
Fast and Stable Color Balancing for Images and Augmented Reality

Thomas Oskam 1,2 Alexander Hornung 1 Robert W. Sumner 1 Markus Gross 1,2

1 Disney Research Zurich 2 ETH Zurich

Abstract

This paper addresses the problem of globally balanc-
ing colors between images. The input to our algorithm is
a sparse set of desired color correspondences between a
source and a target image. The global color space trans-
formation problem is then solved by computing a smooth
vector field in CIE Lab color space that maps the gamut of
the source to that of the target. We employ normalized ra-
dial basis functions for which we compute optimized shape
parameters based on the input images, allowing for more
faithful and flexible color matching compared to existing
RBF-, regression- or histogram-based techniques. Further-
more, we show how the basic per-image matching can be
efficiently and robustly extended to the temporal domain us-
ing RANSAC-based correspondence classification. Besides
interactive color balancing for images, these properties ren-
der our method extremely useful for automatic, consistent
embedding of synthetic graphics in video, as required by
applications such as augmented reality.

1. Introduction
Pablo Picasso highlighted the importance of color in

painting with the famous quote, “They’ll sell you thousands
of greens. Veronese green and emerald green and cadmium
green and any sort of green you like; but that particular
green, never.” Today, the same struggle to capture the per-
fect nuance of color lives on in digital photography and
image-based applications. The colors that are ultimately
recorded by both consumer-grade and high-end digital cam-
eras depend on a plethora of factors and are influenced
by complex hardware and software processing algorithms,
making the precise color quality of captured images difficult
to predict and control. As a result, one generally has to rely
on post-processing algorithms to fix color-related issues.

This problem is generally known as color balancing or
color grading, and plays a central role in all areas involving
capturing, processing and displaying image data. In digi-
tal photography and filmmaking, specifically trained artists
work hard to achieve consistent colors for images captured
with different cameras, often under varying conditions and

Source Image Color BalancedTarget Image

Tracked Colors balancing Augmented Image

Rendered Objects

Figure 1. Two applications of our color balancing algorithm. Top:
an underexposed image is balanced using only three user selected
correspondences to a target image. Bottom: our extension for
temporally stable color balancing enables seamless compositing
in augmented reality applications by using known colors in the
scene as constraints.

even for different scenes. With today’s tools this process re-
quires considerable, cost-intensive manual efforts. Similar
issues arise in augmented reality applications, where com-
puter generated graphics must be embedded seamlessly and
in real-time into a video stream. Here, achieving consis-
tent colors is critical but highly challenging, since white-
balance, shutter time, gamma correction, and other factors
may continually change during acquisition and cannot be
perfectly controlled or addressed through calibration alone.
Therefore, an efficient correction and adaptation of colors
that is agnostic to the underlying capture hardware is highly
desirable in such AR-related applications. However, aside
for a few preliminary efforts [13, 14] practically applicable
solutions to this problem are yet to be developed.

This paper contributes a real-time color balancing algo-
rithm that is able to globally adapt the colors of a source
image to match the look of a target image, requiring only
a sparse set of color correspondences. Fundamentally, our
approach is based on radial basis function (RBF) interpo-
lation. However, we show that, for an optimal RBF-based
color matching, it is crucial to optimize for the shape of the

4321

employed basis functions. As a second main contribution,
we then extend the per-image computation to be temporally
consistent, enabling the application of the basic balancing
mechanism in video-based applications such as augmented
reality. A key component to the success of this system is
a reliable RANSAC-based classification algorithm that se-
lects a temporally stable set of correspondences used for the
basic color balancing. We present a fast GPU-assisted im-
plementation of our color balancing algorithm that achieves
run times of 1ms and below on real-world applications. In
this paper and the accompanying video, we show results for
interactive color editing of images as well as for improved
visual quality and consistency of video and computer gen-
erated images in augmented reality applications.

