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Abstract

We present a method to continuously blend between mul-
tiple facial performances of an actor, which can contain dif-
ferent facial expressions or emotional states. As an exam-
ple, given sad and angry video takes of a scene, our method
empowers a movie director to specify arbitrary weighted
combinations and smooth transitions between the two takes
in post-production. Our contributions include (1) a robust
nonlinear audio-visual synchronization technique that ex-
ploits complementary properties of audio and visual cues
to automatically determine robust, dense spatio-temporal
correspondences between takes, and (2) a seamless facial
blending approach that provides the director full control to
interpolate timing, facial expression, and local appearance,
in order to generate novel performances after filming. In
contrast to most previous works, our approach operates en-
tirely in image space, avoiding the need of 3D facial recon-
struction. We demonstrate that our method can synthesize
visually believable performances with applications in emo-
tion transition, performance correction, and timing control.

1. Introduction
In film and television production, arguably one of the

most important elements in achieving a believable and en-
tertaining story is the performance of the actors. A key chal-
lenge lies in conveying believable emotions with appropri-
ate facial expressions, speed and timing. As a consequence,
scenes are often shot and re-shot over and over as multiple
takes until the director is satisfied, often requiring consid-
erable amounts of time and cost. For example, the opening
scene of the movie “The Social Network” required 99 takes,
“Gone Girl” required an average of 50 takes per scene and
one scene in “The Shining” required 127 takes1. To help
alleviate this problem, we propose a continuous facial per-
formance interpolation approach, enabling the director to

∗ denotes joint first authorship with equal contribution
1http://en.wikipedia.org/wiki/Take
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Figure 1: Given a pair of facial performance videos (here an
angry and a happy version of a monolog denoted v0 and v1,
respectively), our method automatically computes a nonlin-
ear temporal synchronization based on facial expression and
audio cues, illustrated by the blue synchronization path. We
can then seamlessly blend between the performances both
with respect to time and expresssion and synthesize a novel
interpolated performance (see film strip) with intuitive artis-
tic control (see green blending curve).

synthesize a wide variety of novel performances after cap-
ture, e.g., in post-production, from a much sparser set of
takes, as illustrated in Fig. 1.

A central challenge of interpolating performances is
video synchronization. Synchronization using simple con-
stant time offsets or uniform temporal scaling of the in-
put videos is not feasible because of the complex nonlin-
ear local variations in timing and speed during facial per-
formances. Difference of head pose, emotion, expression
intensity, as well as pitch, accentuation and potentially even
wording of the speech are just a few of the many difficulties.
We present an automatic, joint audio-visual synchronization
approach that first analyzes both facial expression and au-
dio cues and then robustly determines a dense set of frame
correspondences between takes using a graph-based frame-
work. To the best of our knowledge, our work is the first to
combine audio and facial features for achieving an optimal
nonlinear temporal alignment of performance videos.

A PCA-based facial landmark normalization is used to
cope with large variations of the landmarks with different
facial expressions and emotions. Furthermore, we show
that an important aspect for a successful automatic synchro-
nization using cost matrices is the removal of ambiguous,
self-similar parts, which are unavoidable when using local
descriptors on highly redundant data such as facial perfor-
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mances. Once the videos are synchronized, we propose
a nonlinear spatio-temporal performance blending method
that blends across timing, facial expression and local ap-
pearance changes. Our method smoothly blends the videos
using a locally time varying parameterization of a synchro-
nizing path computed on performance cost matrices, and
blends both expression and appearance using facial land-
marks, optical flow and compositing for a seamless combi-
nation and interpolation of the input videos (see Fig. 1). Our
approach is passive, operating directly on 2D input video
footage from a single camera without the need for additional
hardware or 3D facial reconstruction.

2. Related work
Our work is related to facial performance capture and

manipulation, and video synchronization and blending. We
now discuss the most related methods in these areas.

