds inward when the
eye opens, and stretches over the eyeball when the eye is shut. Due
to concavities and eyelashes, there is significant self-shadowing,
inter-reflections, and partial occlusions. Even worse, in many facial
expressions a significant part of the eyelid is folded in and not vis-
ible at all. We desire an accurate performance capture that delivers
consistent geometry in correspondence over time whenever visible,
and deforms non-visible parts in a plausible way. Unfortunately,
existing dense performance capture approaches cannot handle these
extreme deformations and occlusions.

We address this problem by introducing a novel reconstruction and
tracking scheme that combines a geometric deformation model with



image-based data. The model is motivated by the physiological be-
havior of the eye - skin interface and constrains the reconstruction
to anatomically plausible motions. This prior is required due to
noise and missing data in the depth information, inherently caused
by eyelashes and self-occlusions. In addition, we observe that wrin-
kles greatly change the local appearance of the skin, and thus their
location can be accurately determined from images and local mo-
tion. This combination of anatomically motivated priors, depth in-
formation, and image-based data, makes detailed eyelid reconstruc-
tion feasible.

Such an approach has several advantages. We obtain a single, con-
sistent mesh over time, which allows our result to be directly com-
bined with existing facial performance capture approaches, or to be
used to create a data-driven blendshape rig. Our method provides
plausible deformations even for regions that are occluded. We are
able to capture the dynamic effects of eyelids, which is important
because the location and shape of wrinkles is not only dependent
on the current state of the eye region but also its history, a phe-
nomenon referred to as hysteresis. As our method is agnostic to the
capture approach, it can be easily integrated into any performance
capture pipeline, be it passive or active, that records sufficiently
high-resolution footage of the eye region. As we demonstrate with
several results, our system allows the reconstruction of an expres-
sive, dynamic model of the eye region at a quality level that has
never before been possible, increasing the fidelity of this very im-
portant facial component in the creation of digital doubles.

2 Related Work

Our work on capturing eyelids falls into the general category of 3D
face capture, and it is particularly related to other techniques that
are tailored for reconstructing or modeling the eye region. At a
higher level, our approach is akin to methods that model or gener-
ate wrinkle geometry for faces and clothing. In the following we
discuss previous work in these areas.

Face Capture. Several methods have been proposed for high-
quality static face capture, including both active [Ma et al. 2007;
Ghosh et al. 2011] and passive [Beeler et al. 2010] approaches. Dy-
namic facial performance capture has also received a lot of atten-
tion in recent years [Bradley et al. 2010; Beeler et al. 2011; Huang
et al. 2011; Klaudiny and Hilton 2012]. While these advances have
resulted in large steps towards creating realistic digital faces, no
method has yet succeeded to reconstruct the complex shape and
motion of eyelids.

Reduced hardware approaches such as binocular [Valgaerts et al.
2012] and monocular [Garrido et al. 2013; Suwajanakorn et al.
2014; Shi et al. 2014] facial capture methods often use shape from
shading approaches [Wu et al. 2011] to recover fine-scale facial de-
tails, however these methods are only able to approximate eyelids
as simple skin folds without strong occlusions.

Real-time facial animation methods sacrifice quality in favor of re-
construction speed, typically through the use of generic facial pri-
ors [Weise et al. 2011; Rhee et al. 2011; Cao et al. 2013; Bouaziz
et al. 2013; Li et al. 2013; Cao et al. 2014]. These techniques are
able to animate generic eyelid shapes that are part of the shape pri-
ors, but are unable to recover person-specific eyelid details.

Eyes and Eyelids. The important role that eyes play in computer
graphics applications has led to a number of research topics includ-
ing eye motion and blink animation, iris and eyelid modeling, and
high-quality eye capture. A detailed survey of eye and gaze anima-
tion methods was recently presented by Ruhland et al. [2014]. In
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Figure 2: Overview of the system. Starting from passively acquired
image data, we compute for each frame depth information, optical
flow, track the contours of the eye-skin interface, and the proba-
bility where wrinkles are forming (Section 4). Based on this data,
our tailored deformation model deforms the eyelids over time, ac-
curately tracking the actors performance (Section 5). Finally, the
eyelid meshes are integrated with the reconstructed facial perfor-
mance to provide a complete face model.

the following we summarize the most related methods.

Since the seminal work of Lee et al. [2002] on keeping a character’s
eyes ”alive”, several models of eye motion and blinks have been de-
rived from motion capture and video data [Deng et al. 2005; Weis-
senfeld et al. 2010; Trutoiu et al. 2011; Le et al. 2012]. However,
these approaches do not focus on detailed eyelid reconstructions
that would provide person-specific eyelid wrinkle formation.

On the topic of reconstruction, François et al. [2009] estimate the
multilayered shape and approximate scattering properties of the iris
from a single camera image. More complete and detailed recon-
structions were recently shown by Bérard et al. [2014], who use a
multi-camera and multi-light setup to capture all the visible com-
ponents of the eye in very high-resolution. Note that these methods
are complementary to ours since they focus exclusively on the eyes
and we are considered with the skin surrounding it.