2. Related Work
In this section, we discuss related work on histogram

matching, user controlled color transfer, and color calibra-
tion.

Statistics and Histogram Matching: This is the pro-
cess of transferring the color distribution statistics from one
image to another image, pioneered by Reinhard et al. [20].
They proposed computing the mean and standard devia-
tion of the color distribution in the color space. Then, by
scaling and translating the parameters onto the ones of the
target image, they achieve automatic color transfer. The
approach has been applied to histograms and extended to
achieve a mapping in different color spaces [25], minimum
cost linear mapping [19], and per-region execution of the
algorithm [11]. Further extensions have been proposed that
optimize the images after matching to avoid discontinuities
in color gradients [18, 26].

While statistics and histogram matching methods for au-
tomatic color transfer can produce very appealing results,
they provide only limited control. Direct control over color
changes is often required in image editing and difficult to
achieve with these methods.

Color transfer with user interaction: Abadpour et
al. [2] first proposed an image color transfer algorithm with
user interaction. In their work, the user is allowed to de-
note corresponding regions between images. Colors are
then locally matched using fuzzy principal component anal-
ysis. Other methods have been proposed that aid the user in
local color matching [17, 22]. The user is allowed to se-
lect a local region, and the actions are propagated through-
out adjacent parts of the image. An et al. [6] propose a
scribble-based framework for color transfer between im-
ages. Fast and interactive methods for editing images and
video have also been proposed. An et al. [5] propagate lo-
cal edits by assisting a user with iteratively refining rough
edits to areas of spatial and appearance similarity. Farbman
et al. [9] propose the use of diffusion maps to propagate
image editing information. In these approaches the impact

of user controlled edits is typically targeted towards local
color changes. Our work, in contrast, targets global color
balancing using only sparse and possibly incomplete input.

Li et al. [15] provide an approach for image and video
editing with instant results. They employ radial basis func-
tion interpolation in a feature space to propagate sparse ed-
its locally. In contrast to this work, we are formulating the
problem as a global color space transformation independent
from the image space and we optimize the shape of basis
functions to achieve color balancing behavior found in ex-
ample images. We show that the basis function used by Li et
al. is suboptimal for the purpose of global image balancing.

Color calibration and balancing: Color calibration is
the process of computing the color distribution function of a
camera to allow recorded images to be consistently colored.
Adams et al. [3] gives an overview of standard camera cal-
ibration techniques using linear transformations. Usually,
a 3x3 matrix is computed using regression. A related area
is color consistency. Humans perceive colors to be consis-
tent even under different lighting conditions. This property
is not available for digital images. Colors have different
numerical values under different illuminations. In order to
counter this issue, different algorithms have been proposed.
An overview over different algorithms is provided by Ar-
gawal et al. [4] and Cohen [7]. In contrast to our approach,
many of these methods do not apply additional information
such as correspondences or known colors in a scene to bal-
ance the images. Therefore, these methods are less interac-
tive and less robust when applied to videos.

There is also significant work that enhances the quality
of imagery using a database of example images [8, 12, 21,
23]. The work of Yang et al. [27] achieve color compensa-
tion by replicating the non-linear relationship between the
camera color and luminance. Wang et al. [24] transfer color
and tone style of expert photographed images onto the im-
ages from cheap cameras by learning the complex transfor-
mation encoded in local descriptors. Recent work of Lin
et al. [16] revisits the radiometric calibration of cameras
by investigating 10,000 images from over 30 cameras and
introduces a new imaging model for computing the color
response curves. Our parameter optimization of the radial
basis functions is also based on extracting image proper-
ties form data sets. However, we design our functions to
be sparsely sampled so that they provide appealing results
when interpolated in order to considerably increase perfor-
mance.