Facial performance capture and manipulation. One
common approach is to create a digital avatar of the ac-
tor [1], which can then be animated as desired. Creating
a believable digital double of an actor is a very challeng-
ing and time consuming task involving high-resolution fa-
cial capture [26, 7, 17, 2, 21] to construct the rig. Once
a high-resolution actor-specific rig has been created, it can
be driven [27, 30] from different input modalities, such as
binocular video [38, 5], monocular video [16, 32, 10], depth
sensor [6, 23], or existing detailed animated face mod-
els [42]. Given a sufficiently detailed animated 3D rig or
database of 3D facial expressions, it is also possible to use a
video of an actor to drive visual speech synthesis [36] or to
replace parts of a facial performance in video, e.g., for lan-
guage dubbing [15]. However, in general, creating a digital
double is only practical for large-budget productions and
even there is typically restricted to a few hero characters.

To avoid the need for a high-resolution actor-specific rig,
some works propose to leverage a low-resolution generic
face rig to manipulate acquired video footage. Kuster et
al. [22] modify the pose of the face to synthesize eye-
contact in video chats via an RGBD sensor. Dale et al. [11]
employ a 3D morphable face model [39] in order to replace
facial performances in video footage of the same or from
a different person. Their use-case differs from ours in that
they completely replace one facial performance by another,
while we wish to smoothly blend between the performances
both spatially and temporally to synthesize a novel perfor-
mance. Closer in spirit to ours is the work of Yang et al. [43]
which can exaggerate or attenuate facial expressions in an
input video via a 3D face model. In contrast, our method
allows creative interpolation of facial performances without
the requirement of 3D facial reconstruction.

A last alternative is to operate entirely in image space
and to directly manipulate the captured footage, as we

do in this work, thus avoiding the need for a 3D face
prior altogether. Bregler et al. [8] were the first to syn-
thesize a video sequence according to a new audio track
by computing a re-ordered mouth sequence from training
data. Ezzat et al. [13] extend this further and use a trained
morphable model to synthesize novel speech sequences.
Kemelmacher-Shlizerman et al. [20] aim at puppeteering a
person by aligning input images to a large image database of
the same person, e.g., leveraging community photo collec-
tions. A challenge there is to avoid discontinuities in the
output, due to the heterogeneity and limited sampling of
these collections. To overcome this, Garrido et al. [14] cap-
ture the input samples themselves, and warp the retrieved
images in order to replace the face. This differs from our ap-
plication, where the goal is to continuously blend between
two or more performances both spatially and temporally to
produce a novel performance. Also related is the work of
Berthouzoz et al. [4], which aims to place cuts and create
seamless transitions in interview videos. Their method is
well suited to remove undesired parts of an interview or po-
tentially reshuffle the sentences but not to modify or inter-
polate facial performances.

Video-based synchronization. Temporal synchroniza-
tion and spatial alignment of videos is a crucial step for
blending and interpolation. Various techniques exist for
computing such alignments on general video sequences [31,
12, 40]. However, these methods estimate correspondences
with general purpose appearance-based descriptors, and
work best with camera ego-motion and large-scale scene
changes. While these assumptions are reasonable for gen-
eral video, for facial performances it is essential to integrate
higher level knowledge into the process to be able to distin-
guish, e.g., between the global head motion and the subtle
changes of facial expressions.

For these reasons, some works have focused on solu-
tions specifically designed for synchronizing human per-
formances. For example, Hsu et al. [19] present a method
for style translation and motion retargeting based on motion
capture data. Zhou and De la Torre [44, 45] present meth-
ods based on time warping for aligning motion of multiple
human subjects performing similar actions. However, these
application specific approaches are not straightforward to
extend to accurate, spatio-temporal alignment as required
for blending between facial performances. Closest to our
synchronization method are the facial alignment techniques
of Dale et al. [11] and Yang et al. [43] discussed above.
Dale et al. [11] apply dynamic time warping on the veloc-
ities of the mouth vertices. While this is appropriate for
spoken videos, it cannot handle general (e.g., silent) facial
performances. Yang et al. [43] also use dynamic time warp-
ing, but on the expression coefficients of their morphable
face model. This approach works well for very expres-
sive facial motion, but is limited with respect to subtle fa-



cial changes in expression. In contrast to these approaches,
our method uses facial landmarks extracted at several lo-
cations of the face and considers the spatial distribution of
each landmark for normalization. In addition, our method
also utilizes synchronization cues from audio data, which
we found to be crucial for achieving robust temporal align-
ment where facial visual information alone is ambiguous.
We build our synchronization technique upon the work of
Wang et al. [40] and show that, by modifying their basic
framework with a redesigned feature space and a novel ap-
proach for removing self-similarities from cost matrices,
audio and visual information can complement each other
and lead to highly robust, automatic and effective temporal
alignment of facial performances.