Our work is not the first to model eyelids. A method for mod-
eling the eye region has been presented by Sagar et al. [1994] in
the context of surgical simulation. The eyelids are modeled by a
simple NURBS surface that is fit to a single face scan and then ma-
nipulated by hand. In contrast, we reconstruct temporally-varying
high-resolution geometry, capturing the unique wrinkling behavior
of each individual eyelid.

Wrinkle Modeling. One of the defining characteristics of eyelids
is their natural self-folding behavior, which can be considered an
extreme case of wrinkling. Bickel et al. [2007] decompose the
face into multiple scales in order to enhance low-resolution marker-
based motion capture with fine-scale wrinkles captured on the fore-
head and under the eyes, and then learn the correspondence of skin-
strain to wrinkle formation for real-time editing and wrinkle trans-
fer to virtual characters [Bickel et al. 2008]. Dynamic wrinkles are
also captured by Ma et al. [Ma et al. 2008] and modeled as a poly-
nomial displacement map on top of a low-resolution face model.
This approach of modeling wrinkles as a displacement map layer
is very common in facial animation [Kähler et al. 2002; Dutreve
et al. 2011; Li et al. 2015]. Skin wrinkles can also be generated
through physically-based simulation of the face if the anatomy is
sufficiently modeled [Magnenat-Thalmann et al. 2002; Zhang et al.
2005; Warburton and Maddock 2014]. Other techniques to enhance
low-resolution facial performances with high-resolution wrinkles
include mapping expressions into a common shape space and trans-



Figure 3: The setup (left) consists of seven cameras, where the
three central ones are zoomed in. LED strips mounted around the
actor and diffused by frosted paper provide a flat illumination. An
exemplary dataset for one frame is shown on the right.

ferring the high-frequency details [Bermano et al. 2014], or manu-
ally specifying wrinkle curves with an artistic tool [Bando et al.
2002; Larboulette and Cani 2004]. While these methods target
wrinkle modeling on the face, they do not address the complex
wrinkling behavior of eyelids.

For clothing, a similar trend has emerged to enhance low-resolution
cloth models with previously-generated fine-scale wrinkles [Müller
and Chentanez 2010; Feng et al. 2010; Wang et al. 2010; Rohmer
et al. 2010; Seiler et al. 2012; Kim et al. 2013; Zurdo et al. 2013].
These methods typically assume a coarse cloth simulation is avail-
able, which provides the underlying motion of the surface, and
thus are not well-suited for capture scenarios. On the other hand,
Popa et al. [2009] procedurally generate wrinkles for captured gar-
ments. Starting with a reconstruction of the low-frequency garment
shape [Bradley et al. 2008], they introduce temporally coherent
high-frequency wrinkles that correspond to detected edges in the
capture images. Such an approach could also improve the shape of
wrinkles on a captured face, however the method does not consider
wrinkles with strong self-occlusions such as eyelids.

In contrast to existing work, we present the first method specifically
designed to capture person-specific eyelids, including the complex
temporal behavior and self-folding that occurs during opening and
closing of the eyes. Our work naturally complements existing tech-
niques for face and eye capture, forming a more complete and real-
istic digital face.

3 Method Overview

Our system, schematically depicted in Figure 2, starts by captur-
ing a performance of the eyes using off-the-shelf cameras, as de-
scribed in Section 4.1. The images are then analyzed to remove
eyelashes and generate a spatiotemporal reconstruction of the face
shape along with per frame depths maps (Section 4.2). Optical flow
computed frame by frame is misled by the skin wrinkling and needs
to be corrected (Section 4.5) using wrinkle probability maps which
indicate where wrinkles are most likely to form (Section 4.4). Fi-
nally, we also track accurate eyelid contours over time (Section 4.6)
to ensure faithful reconstruction of the visually important interface
between the eyelid and the eye.

For all four eyelids, we manually create template meshes (Sec-
tion 4.3) which will be continuously deformed from frame to frame.
As shown in the lower part of Figure 2, eyelid tracking starts by de-
forming the visible part of the eyelid using constraints from optical
flow, tracked eyelid contours and the surrounding face mesh (Sec-
tion 5.1). We then reconstruct the parts of the eyelid which were
subject to wrinkling and are thus not visible. The reconstruction
produces plausible wrinkles that are visually pleasing (Section 5.2).
Lastly, we use the eyelid templates as control meshes to deform the
face mesh (Section 5.3) resulting in a complete facial performance

Figure 4: Eyelashes pose problems for the reconstruction as they
occlude the underlying skin (a) and confuse stereo methods, lead-
ing to noisy geometry (c). We adopt the inpainting approach pro-
posed by Beeler et al. [2012a] to remove the eyelashes (b), which
improves the reconstructed geometry substantially (d).

with accurately tracked eyelids as shown in the bottom right corner
of Figure 2.

4 Data Preparation

In this section we describe how to generate and prepare the input
data required for eyelid reconstruction.

4.1 Data Acquisition

The image data is acquired using a multi-view setup consisting
of seven synchronized video cameras, each providing roughly 40
frames per second at about 1MP. Three cameras are zoomed in to
get higher resolution on the eye region and the other four are split
in pairs of two to capture the full face. As illumination, we mount
LED strips on a cage around the actor and diffuse them with frosted
paper. Figure 3 shows the setup on the left and the images captured
at one point in time on the right.