Color Balancing in Augmented Reality: Only recently
there has been research in improving the compositing of im-
ages in augmented reality. Klein et al. [13] examine and
reproduce several image degradation effects of digital cam-
eras to increase the realism of augmentation. However, they
are not considering color shifts due to camera parameter
changes. The works of Knecht et al. [14] propose to bal-

4322

Image Gamut +
Correspondences

Smooth
Vector Field

Transformed
Image Gamut

Figure 2. The idea of vector space color balancing. On the left,
the source colors are shown in black and the corresponding target
colors in white. The idea is to interpret all correspondences as
vectors in color space and smoothly extend them to a vector field
with which the gamut of the image is transformed. This procedure
creates a continuous and flexible color transfer function.

ance rendered images using colors in the scene. However,
they are applying a linear regression model and do not cor-
rect for corrupted colors due to occlusions or reflections.

3. Vector Space Color Balancing
Given a sparse set of color correspondences, the goal is

to transform the color gamut of an image such, that (i) col-
ors that have references get as close as possible to that point
in the color space, and (ii) colors, for which no references
are available, are transformed in a plausible way.

We interpret the given color correspondences as vectors
in the color space. In order to produce a transformation
of the gamut, we compute a vector field around the refer-
ence vectors that achieves the aforementioned goals. The
concept is demonstrated in Figure 2. The correspondence
vectors themselves represent constraints. We use normal-
ized radial basis function interpolation that propagates these
constraints to the rest of the color space. Section 3.1 ex-
plains how this is performed. The selection of basis func-
tions, however, influences how the correspondence vectors
are propagated through the color space and ultimately how
colors without constraints are balanced. Therefore, we pro-
pose optimizing the shape of a basis function based on ex-
ample images. This is discussed in section 3.2.

3.1. Vector Field Computation

For a given pair of colors (ci, di) in the three-
dimensional CIE Lab space, we define the ci as support
points, and the vectors vi = ||di − ci|| as data values. For
each vector vi, a basis function φi is provided that describes
the weight with which the vector is distributed in space. For
each new point e in the color space, an according transla-
tion vector v(e) is computed as a normalized sum of the
weighted φi

v(e) =
1∑n

i=1 φi(e)

n∑
i=1

φi(e)wi. (1)

The summation of the support functions allows an inde-
pendent evaluation of each point in the vector field, which

norm. Shepard
Gaussian
inv. quadric

avg. function
deviation

1

0
0 30Color Space Distance

Figure 3. Plots of the basis functions we consider for our color
transfer. On the left, the three functions are shown in relative scale.
Note their different fall-off behaviors. On the right, the curves are
shown with optimized shape parameters in their absolute scale.
The optimized curves significantly differ in their final spread and
variation.

suits a completely parallel implementation for each pixel in
an image. The individual weights wi allow the treatment
of the φi as radial basis functions (RBF). RBF interpolation
performs a least squares minimization on the overlapping
support between the individual φi by choosing weights wi

such, that the squared difference between the data vectors
vi and the weighted sum of the basis functions at ci is min-
imized in the least squares sense

argmin
wi

(||vi − v(ci)||2). (2)

This results in a system of equations v = Φw per color
dimension, where the matrix Φ is the same in all three sys-
tems and contains, at each position (i, j), the normalized
support of all cj seen at the interpolation point ci. The
weight vectors wi can be composed by inverting Φ and as-
sembling the individual components from the three systems
of equations.

Conflicting constraints of two source colors ci and cj can
cause the matrix Φ to become near-singular. This causes
components of the resulting wi to become negative. Neg-
ative values create an inverted distribution of the constraint
vectors vi in the color space an produce undesired arti-
facts [15]. We avoid this problem by clustering support
points that lie within the limit of perceivable distance (1.0 in
the CIE Lab space). Additionally, we select basis functions
that have a small spread to avoid large overlapping support
between constraints. This keeps the matrix Φ from degen-
erating. In Section 3.2, we discuss how to optimize basis
functions and show that our normalized Shepard function
combines optimal and robust interpolation results with a
very small spread, in contrast to the generally utilized Gaus-
sian function.