Image and video blending. Once an alignment between
two frames of a video sequence has been found, various
image-based techniques for compositing [29, 35] or mor-
phing [3, 24, 25] exist. However, many of these meth-
ods require manual correspondences, manual refinement,
or alignment of regions to be blended. Similar to the
above discussion on video synchronization, they are de-
signed for general purpose blending between arbitrary im-
ages or videos. Instead we aim for a method with automatic
correspondence computation that can robustly obtain a be-
lievable and realistic facial expression without any ghosting
or other alignment artifacts.

3. Method overview
Given a pair of monocular video takes, we wish to cre-

ate a novel performance by smoothly blending them both in
space and time. Our work focuses on the classic medium
and close-up frontal head shots (see Fig. 1), and a rela-
tively fixed filming setup. Such head shots are particu-
larly challenging because the full attention of the viewer
is directed to the actor’s face. The algorithm consists of
two main steps: nonlinear synchronization of the input
takes to establish proper temporal correspondences (Sec. 4),
and spatio-temporal seamless blending of the synchronized
takes (Sec. 5). When blending, we use the scene back-
ground and global head motion provided in one of the input
videos (the first one, without loss of generality) into which
we composite the interpolated interior of the face.

For the synchronization step we extend the method of
Wang et al. [40], which temporally aligns videos based on
a cost matrix that encodes the alignment quality between
each pair of video frames. The nonlinear synchronization
is then given as the minimum average cost path through the
cost matrix. In this work we show that a robust synchroniza-
tion of performance takes can be achieved by tailoring the
cost matrices to facial performances by employing distinct
features such as facial landmarks and audio cues, and by
removing ambiguous information from the cost matrices.

Figure 2: The cost matrix on the left has been computed
from two facial performance input videos with general pur-
pose appearance descriptors [40], and contains no obvious
path-like structures that could be used for temporal synchro-
nization. On the right is the corresponding cost matrix com-
puted with our approach, with a rather clear low cost path
along the diagonal (bright colors correspond to low cost,
dark to high). The different aspect ratios of the matrices
stem from our adaptive matrix collapsing approach.

Performance blending is then achieved by traversing the
synchronization path through the input videos, and comput-
ing weighted combinations of each expression based on any
user-specified blending function α(t).

4. Performance synchronization

Let v0 and v1 be two input video takes, and vi(j)
be the j-th frame of video vi. A temporal synchroniza-
tion is then defined as a mapping p : R → R2, where
p(t) = (p0(t), p1(t)) associates a global time t with two
corresponding frames v0(p0(t)) and v1(p1(t)). To esti-
mate the mapping p, we extend the path computation of
Wang et al. [40]. Their general appearance-based features
are not applicable in our setting since the appearance vari-
ation between frames of facial performances is too subtle
(see Fig. 2). We therefore introduce domain-specific fea-
tures based on normalized facial landmarks and audio cues,
which allow us to robustly synchronize facial performances.

4.1. Feature extraction and processing

Facial landmarks. We use the IntraFace tracker [41] to
obtain a set of 2D facial landmark features in all frames
of the input videos (see Fig. 3a). To reduce noise in the
landmark positions, we apply a bilateral filter [37] to each
landmark (we used σtime = 5 frames and σspace = 5% of
the pixel distance between the eye corner landmarks). We
denote by f i0(j) the image coordinates of the i-th filtered
landmark in the video frame v0(j), and by f i1(k) the corre-
sponding landmark in v1(k).
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Figure 3: (a): input facial landmarks (b): per-landmark
PCA local coordinate systems for a temporally correspond-
ing frame pair from two takes with different emotions (top
neutral, bottom sad). Note the performance-dependent ori-
entations and scales of the PCA local coordinate systems.