4.2 Face Mesh Reconstruction

From the acquired images, we reconstruct the spatio-temporal
shape of the face using the method of Beeler et al. [2011], which
provides high-resolution per-frame tracked meshes in dense corre-
spondence. In addition to the tracked meshes, we also compute
per-frame depth maps D using Beeler et al. [2010], which contain
information in areas not covered by the tracked meshes, such as the
eyes. One major problem for stereo-based reconstruction methods
are the eyelashes, which occlude the underlying skin and confuse
stereo matching, causing considerable artifacts in the reconstructed
depth maps. Therefore we adopt the inpainting approach proposed
by Beeler et al. [2012] to remove the eyelashes from the input im-
ages before reconstruction, which greatly improves the reconstruc-
tion quality as can be seen in Figure 4.
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Figure 5: The eyelid mesh is generated by manually drawing a
few curves on the rest pose frame (left). From these contours a 2D
grid is created (center) with the origin v0,0 in the top left corner,
rows i running down and columns j to the right. From this grid the
3D eyelid mesh L is created using the depth maps and a reference
coordinate frame is established (right).



4.3 Eyelid Initialization

We manually create a template mesh for each of the four eyelids
(upper and lower, left and right) once per actor. Per Section 5, the
template meshes should consist of a regular grid of vertices vi,j , in
which the rows i are aligned with the predominant wrinkle orien-
tation and the columns j run orthogonal across the wrinkles. This
structure allows to efficiently process the eyelid area to detect and
reconstruct wrinkles (Section 5.2). One way to create the template
meshes would be to model them in 3D. This, however, would re-
quire the user to be familiar with 3D modelling. Instead we propose
a simpler means to generate the template meshes by drawing a few
curves on a closed-eye image of the actor (see Figure 5, left). From
these curves a 2D regular grid is created (center) and lifted to 3D
using the computed depth maps D to generate the eyelid (right). In
our experiments, we have traced 10 curves for each eye, loosely ap-
proximating wrinkle flow lines, from which a grid of size 120×100
vertices is generated. We found that the best expression to use is
one where the eyes are closed and the eyebrows are raised, since
the entire eyelid is visible and the skin is least compressed. We will
refer to this as the rest pose later on.

The user also initializes a reference coordinate frame, approxi-
mately in the center of the eye socket, with the z-axis pointing for-
ward and the y-axis up (Figure 5, right). This coordinate frame fol-
lows the rigid head motion computed by rigid stabilization [Beeler
and Bradley 2014] and is used both to reconstruct the eyelid wrin-
kles (Section 5.2) and to compute the wrinkle probability map de-
scribed in the next section.

4.4 Wrinkle Probability Map

The wrinkle probability map encodes the likelihood that a pixel
is part of a wrinkle, and is computed for each frame from the
inpainted and histogram normalized images using oriented ker-
nels. Specifically we employ anisotropic difference of Gaussians
N (σx, σy, θ) − N (σx) for seven different orientations θ in the
range of ±20◦, where we set σx = 8 and σy = 0.1σx, and record
the maximum response in the wrinkle map. Other oriented kernels,
such as Gabor, could also be applied. While this identifies wrinkles
it also captures a lot of noise caused by areas of similar appearance.
To improve the signal-to-noise ratio we propose the following three
steps. First, since the wrinkles we are interested in tend to form
concentrically around the center of the eyes in the images, we ro-
tate the oriented kernel based on the relative position to the closest
eye center. Second, we employ spatio-temporal hysteresis [Canny
1986], which keeps only pixels whose probability is either higher
than a given threshold ξu, or which are connected to such pixels in
space or time via some other pixels with probabilities no lower than
ξl. We use ξu = 0.05, ξl = 0.01 for all results. Third, since the
inpainting might have missed a few eyelashes, which can happen if
they cluster, we consolidate wrinkle maps from multiple views and
filter wrinkle probabilities where the views do not agree.

4.5 Optical Flow

To be able to track the eyelid over time, we compute optical flow F
from one frame to the next using the method of Brox et al. [2004] on
the inpainted images. A source-sink map S encodes the density of
the optical flow and is computed by accumulating the inbound flow
vectors for every pixel. Areas where the flow vectors diverge are
considered a source and appear dark in the visualization, and areas
where they converge are considered a sink and they appear bright
(see Figure 6). While generally very reliable, optical flow performs
poorly at the wrinkles. Despite the motion of the eyelid surface dur-
ing wrinkle formation, the appearance around the wrinkle remains

Figure 6: Wrinkling poses problems for optical flow since the ap-
pearance changes and parts become occluded. The original flow
shown in the top row is inaccurate around the wrinkle and com-
presses on both sides of the wrinkle, as shown in the source-sink
map. Correcting the flow provides the desired behavior where the
flow converges into the wrinkle instead. A second example with a
double wrinkle is shown in the last column.
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Figure 7: To correct the flow maps we employ different variants
of diffusion (Section 4.5). First the wrinkle probability map (b) is
diffused isotropically with retention (c). The gradient of the diffused
map (d) encodes the direction to the closest wrinkle and is employed
to diffuse the source-sink map (e) anisotropically with retention (f)
and finally the flow as shown in Figure 6.

similar due to shading, and this can confuse the flow computation.
The incorrect flow vectors become very apparent when inspecting
the source-sink map (Figure 6, top row). As we can see, the flow
compresses on both sides of the wrinkle and not inside of it, which
would be the correct sink.