3.2. Choice of Basis Functions

The choice of an appropriate basis function both influ-
ences the global impact of color constraints and the stability
of the interpolation [15]. Using RBF interpolation, we can
make sure that the effect of overlapping support between
the basis functions is minimized. However, it is still unclear
which functions should be used for interpolation and how to
select their parameters. To find out how to best interpolate

4323

10

Er
ro

r

ε

Exposure Time Gain Color Intensity

5

norm. Shepard
Gaussian
inverse quadric

Figure 4. Average reconstruction error of the considered basis functions while interpolating 50% of the color checker fields under changing
camera parameters. The error is shown as a function of the ε-values for the normalized Shepard (red), the Gaussian (green), and the inverse
quadric (blue) basis functions. The plots show that the ε value significantly influences the result.

colors given a sparse set of correspondences, we test the fol-
lowing three functions with different fall-off behavior over
distance (see Figure 3).

normalized Shepard si(cj) = (1 + ||ci − cj ||)−ε

Gaussian gi(cj) = e−(ε||ci−cj ||2)

inverse quadric qi(cj) =
1−α

1+(ε||ci−cj ||)2 + α

The normalized version of the Shepard function has the
quickest fall-off. It gets surpassed after a while by the Gaus-
sian function that decreases exponentially. The constant
value we add to the inverse quadric function (α = 0.01 in
our experiments) guarantees a minimum value in one of our
functions to distances at infinity.

Each of the functions is parameterized with a variable ε
that influences the width of the function spread. This pa-
rameter allows to find the optimal reconstruction capability
of each function by optimizing for ε.

To compare the performance of each parameterized
function on reconstructing colors, we first create data
sets by filming a color calibration checker (Digital Col-
orChecker SG in our experiments). During video capture,
internal camera parameters (e.g. exposure or contrast) are
changed individually so that the global color changes are
part of the data.

In each data set, one frame with default camera settings

Target Image Cool
White Bal.

1 Color
Ref.

2 Color
Ref.

4 Color
Ref.

6 Color
Ref.

Figure 5. Example of the global impact of our color balancing us-
ing only a few correspondences. The target image on the left is re-
constructed using a photograph of the same scene with a different
white balance as source image. The top row shows the successive
addition of references (red dots). The images in the bottom row
visualize the difference in CIE Lab space between the balanced
image and the original.

is selected as the base frame. In this frame, 50% of the color
fields are selected at random, and used as data points. The
corresponding color fields in all other frames in the data
set are used as references. The score of a function (with
a specific ε-value) is now computed as the average recon-
struction error of the other 50% (not referenced) colors in
the base frame across all frames of the data set. Figure 4
shows plots from some of our tests. The error is shown for
the normalized Shepard (red), the Gaussian (green), and the
inverse quadric (blue) functions for an increasing ε-value.
The plots are shown with differently scaled ε for each func-
tion, but with the same scaling across all tests.

For each of the three functions there is an optimal ε.
This surprising result shows that there is a clear correla-
tion between the spread of a basis function and its capabil-
ity of reconstructing global color changes. Second, across
all tests, the magnitude of the optimal ε is in a similar
range. The ε-values we determined though our tests are
ε = 3.7975 (σ = 0.5912) for the normalized Shepard,
ε = 0.0846 (σ = 0.0289) for the Gaussian, and ε = 0.0690
(σ = 0.0289) for the inverse quadric function, where σ-
values are the standard deviations.

The shape of the optimized functions (and their devi-
ation due to σ as dashed curves) are shown Figure 3 on
the right. Our normalized version of the Shepard func-
tion clearly shows the smallest spread of all three func-
tions, rendering it the most stable function for RBF inter-
polation. Note, that the Gaussian function has significantly
wider spread and also a much higher variance, making it a
suboptimal choice for global color balancing. The impact
on the number of references using our normalized Shepard
function with optimal ε for global color balancing is demon-
strated in Figure 5. With only a few correspondences, the
error in the CIE Lab space is reduced considerably.