Head pose estimation. We estimate head pose using a
subset of landmarks that are relatively invariant to expres-
sion change, namely the bottom of the nose and the cor-
ners of the eyes. For all frames in v0 and v1, a 2D rigid
transformation is computed [34] with respect to a reference
frame, chosen arbitrarily as v0(0). Finally, for each video,
we use the estimated per-frame transformations to register
all the facial landmarks to the pose of the reference frame.
We denote by f̂ i0(j) and f̂ i1(k) the registered positions of the
landmarks f i0(j) and f i1(k).

Normalized landmarks. The landmarks are used as con-
straints in the video synchronization by computing a pair-
wise frame alignment cost that represents the similarity of
the respective facial expressions. A simple way to measure
the difference dL(j, k) between the landmarks of v0(j) and
v1(k) is the sum of their squared Euclidean distances:

dL(j, k) =
∑
i

||̂f i0(j)− f̂ i1(k)||2. (1)

However, we observed that for the same scene performed
with different emotions across takes, the range of facial ar-
ticulation may vary substantially. To account for this we
normalize each landmark as follows. For each video, Prin-
cipal Component Analysis (PCA) is performed on each fa-
cial feature over all the frames. This gives a local origin,
orientation and scale to each feature as shown in Fig. 3b.
The PCA-normalized distance is then computed as:

d̂L(j, k) =
∑
i

||̂f i0(j)− ρ(f̂ i1(k))||2, (2)

where ρ is the linear operation that aligns the origin, orien-
tation and scales of f̂ i1 with those of f̂ i0 as determined by the

PCA. Comparing the features in their local spaces yields
distance estimates with improved invariance to scale and
orientation changes, and hence leads to a more robust and
informative measure for comparing facial performances.

We then apply a common decaying function to convert
the distance d̂L(j, k) into a similarity measure, i.e. small
distance gets a high similarity:

sL(j, k) = exp(−λ · d̂L(j, k))β , (3)

where λ and β are respectively set to 0.005 and 2 in all our
experiments. The value sL(j, k) lies between 0 (dissimilar)
and 1 (similar).

We experimented with alternative measures such as land-
mark velocities (as also employed by Dale et al. [11]), but
found that for our application scenario, the landmark deriva-
tive information is too noisy and so this approach results in
less reliable similarity measures.

Audio features. In addition to the synchronization cues
extracted from visual information, we also use cues from
the associated audio tracks, which is essential when the vi-
sual information of the face alone is ambiguous. To extract
information from the audio data, we employ Mel-Frequency
Cepstral Coefficients (MFCCs) [28], which are commonly
employed descriptors in audio analysis, description and re-
trieval. We compare the MFCCs extracted over the dura-
tion of two frames v0(j) and v1(k) by computing their Eu-
clidean distance, and denote this audio distance dA(j, k).
Analogous to the case of facial landmarks, we convert the
distance dA(j, k) into a similarity:

sA(j, k) = exp(−λ · dA(j, k))β , (4)

where λ and β have the same values as in Eq. 3. Again,
these values are defined in the range [0, 1].

Note that audio similarity alone is not powerful enough
for facial performance alignment because (1) the audio can
vary greatly across takes due to different intonations and
choice of wording, and (2) audio alone cannot handle purely
visual performances (e.g., silent changes in facial expres-
sion). For this reason, we propose to combine both visual
and audio information to robustly synchronize facial perfor-
mances, as described in the next section.

4.2. Local cost matrix collapsing

The temporal synchronization of Wang et al. [40] based
on minimum average cost path computation requires a cost
matrix computed from the pair-wise frame similarities. A
straightforward way to build such a matrix from our land-
mark and audio similarities s?(j, k), ? ∈ {L,A} would be
to convert them into cost matrix entries c?(j, k) as follows:

c?(j, k) =

(
1− s?(j, k)

max(s?)

)γ
, (5)



where γ is a user-defined parameter, and then create a final
cost matrix as a weighted combination

C = (1− w)CL + wCA, (6)

where w is a relative weight. A fundamental problem with
this simple approach is illustrated in Fig. 4. Facial per-
formances exhibit a high degree of self-similarity, both in
terms of visual landmarks as well as auditory cues. As a
result, the corresponding cost matrices contain large blocks
of entries with considerable ambiguities. For example, in
cases where the actor holds still, the landmarks do not con-
tain any valuable information. Similarly, in parts of a per-
formance where the actor remains quiet, the audio features
are not informative. A weighted combination of both land-
mark and audio costs improves the situation, as both fea-
ture types often complement each other, but does not fully
resolve these problems (Fig. 4a). The path computation
may find an alignment that is wrongly biased by these self-
similar blocks and misses parts of the correct synchroniza-
tion (see Fig. 4c).