We devise a method to correct the optical flow. Using guidance
from the source-sink map S, the wrinkle probability map W (Sec-
tion 4.4) is diffused smoothly to spread out the probabilities. As we
do not intend to reduce existing probability but just spread it out,
we iteratively update the probability map using

Ŵ k+1 = max
(
Ŵ k,N

(
Ŵ k
))

, (1)

where Ŵ k denotes the diffused wrinkle probability map at the k-th
iteration, Ŵ 0 = W and N is a Gaussian filter of size 7 × 7 (and
an eye region is approximately 400 pixels wide in the image). The
number of iterations required is determined by the distance of the
sink to the true wrinkle location, which we found to be consistent
in our examples and thus the same number of iterations (30) were
applied to all frames, leading to a smoothed map as shown in Fig-
ure 7.c. The gradient of this map ∇Ŵ (Figure 7.d) indicates the
direction towards the closest wrinkle and will be used to correct the
flow in a two-step process. First, we diffuse the source-sink map S
(Figure 7.e) towards the wrinkle center, as this will determine the
area in which the flow needs to be corrected. To do so we employ a
variant of anisotropic diffusion [Perona and Malik 1990]:



Figure 8: Eyelid contour tracking pipeline: (a) subset of reference
contours used for training, (b) initial tracking produces an estimate
of the contour shape, but is not accurate enough for good local-
ization, (c) the reference contour closest to the initial estimate is
deformed using optical flow to refine the initial estimate.

Ŝk+1 = Ŝk + λψ
(
c
(
∇Ŵ

)
∇Ŝk

)
, (2)

where Ŝk denotes the diffused source-sink map at the k-th iteration
and Ŝ0 = S. Instead of preventing smoothing along the gradient as
was the goal in Perona and Malik [1990] we control the diffusion to
spread predominately in the positive direction of the gradient. As
diffusion coefficient c, we therefore choose

c
(
∇Ŵ

)
=

∣∣∣∣e−(
∇Ŵ
κ

+1
)∣∣∣∣

0,1

, (3)

where κ (0.01) controls the sensitivity and |·|0,1 clamps to the range
of [0, 1] to warrant the maximum principle. The retaining function
ψ(x) attenuates the decay by multiplying x with a user given pa-
rameter (0.1) whenever x < 0, thus spreading this information to
a larger region. The timestep λ was set to 1/8 and the diffusion is
run for 60 iterations leading to the result shown in Figure 7.f.

We employ Ŝ to attenuate diffusion of the flow field outside of the
wrinkle neighborhood by including it in the diffusion coefficient as

c
(
Ŝ,∇Ŵ

)
=

∣∣∣∣Ŝe−(
∇Ŵ
κ

+1
)∣∣∣∣

0,1

(4)

and then diffuse the flow field F using Equation 2. To prevent
flow vectors from overshooting the wrinkle location, we only up-
date them if the wrinkle probability gradients at the origin and des-
tination of the flow vector point in the same direction, i.e. the flow
remains on the same side of the wrinkle. Figure 6 shows how the
original flow and source-sink map (top row) are corrected by this
approach (bottom row).

4.6 Eyelid Contours

The time-varying 2D eyelid contours are invaluable constraints for
reconstructing accurate eyelid deformation. For this reason we
also pre-compute contour curves for each frame. The contours are
tracked in image space from a single front view using a two step
method. First, we compute an initial contour shape estimate us-
ing the regression framework proposed by Cao et al. [2012]. This
framework has shown to work well on related problems [Cao et al.
2013; Cao et al. 2014] but any similar system, such as active ap-
pearance trackers [Cootes et al. 2001], may be employed. We then
refine the contour position in image space using optical flow.

For each actor we choose a small set of frames in which we manu-
ally trace the eyelid contour (Figure 8.a). Each of these reference
contours is represented by a set of landmarks, placed equidistantly

a b c

Figure 9: Left: During wrinkling vertices are compressed from
their initial position (a) into the wrinkle location (b) since they be-
come occluded. Section 5.2 describes how the proposed deforma-
tion model moves them into the wrinkle in an anatomically plausi-
ble way (c). Right: Estimated depth (blue line) is inaccurate at the
wrinkle location since the multi-view stereo method cannot resolve
small scale details given the input image resolution.

along the contour from the inner to the outer eye corner. From
these samples we then train an eye-specific contour tracker. In our
experiments, we used a reference set of 20 − 30 contours, and 20
landmarks. For convenience, the reference set was constructed by
starting with an initial blink sequence, and was then iteratively ex-
panded by adding frames that caused tracking failures (up to at most
3 iterations).

To track the contours over the sequence, we apply the contour
tracker on the frames taken from the same view. Each frame’s track-
ing result is used to initialize tracking in the next frame. The track-
ing results provide a good initial estimate of the contour shape and
position (Figure 8.b), but are not sufficient to accurately constrain
the eyelid reconstruction, and thus need to be further refined. For
each frame we retrieve the most similar reference frame by compar-
ing the shape of the predicted contour to the reference contours. We
then compute optical flow [Brox et al. 2004] between the reference
image and the current image and use the flow vectors to deform the
reference contour into the current frame yielding subpixel-accurate
registration to the reference frame (Figure 8.c).