4. Temporal Color Tracking

A typical scenario where the permanent update of the
color balance improves the visual quality is augmented re-
ality, where a synthetic rendering should be embedded in
a seamless manner into a video stream. In order to tackle
this problem, we propose to use known color patches in the
scene (See Figure 1). If these colors can be robustly tracked

4324

Frame

Tracked Colors

Reference Colors

Detect Outlier Reconstruct Colors

Last Valid Colors

Create References

Target Colors

Source Colors

Digital Image

RANSAC (A�ne Model)

Figure 6. Overview of our stable color tracking pipeline. First, color values are extracted from the video frame and corrupt ones are rejected
using RANSAC and temporal coherence. Then, missing colors are added using information from the previous frames. Finally, the stable
color list is combined with colors from a digital image to create the transfer constraints that can be used for balanced augmentation of
rendered objects.

over time, they can be used as color references for their sup-
posed values. These references then automatically balance
rendered images to the video footage, adapting the render-
ings as the color of the video frames change due to camera
adjustments.

We base our color tracking on the observation that de-
sired color changes in the video stream are global. These
changes are due to the camera automatically adjusting inter-
nal parameters such as exposure or gain. The color patches
in the scene that receive these color changes will be used
as constraints for the balancing of their known unbalanced
values. However, due to occlusions or specular reflections,
some of the tracked color patches will be corrupt. These
color distortions (e.g. occlusions, reflections) happen lo-
cally. This fact can be utilized to remove them as outliers.

Figure 6 gives an overview over our robust color tracking
pipeline. For each frame, the following steps are performed:

1 Extract Colors. The first step is to extract the colors
di from the video frame. The position tracking provides the
positions in the image where the target colors are found. In
our implementation we use ARToolKit marker tracking [1],
but any other position tracking solution can be used as well.
To reduce per-pixel noise we perform a neighborhood aver-
aging over a small window (usually 7 by 7).

2 Detect Outlier. To detect corrupted colors we can fit a
global model between the extracted di and a set of reference
colors. These reference colors ri can be taken from the dig-
ital image of the marker or extracted from the first frames
of the video in a pre-processing step. In order to keep the
number of false positives low a conservative model should
be fitted between the ci and ri. We chose the affine trans-
formation model ci = A ri + t [3], which can be computed
analytically and avoids over fitting to corrupted colors.

Outlier in the scene colors di can now be detected by fit-
ting the affine model using the random sample consensus
algorithm (RANSAC) [10]. This first step allows remov-
ing most of the corrupted colors. However, false positives
may slip though this outlier detection. In order to further
increase the robustness of the tracking, we separate the re-
maining inliers into two groups. Trusted inliers are colors
that have not been detected as outliers for more than κt

frames. These colors are used as valid target colors. Inlier
colors that have been detected as outlier in one of the past κt
frames may be false positives. These colors are also treated
as outlier. In our experiments we found that false positives
rarely appear for more than two frames. Therefore, in our
experiments, we mostly used κt = 3.

3 Reconstruct Colors. At this point, corrupted colors
have been removed from the list of di. Additionally, the
risk of false positives has been decreased by taking temporal
consistency into account. Now, in order to maximize the
amount of colors available for color balancing, we can use
the last valid colors of each tracked point from the previous
frames. These colors are stored when a tracked value is
regarded as trusted inlier (being not an outlier for more than
κt frames). Colors values, that are suddenly corrupt due to
occlusions or specular reflections can then be replaced by
an updated version of their last valid value. The update of
these last valid colors is performed by applying the global
affine transformation performed by all trusted inlier colors
since the last frame. In our implementation, we perform this
color reconstruction only for outlier that have been inliers
for more than κc frames. This removes colors that were
only detected as inliers for a short period and increases the
robustness. We call these colors comeback points. In our
implementation we have set κc = 10.