As a remedy, we propose to locally collapse uninfor-
mative rows and columns in the cost matrix, which sig-
nificantly reduces the influence of these ambiguities and
emphasizes cost matrix regions with a distinct signal. We
therefore compute per-row sums of the cost

Crows(j) =
∑
i

C(j, i), (7)

and remove row j if its sum is smaller than a conservative
threshold τ , Crows(j) < τ . The same procedure is ap-
plied to the columns by computing Ccols(j). The sums for
the combined matrix in Fig. 4a are visualized in Fig. 4c.
The result is a collapsed cost matrix C̃ as shown in Fig. 4b.
Compared to the original cost matrix C, ambiguous regions
that potentially deteriorate the path computation have been
removed, leaving a cost matrix with a sufficiently distinct
low cost path. Note that the removed rows and columns
with large self-similar blocks cannot contain an actual sig-
nal relevant for synchronization, since the respective frames
are inherently ambiguous.

After computing the path on C̃, we undo the collaps-
ing and linearly interpolate the missing path fragments (red
path in Fig. 4c). Due to the linear path extension in self-
similar regions, it is ensured that both videos are played as
close as possible to their original speed. The path maps a
global time to the frames of the input videos v0 and v1, and
the videos can then be temporally aligned with respect to
a global time t: p(t) = (p0(t), p1(t)) builds the temporal
correspondences v0(p0(t)) and v1(p1(t)).

In all our experiments we used γ = 2 and w = 0.5.
For τ it was sufficient to pick a conservative threshold τ =
cmin+p(cmax−cmin) with p = 0.1, where cmin and cmax
respectively represent the min and max value in Crows and
Ccols, so that only highly self-similar regions are removed.

(a) combined audio
and landmark cost C
and computed path

(b) our collapsed cost C̃
exhibiting a distinct low
cost path

(c) per-row/-column
cost and our sync.
path in C (red)

Figure 4: Even when combined, audio and landmark costs
(a) contain self-similar low cost blocks that impede the
computation of a correct path (in blue), leading to a wrong
synchronization that misses a part of a dialog line (bright
diagonal in highlighted area). In our collapsed cost C̃ (b)
self-similarities without a reliable path signal are removed,
leading to a more distinct path (bright diagonal), and hence
a more robust path computation (in red) and a correct syn-
chronization (c). The axes (v0 and v1) of these cost matrices
correspond to those in Fig. 2.

5. Spatio-temporal performance blending

After the input videos are temporally synchronized, we
compute a spatio-temporal blend between the takes. In or-
der to accomplish this, we need to blend in multiple dimen-
sions including timing, facial expression (shape), and local
appearance. Creative control of the blending is achieved by
using a continuous time-varying parameter α(t) ∈ [0, 1],
where α(t) = 0 (resp. α(t) = 1) corresponds to the timing
and appearance of v0 (resp. v1), and 0 < α(t) < 1 re-
sults in a visual blend between the two input performances.
The function α(t) can be any interpolating function that the
user desires, including nonlinear and non-monotonic inter-
polations, as we will show in Sec. 6. Note that, for the
case of blending between takes of different emotions, our
goal is to interpolate the visual appearance (and timing)
and not necessarily to interpolate the actual emotions, e.g.,
0.5 × happy + 0.5 × sad 6= neutral. We retain the head
pose and background from v0 rather than also blending the
rest of the video frame, which may contain arbitrary scene
elements and hence is a challenging problem in itself [24].