However, sequential frames may be matched to different reference
frames, which could lead to temporal jitter since the reference con-
tours themselves exhibit some inaccuracies as they are hand-drawn.
We thus smooth the contours temporally over the entire sequence
using optical flow computed between frames to produce accurate,
temporally smooth eyelid contours.

5 Eyelid Reconstruction

In this section, we describe our eyelid deformation model and our
method for robust eyelid reconstruction. Our goal is to evolve the
eyelid created in Section 4.3 over time t. The eyelid is represented
by a template mesh L, which consists of regularly sampled vertices
vi,j along the horizontal direction j corresponding to the dominant
main wrinkle orientation and the orthogonal vertical direction i, as
explained in Section 4.3 and illustrated in Figure 5. Our deforma-
tion model follows a two-step process: first, as described in detail
below, we deform the skin based on optical flow and tracked con-
tour data. This provides the desired behavior in areas visible both
in the current and previous frames and undergoing moderate de-
formation, but optical flow is unreliable in more challenging cases.
Even though the flow correction described in Section 4.5 improves
the reliability in regions visible in both frames, it is unable to guide
the deformation of the occluded mesh regions. Thus, for newly oc-
cluded regions, vertices will be compressed at the wrinkle location
(see Figure 9 (left)). To address this challenge we identify wrinkle
regions and propose a dedicated wrinkle model that is parameter-
ized with a small set of distinctive feature points. These feature
points can be efficiently estimated from the acquired data and allow



plausible reconstruction even in regions with extreme skin defor-
mations.

5.1 Visible Skin Deformation

The first step of our deformation model is driven by the visible areas
of the skin - we deform the eyelid using optical flow where it can
be trusted, while respecting tracked boundary conditions from the
surrounding face. The extreme deformations occurring around the
wrinkle areas are handled in a second step, described in Section 5.2.

Close inspection of the eyelid reveals that the eye-eyelid inter-
face transforms mostly rigidly, as it fits tightly around the eye
shape while sliding over it. Consequently, this area preserves its
shape based on the underlying eye and mostly just rotates when the
lid opens – unlike the rest of the eyelid, which undergoes strong
wrinkling. To reflect this we combine two linear thin-shell en-
ergies [Botsch and Sorkine 2008] to deform the eyelid (ES , EI ),
guided by three different data terms (EC , EB , EF ). Figure 10 il-
lustrates the spatial distribution of these energies on the mesh. The
first energy regularizes the deformation based on the shape of the
lid at the previous frame Lt−1 and is given as

ES =
∑
V

∥∥∆Lt−1(vt
i,j − vt−1

i,j )
∥∥2 , (5)

where ∆Lt−1 is the discrete Laplace-Beltrami operator for the eye-
lid mesh Lt−1 and V denotes all vertices of the mesh. The second
energy reflects the deformation driven by the rigidly transforming
region at the eye-eyelid interface V I . It seeks to deform this region
to match the rest pose, up to a global rotation Rt:

EI =
∑
V I

∥∥∆L0(Rtvt
i,j − v0

i,j)
∥∥2 , (6)

where ∆L0 is again the discrete Laplace-Beltrami operator, this
time computed from the rest pose. Note that the two Laplace-
Beltrami operators only differ in the cotangent weights, which is
required to account for skin compression while the lid opens. Fig-
ure 10.a depicts the regions regulated by these energies.

The eye-eyelid interface itself does not transform purely rigidly,
but undergoes some deformation due the shape of the underlying
eye. We account for this by incorporating the contours computed in
Section 4.6 as an energy term

EC =
∑
V C

‖P (vt
i,j), C

t‖2` , (7)

where ‖·, ·‖` denotes the point-line distance in image space com-
puted by projecting vt

i,j into the camera image using the camera
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Figure 10: (a) The visible skin deformation is regulated by two
thin-shell energies: ES regulates most of the eyelid for temporal
smoothness, and EI regulates the eye-eyelid interface for rigidity
relative to the rest pose. (b) Regions contributing to each data term:
tracked contours contribute to EC , the interface with the face mesh
to EB , and visible interior regions contribute to the flow term EF .

projection matrix P . The contour imposes constraints on the ver-
tices V C at the eye-eyelid interface of the eyelid mesh L. The re-
maining boundary should deform such that it is compatible with the
face mesh M to alleviate integration later on (Section 5.3). For the
vertices V B in the outer two rings at these boundaries, we wish to
constrain the motion to be similar to the motion of the correspond-
ing points CB on the face mesh. A correspondence cBi,j ∈ CB

is computed as the closest point in rest pose to the eyelid vertex
v0
i,j ∈ V B . Encoding the correspondence in barycentric coordi-

nates of the adjacent triangle allows to propagate it in time consis-
tently with the face mesh. The boundary energy term is then

EB =
∑
V B

∥∥∥vt
i,j − cB,t

i,j

∥∥∥2 , (8)