4 Create References. The final color references (ci, di)
for the balancing of rendered objects can now be created.
For all di, that are either trusted inlier or a comeback points,
the corresponding color ci can be extracted from the digital
image of the marker. The constraints (ci, di) now describe
the color transfer function from rendered footage to the cur-
rent video frame color space.

With our fast global color balancing for sparse color cor-
respondences we are able to adapt the colors to fit to a target
image. With our robust color tracking, we can extend this
into the temporal domain. Using a known marker in the
scene (e.g. the cover of a book) we can balance newly ren-
dered footage to augment the video and increase the realism
of augmented reality applications.

4325

5. Implementation
Our color balancing algorithm can be implemented by

simply extending any given fragment shader. The reference
colors ci and weights wi are transferred to the GPU as tex-
ture data. The matrix inversion is calculated beforehand on
the CPU as it only needs to be performed once. The GPU
fragment shader algorithm is described in Algorithm 1.

Algorithm 1 Fragment Shader Color Balancing
1: e← pixelColor()
2: eLab ← rbg2lab(e)
3: ve ← (0, 0, 0)
4: se ← 0
5: for i = 1→ n do
6: [ci,wi]← dataTexture(n/i)
7: r ← phi(ci, eLab)
8: ve ← ve + rwi

9: se ← se + r
10: end for
11: eLab ← eLab + ve/se
12: return lab2rgb(eLab)

0.05

1.30

5 10 20 40
References

Ti
m

e
[m

s]

Figure 7. The perfor-
mance of our imple-
mentation. The green
function shows the run-
time for the color bal-
ancing on the GPU, the
blue function the time to
solve the RBF equation
system on the CPU.

First, the original color e
of the pixel is determined (line
1). The pixel color is the re-
sult of the given shading al-
gorithm. This color is then
transformed to CIE Lab space
(line 2). Then, the variables
ve and se are initialized (line 3
& 4). They are used to com-
pute intermediate results of the
transformation vector computa-
tion. Now, a loop is performed
n-times, which is the number
of color correspondences. In
each loop, first, the color ci and
weight vector wi are acquired
through texture lookup (line 6).
Then, the function φ is applied using the current color eLab
and the support color ci (line 7). This gives the function
value r, which is used to add the current weight wi to ve
(line 8). Additionally, the sum of all the function values r is
stored in se (line 9), so that after the loop the transformation
vector ve can be normalized and used to translate the origi-
nal pixel color in CIE Lab space (line 11). The final color is
then transformed back into RGB space and returned to the
frame buffer (line 10).

We have implemented the color balancing algorithm on
an Intel Core i7 3.2 GHz with Nvidia GeForce GTX 460.
The run-time in ms is shown in Figure 7 for an increasing
number of references. The solver for the equation system
(blue graph) is the bottleneck, as it involves a matrix inver-

sion in the size of the number of references. The RBF inter-
polation (blue graph) however performs with around 0.05
ms almost independently of the number of references.

6. Results and Applications

In this section we present various color balancing results
for image editing and augmented reality applications, and
compare them to realated works. Please see also the accom-
panying video where we show several examples for both
color balancing and augmented reality.

6.1. Interactive Color Transfer and Correction

Given a source image and a target image with a desired
look, the user can interactively define a color mapping by
clicking correspondences. The result is instantly visible,
and the user can drag the correspondence points around to
see the effect. A number of examples are shown in Figure 8
that demonstrate the flexibility of our approach. Due to the
global nature of the vector field color transformation, it is
very easy to balance an image to exactly match an example
photograph. Even completely changing the color composi-
tion of an image can be achieved robustly using the same
kind of input.