5.1. Temporal blending

In order to explain our temporal blending, consider the
parameterization of our path p (see Fig. 6). The path p(t)
gives us a pair of frames in correspondence at time t. How-
ever, we are free to arbitrarily navigate along t by choosing
a particular parameterization of the path, i.e., by control-
ling the step size for t, we can advance either video at a
desired rate. For example, taking unit-length steps along
the axis of v0 would correspond to playing v0 at its original
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Figure 5: Spatial blending process. (a) Input image pair from v0 (top) and v1 (bottom). (b) Closeups of the different facial
expressions. (c) Pose normalized facial landmarks for v0 (blue) and v1 (green) overlaid on pose normalized images with
mask. (d) Optical flow using predictions from landmarks. (e) Warped input images with α = 0.5. (f) Final composite with
visually interpolated expression.

Figure 6: Time remapping of the synchronization path (left)
based on a time varying blend curve for creative control
(right). For both videos, unit length steps are computed
along the path (illustrated by the blue and green arrows and
circles, respectively), between which a blended time is com-
puted according to α(t) (black circles).

speed, while temporally remapping the video v1 to match
the speed of v0. Our goal is to smoothly interpolate between
the different speeds of v0 and v1 according to α(t), so that
the timing of the output performance seamlessly blends be-
tween the two. To achieve this temporal blending, we deter-
mine the arc-length increment required for unit time steps
in both input videos independently. We then compute an in-
termediate time point along the path that is located between
these two points as determined by α(t) (see black circles in
Fig. 6). The step size is therefore locally varying through-
out the performance. Each intermediate time point provides
a pair of corresponding frames in v0 and v1, and the col-
lection of these frames constitutes the temporal blending of
the performance videos.

5.2. Spatial blending

After the synchronized pair of frames at a particular
time t has been found, we aim to generate a visually plau-

sible interpolated performance frame according to α(t). An
overview of the main steps is shown in Fig. 5. First, an inter-
polated frame is computed from the two synchronized input
frames. Then, the resulting synthesized facial expression is
composited back into v0. In the following, we explain these
two steps in detail.

To create the spatially interpolated frame from v0 and
v1, we utilize a modified optical flow-based warping [9].
First, we spatially align the faces from both input frames us-
ing the head poses estimated in Sec. 4 (see Fig. 5b). Large
non-rigid displacements, e.g., large variation between the
facial expressions in both input frames, are usually prob-
lematic for variational flow techniques. This problem can
be alleviated by using the positions of the facial landmarks
as a flow prior. An important detail here is to use the land-
marks as soft rather than hard positional constraints in order
to compensate for localization errors and noise in the land-
mark positions. An example of the aligned landmarks and
a corresponding flow field are shown in Fig. 5c and 5d. The
computed flow is then used to warp the two input frames
with fractions α(t) and 1− α(t), respectively (see Fig. 5e).

There are various options to blend the two warped frames
and composite them back into v0. To ensure robust and
simple computation for fast visual feedback we found that a
simple mask-based approach works well. In the first frame
of the sequence, we build a color model of the face using the
pixels inside the convex hull of the facial landmarks. The
mask is then computed by detecting the face pixels in agree-
ment with the color model and simple refining by morpho-
logical operators (see mask in Fig. 5c). An additive alpha-
blend is performed between the warped source frames, and
then the blended face is seamlessly composited back into
v0 using the same alpha-blending approach (see Fig. 5f).
We found that this simple method was sufficiently accurate
for our application of facial performance blending between
videos of the same actor, as shown in the experiments.
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Figure 7: Final compositing results for interpolating a pair of matching frames from a ‘sad’ take (left) to a ‘happy’ take
(right), with corresponding α values.

We also experimented with alternative, more sophisti-
cated image blending techniques such as Poisson image
editing [29]. However, we found that, for our particular ap-
plication with facial performance videos, our solution pro-
duces more robust and higher quality results, mostly be-
cause integration-based approaches can be susceptible to
color bleeding, flickering, and other temporal artifacts along
the seam of the masks. Some compositing results of our
method with varying values for α are shown in Fig. 7.

5.3. Audio rendering

To generate the output audio, the source audio sig-
nals need to be time-warped as well using the time re-
mapping computed in Sec. 5.1. Naive time-warping by sim-
ple resampling of the audio signal would not preserve the
pitch. While our work focuses on video processing aspects,
we implemented a conventional pitch-preserving time-scale
technique (WSOLA) [18], which produces an acceptable re-
timed audio preview by concatenating short audio segments
from the appropriate points in the input. We expect that
higher quality audio results can be achieved by employing
more sophisticated audio processing algorithms [33] or pro-
fessional audio retiming software.