The valid vertices in the interior of the eyelid vt
i,j ∈ V F,t at time t

are constrained by optical flow. We compute positional constraints
cF,t
i,j ∈ CF,t for these vertices by projecting them into the main

camera’s image plane, advecting them using the optical flow F and
elevating them back into 3D using the depth maps D. A vertex
is considered to be valid if it is (1) visible from the main camera,
(2) does not exhibit a high enough wrinkle probability, and (3) is
sufficiently far from the boundary (we use a 5-ring margin from the
border in all our experiments). The flow energy term

EF =
∑
V F,t

γi,j

∥∥∥vt
i,j − cF,t

i,j

∥∥∥2 (9)

where γi,j is a confidence weight indicating how much the con-
straint can be trusted. The confidence is provided by the multi-view
geometry reconstruction method and is a measure of how simi-
lar the neighborhood of this vertex looks in the different views.
This helps overcome outliers caused, for example, by occluding
eyelashes. Note that the vertex set V F,t associated with EF may
change over time. The vertex sets associated with all other energy
terms remain constant throughout the sequence. Figure 10.b illus-
trates the mesh regions contributing to each data term.

Combining the individual terms together yields the total energy

E = λFEF + λBEB + λCEC + EI + ES , (10)

where λF,B,C are user parameters. In our experiments we fixed
λF = λB = 30 and λC = 300.

Unfortunately, the rotation Rt used in EI (Equation 6) is also un-
known and needs to be estimated as well. Following Sorkine and
Alexa [2007] we interleave estimation of deformation and rotation
and iterate both of them three times, starting with estimating the
deformation.

5.2 Wrinkle Reconstruction

After deforming the visible parts of the eyelid, we process the hid-
den and newly occluded areas. For these areas flow computation is
not possible and the best the flow correction (Section 4.5) can do
is to compress the problematic vertices into the wrinkle area. Fig-
ure 9.b depicts schematically how the vertices from Figure 9.a are
aggregated at the wrinkle location. The problem is further aggra-
vated since the multi-view stereo method cannot accurately recon-
struct small scale details (Figure 9. (right)) and as a consequence
the geometry in the wrinkle area cannot be trusted. In this sec-
tion we describe how we create an anatomically plausible wrinkle
shape and move these vertices into the wrinkle valley in a physically
meaningful manner (Figure 9.c).
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Figure 11: (a) The top and bottom vertices bounding a wrinkle area
in the cross section are defined as vtop,bottom. These are the last
vertices where we rely on the result from Section 5. (b) The front-
buckle p1 is computed by projecting the weighted average p̂1 of all
visible vertices in the wrinkle area along the ray to the main camera
onto the extension from vtop. (c) The two back-buckle points p2,3

are computed by rotating p1 and vbottom around the eye center. (d)
The wrinkle is constructed as membrane from these feature points
allowing the vertices in the wrinkle area to relax into the wrinkle.

We start by projecting the wrinkle probability map W t onto the
eyelid Lt and assign a wrinkle probabilitywt

i,j to every vertex. The
eyelid mesh has been designed such that it allows to efficiently iden-
tify distinctive wrinkle feature points from which we can construct
the hidden part of the wrinkle. Figure 11 illustrates the extracted
feature points schematically. Traversing a wrinkle cross-section
from top to bottom will sequentially produce the top of wrinkle
(vtop), the front-buckle (p1), the back-buckle top (p2), the back-
buckle bottom (p3) and the bottom of wrinkle (vbottom). Note that
vtop and vbottom correspond to actual vertices of the mesh, where
p1, p2, and p3 are points in space. The individual feature points
are computed as follows:

1. Top of wrinkle (vtop): First vertex with wrinkle probability
wt

i,j > ξ when traversing the vertices vt
i,j of a column j from

top to bottom. We set ξ = 0.1 for all our results.

2. Bottom of wrinkle (vbottom): Last vertex with wrinkle prob-
ability wt

i,j > ξ. The vertices between vtop and vbottom

denote the wrinkle segment (vtop to vbottom) (Figure 11.a).

3. Front-buckle (p1): Computed by projecting the weighted av-
erage p̂1 of all visible vertex positions in the wrinkle seg-
ment onto the extended plane from vtop (Figure 11.b). The
weighted average is computed as p̂1 =

∑
wt

i,jv
t
i,j/
∑
wt

i,j

over all vertices in the wrinkle segment, where wt
i,j is the

wrinkle probability associated with vertex vt
i,j .

4. Back-buckle top (p2): From human anatomy it is reasonable
to assume the wrinkle folds inwards on an orbit around the
eye. To compute p2 we thus rotate p1 inwards around the eye
center by half the geodesic distance from vbottom to the ver-
tex closest to p1 computed in the rest pose. See Figure 11.c
for a schematic depiction. The skin compresses due to micro-
wrinkles. We account for this by adjusting the rotation mag-
nitude by the area ratio between neighboring visible skin in
the current frame and in the rest pose.

5. Back-buckle bottom (p3): Computed analogously to p2 by
rotating vbottom instead of p1.

Next we want to create the wrinkle as a membrane (Figure 11.d)
that smoothly transitions into the visible part of the lid defined by
the two vertices vtop,bottom and also closely approximates the three
inner feature points (p1,2,3) defined above. To resolve the compres-
sion problem shown in Figure 9.b, vertices are allowed to move
freely on the membrane surface, in order to relax and slide into the
wrinkle. We achieve this by alternating between two stages. The
first stage relaxes the vertices in the wrinkle area by applying one
iteration of Laplacian smoothing, which optimizes the surface to
reduce stretching. This moves vertices into the wrinkle, but also

v 1

v 2

v 3

a b c d

v bottom

v top

v 1

v 2

Figure 12: The constructed wrinkle is not guaranteed to be
free of self-intersections (a). The proposed method resolves self-
intersections leveraging the fact that it is always the upper part of
the lid folding over the lower. Thus we traverse the wrinkle area
from bottom to top testing for occlusions by lower parts (b). We
then move the occluded vertices in front of the occluding surface
and reverse the procedure from top top bottom testing for occlu-
sions with respect to the eye (c). Alternating these steps several
times produces an intersection free wrinkle (d).

potentially pulls them away from the intended wrinkle shape. We
therefore apply a second stage, where we find the nearest vertex on
the membrane for every feature point and constrain their positions
to the feature points, while again solving for the membrane energy.
This second step pulls the surface back towards the desired shape.
For both stages we use Neumann boundary conditions at the border
of the wrinkle area to ensure a smooth transition into the visible
part of the eyelid. We repeat the two stages six times after which
we found the vertices to have relaxed inside the wrinkle.

Self-Intersection Handling. The aforementioned process is not
guaranteed to be free of self-intersections. Specifically, the formed
wrinkle might protrude out from the visible part of the eyelid, or
the smoothing might cause the wrinkle to intersect with itself. Fig-
ure 12.a shows an extreme case for illustration. Our main concern
is to prevent any visually distracting artifacts and thus we wish
to resolve self-intersections that are visible from the outside. To
efficiently test for and correct self-collisions we can leverage the
anatomy of the eyelid. The wrinkles form in such a way that skin
farther away folds over skin closer to the eye. In terms of our eyelid
model this means that vertices further down a cross-section should
never occlude vertices which are higher up. Our algorithm se-
quentially traverses the vertices in the wrinkle area from vbottom

to vtop, where the vertex indices decrease from bottom to top
(bottom > i > top). For every vertex vi, the method tests if
vi is occluded by a lower part of the eyelid (i.e. a triangle that
contains at least one vertex vk,j with k > i). If the vertex is oc-
cluded, it is moved in front of the occluding triangle. Visibility is
determined from the point of view of the main camera. Figure 12.b
depicts two possible scenarios: while the method will not report a
self-intersection for v1 since it is only occluded by higher up parts,
it will correctly identify and correct v2, which is occluded by lower
parts. Once all vertices of the eyelid have been processed, we re-
verse the order and evaluate the vertices relative to the center of
the eye (Figure 12.c). The vertices are now traversed from vtop

to vbottom and the method checks if a vertex is occluded by parts
higher up. We alternate between these two steps until no more oc-
cluded vertices detected, which is typically within 3 iterations. The
resulting wrinkle is now guaranteed to be behind the visible surface
(Figure 12.d).

5.3 Integration

Finally, we integrate the tracked eyelid with the full face, which is
provided by Beeler et al. [2011]. Their method uses the concept of
anchor frames, which states that during a facial performance certain



Figure 14: Looking closely at the formation of a wrinkle we see
the complex temporal dynamics of an eyelid. Our method is able to
capture the skin folding under and creates a plausible eyelid shape,
as seen from front (top) and from a side view cut-away (bottom).

expressions will re-occur and they thus propose to pick a reference
frame that is similar enough to the anchor frames to be able to track
directly to them. This concept is also very useful in our scenario,
as we found that tracking from closed eyelids is preferable. We
therefore pick a frame with a neutral expression and closed eyelids
as reference frame and construct the eyelid mesh from this frame
to facilitate the integration with the face mesh (Figure 5). The lid
is naturally aligned to the face mesh and we can establish dense
correspondences between the two. We then use the eyelid to drive
the deformation of the face mesh in this area. Since we made sure
that the boundary of our eyelid deforms in a compatible manner to
the face mesh (Section 5.1) the integration is seamless.

As there are many eyelid wrinkles at the micro- and mesoscopic
scales during deformation, we apply mesoscopic optimization and
temporal smoothing following Beeler et al. [2011] to produce tem-
porally consistent high frequency details seamlessly across the full
face including the eyelids.

6 Results

Eyelids are extremely unique and can produce extremely different
wrinkles. This variance is not only visible from person to person
but the shape and temporal deformation of the eyelids also differ
substantially between the left and right eye of the same person. To
demonstrate this variance we captured both left and right eyelids
of three subjects. We show a selection of wrinkle reconstructions
in Figure 13, which includes both single and double wrinkles of
varying intensity. The shape of the eyelid does not just differ due to
wrinkling but also depends on the underlying eyeball, as can be seen
in Figure 13.e, where the corneal bulge of the eye is visible on the
eyelid, even though the eye is fully closed. We further demonstrate
the variation of eyelids within the same person in Figure 15. Notice
for both actors B and C that one eyelid has two wrinkles while the
other has only one. Additionally we illustrate in Figure 15 that our
eyelid reconstructions naturally complement high-resolution facial
capture methods, as the eyelids fit seamlessly into the face, increas-
ing the reconstruction fidelity.