6. Results

In the following we discuss relevant information about
data capture and implementation, and present various re-
sults and applications of our method.

Input data capture. We provided our actors with a se-
lection of dialog lines that were designed in a way that
they could be performed with different underlying emo-
tions. Each subject then performed the same line multi-
ple times and each time tried to convey a different emotion
such as happiness, sadness, excitement, anger, fear, etc. The
videos were acquired with standard compact cameras at full
HD resolution and 25fps.

Implementation details. We processed the videos on a
desktop computer equipped with an Intel i7 3.2Ghz and
16GB RAM, on a C++ unoptimized, single-core implemen-
tation. The execution time for a typical 15-second clip
recorded at full HD is as follows. During preprocessing,
we extract the facial landmarks, which takes about 0.2s per
frame, and the audio descriptors, which takes less than 1s
per full video. Given these features, for a pair of videos,
the path computation itself takes about 0.1s, and the flow
and mask can all be precomputed (about 1.2s and 2s per
frame, respectively). With our current implementation, re-
sults at the full HD resolution can be generated at interac-
tive rates, with 90ms computation time per frame. Given
the input videos, the synchronization runs in a fully auto-
matic manner, and the user can generate novel versions of
the performances with arbitrary creative control by simply
interactively manipulating the α() blending curve.

Applications. Fig. 8 shows a representative result for
temporal synchronization using our proposed approach.
The first two rows show uniformly sampled frames from
two input videos v0 and v1. In both videos, the subject per-
formed the same dialog line with slightly different timing
and varying facial expressions. The third row shows v1 af-
ter temporal alignment to v0, where the facial features like
mouth shape are now synchronized.

Final interpolation results between input takes of an actor
performing the same dialog line with different emotions are
shown in Fig. 9. All images are composited frames taken
from transition phases between the two input takes.

We kindly invite the readers to refer to our project web-
page2 for the full video results, as well as a user study,
our dataset of facial performances and several additional re-
sults on video synchronization, emotion transition, takes ac-
quired with hand-held cameras, blending with/without syn-
chronization, acting directives, and generation of numerous
performances from a sparse set of input takes.

2http://www.disneyresearch.com/publication/
facedirector

http://www.disneyresearch.com/publication/facedirector
http://www.disneyresearch.com/publication/facedirector
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Figure 8: Top and middle rows show the two input se-
quences v0 and v1, respectively. Note how different the
facial expressions are in the two sequences due to the syn-
chronization mismatch. Bottom row: our method success-
fully synchronizes v1 with respect to v0. Please see the
supplemental video for the complete result.

0 1/3 2/3 1

Figure 9: Interpolation results for different actresses with
α transitioning from 0 to 1. The top row shows a transition
from neutral to scared and the bottom row from sad to angry.

Limitations and future work. While working solely in
the 2D image domain is beneficial in many aspects and of-
ten sufficient in our context, our method is limited with re-
spect to large out of plane rotations, dynamic lighting, or
large expression differences (see Fig. 10), some of which
could be alleviated by using 3D trackers [10, 32]. We also
do not explicitly handle glasses or hair that covers part of
the face, a limitation common to existing works on video
based face manipulation (e.g., [11, 43, 22]).

7. Conclusion
We have presented a new approach to continuously blend

between videos of facial performances. Our key contribu-
tions are a robust and automatic approach to temporally and
spatially align different takes, and a computationally simple

Figure 10: Failure cases. Left, middle: input frames. Right:
blended result with artifacts. Top row: head registration is-
sue, where the actress directly faces the camera in one take
and with the eye line off the camera in another take. The
head registration with 2D landmarks did not handle this out
of plane rotation properly. Bottom row: blending issue,
where significantly different mouth shapes are not properly
handled by the optical flow based registration.

but effective image blending approach. Experiments show
that our approach can synthesize interpolated, visually plau-
sible novel versions of the performances.

We believe that techniques for creative, interactive con-
trol over facial performance videos will gain increasing im-
portance in both research and the industry, providing a wide
range of interesting opportunities for followup work, e.g.,
on more complex subject motion and novel artistic effects.
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