In addition to the intricate shape details of static eyelids, eyelid
wrinkles also exhibit strong variation in their temporal formation.
Figure 14 shows how a wrinkle is formed over time. During wrin-
kling, skin is folded in a rolling manner, which can be best seen in
the accompanying video.

The accurate location where wrinkles form is essential for faithful
reproduction. Figure 16 shows an overlay of the eyelid onto the in-
put image and demonstrates how well the formed wrinkles coincide
with the captured data.

As a last example, we demonstrate how the captured eyelids may be
used in the creation of a digital double for an actor. The result of our
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Figure 15: Left: Eyelids can vary in shape quite substantially be-
tween people, as well as within the same person - notice the double
wrinkles in one eye and single wrinkle in the other for both actor
B and C. Right: Our reconstructed eyelids blend seamlessly with
high-resolution captured faces.

Figure 16: We demonstrate the accuracy of our reconstructed eye-
lids by overlaying the mesh on an input image. The alignment of
the wrinkles indicates the accuracy of the results.

system is combined with the eyes of the actor provided by Bérard
et al. [2014] and we manually complete the model by sculpting the
interface between the eyelid and eye as well as adding eyelashes
and eyebrows. The renders shown in Figure 17 were created using
Renderman with built-in shaders.

Our experiments were run on a Windows i7 machine with 32GB
RAM and input images of 1176× 864, an eyelid template mesh of
approximately 12,000 vertices and a face mesh of roughly 1 million
vertices. For this setting, our average computation times per frame
were 24.7 seconds per camera for the wrinkle probability map cre-
ation, 26.8 seconds per camera for flow correction, 5.2 seconds per
eye for contour tracking, 11.3 seconds per eyelid for the deforma-

Figure 17: Our eyelid reconstructions can be used to make high-
fidelity digital doubles. Here we sculpted the thin interface to the
eye, and added eyelashes, eyebrows, and eyes.



Figure 13: We are able to reconstruct complex eyelids including a) thick wrinkles, b) thin wrinkles, c) double wrinkles close together, d)
multiple distant wrinkles, and e) as an eye closes and wrinkles disappear completely, notice the subtle bulge on the lid caused by the cornea.

tion and 24.5 seconds per eyelid for the integration step.

7 Conclusion

We have presented the first method for detailed spatio-temporal re-
construction of eyelids. Our approach combines a geometric defor-
mation model with image data, leveraging multi-view stereo, op-
tical flow, contour tracking and wrinkle detection from local skin
appearance. Our results demonstrate that the model is able to pro-
vide a high-resolution mesh that deforms over time, reflecting de-
tailed dynamic skin features and plausible deformations even for
regions that are occluded or undergo extreme deformations. As the
eye region is essential for conveying emotions, we believe that our
method is an important step towards capturing expressive facial per-
formances and the creation of realistic digital doubles.

Limitations and Future Work. Currently, our pipeline is not
fully automatic and relies on a few manual steps, such as initializing
the contour tracker with a few hand-drawn contours, and specify-
ing the principal direction of the wrinkles when creating the eyelid
mesh. While these manual steps can be done in a few minutes and
do not require artistic skills, we plan a fully automatic pipeline for
the future. By design, we can only reconstruct wrinkles that are
identified by the wrinkle probability map, which in turn depends on
the underlying image quality. Low resolution, motion blur or low
contrast can cause detection to fail and a more sophisticated means
of computing and extracting the wrinkles would be required.

Some expressions such as extreme grinning or squinting can cause
wrinkle formations that our method does not handle well. For ex-
ample, wrinkles in the radial direction may be filtered out by our
wrinkle detection scheme (Figure 18.a). Figure 18.b depicts a case
in which the skin under the wrinkle is compressed and bulges out-
wards rather than inwards, contradicting the assumptions of our
model. In the future, we would like to extend our model to han-
dle such cases. The ability to separate wrinkles depends on resolu-
tion, both of the wrinkle map and the proxy geometry. Figure 18.c
demonstrates how very close wrinkles may be incorrectly merged
if insufficient resolution is used.

Furthermore, as we compute several data terms, such as the eyelid
contours, relative to the front camera, we can only handle minor
head rotations. While this is sufficient for many capture scenarios,
such as helmet cameras, extending the method to allow for large
head rotations could be an interesting avenue for future research.
Finally, our system so far focuses on performance capture and re-
play. For future work, an interesting avenue would be to add anima-
tion control, use our data to automatically create convincing eyelid
rigs, and investigate performance and detail transfer of the eye re-

ca

b

Figure 18: A challenging grinning expression (left), the corre-
sponding wrinkle map (center) and the reconstructed geometry
(right). This expression pushes the limits of our method as radial
wrinkles (a) are filtered out during the wrinkle map extraction, a
skin crease is incorrectly modeled as an eyelid wrinkle (b) and very
close wrinkles are merged during the geometry reconstruction (c).

gion to virtual characters different than the actor, thereby bringing
the expressiveness of virtual characters to a new level.
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