Figure 9 shows a series comparisons of our color balanc-
ing method with other color balancing approaches. Since
our method is designed and optimized for global color bal-
ancing, it is able to transfer the colors from the target image
to the source image with only a sparse set of references.
User edits in Photoshop changing indirect parameters (hue,
saturation, etc.) can be unintuitive and time consuming, and
it is difficult to achieve exact results. Achieving the correct
balance between the yellow and red colors in the bottom
example are difficult with only indirect manipulation. Both
the Photoshop Color Match function and the approach of
Reinhard et al. [20] perform very similarly. Both methods
automatically achieve a global balancing of the image but
cannot recreate the exact shade of the Taj Mahal. Using the
sparse input used for our color balancing, the approach of Li
et al [15] struggles, as their method is specifically designed
for local edits. In areas with strong gradients (e.g. the dome
of the Taj Mahal) their approach produces artifacts. Linear
regression is, due to its limited flexibility, not able to satisfy
the constraints.

6.2. Augmented Reality Color Balancing

While the color transfer tool only utilizes the flexible
vector space color transfer, applications in augmented re-
ality become possible when combining it with our robust
color tracking over time. A known marker in the scene, like
the cover of a book, can be tracked and the colors refer-
enced with a digital copy of the image. Figure 10 shows
two examples of color balancing for augmented reality.

4326

Ta
rg

et
 Im

ag
es

So
ur

ce
 Im

ag
es

O
ur

 R
es

ul
ts

Figure 8. Several examples of our sparse color balancing. The colored circles in images mark the color correspondences.

Target Image Our ApproachLi et al. 2010Lin. RegressionPhotoshop
Color Match

Photoshop
User Edits

Source Image Reinhard et al.
2001

Figure 9. Comparison of our approach with other methods for image balancing using sparse correspondences.

The top example shows a series of comparisons between
our color correction and linear regression. It can be ob-
served that our approach is more accurate for colors that are
available in the video stream and more robust for colors that
are not tracked. The bottom row shows an example where
an animated image is placed in a book. Due to the color
tracking of the real image on the same page we are able to
more realistically embed the animated figure into the video.
Note that the adjustment of the colors in the flat shaded ex-
amples would only work for one frame as the white balance
and global light change over time.

Generally, in augmented reality applications, it is crucial
to perform proper image balancing for convincing augmen-
tation. A viewer is especially sensitive to colors that already
appear in the video stream, and will notice when similar col-
ored renderings are balanced differently. The results in Fig-
ure 10 and in the accompanying video demonstrate, that our
color tracking and balancing is able to achieve the desired
accuracy, while linear regression [14] struggles.

7. Discussion
In this paper, we have presented an approach for interac-

tive image-based color balancing using only a sparse set of
correspondences, as well as an extension for temporally-
consistent rendering for augmented reality applications.

Through our proposed global optimization of interpolation
functions, we provide a tool to optimize function parameters
to mimic color changes from example images and optimally
adjust colors accordingly.

The proposed color correction and tracking algorithms
have some limitations that direct us to areas of future work.
The color correction is not able to reconstruct missing in-
formation. Over- or underexposed images can flatten color
gradients to the point where only a few colors remain. Our
color transfer method will not smooth spatially, and there-
fore is not able to increase the amount of colors present in
a gradient. Coupling the color transfer algorithm to camera
exposure setting is an area of future work that could address
this issue.

The color tracking algorithm relies on flat color areas
in the image to work well. This requirement is orthogonal
to many tracking algorithms that use features like corners
or edges. However, our algorithm will reject such colors
instead of producing false results. In our current imple-
mentation we employ equidistant sampling of points on the
marker surface where the colors near features get removed
by our tracking. Improving this sampling using information
such as edges or gradients in the marker image would be an
interesting topic to explore.

4327

Fl
at

 S
ha

de
d

O
ur

 B
al

an
ci

ng

Tr
ac

ke
d

Po
in

ts

Input Frames Tracked Points Lin. RegressionOur Balancing Our Balancing Lin. Regression
O

ut
lie

r
U

nt
ru

st
ed

Tr
us

te
d

Co
m

eb
ac

k

Figure 10. Two examples of our color tracking and balancing in augmented reality applications. Outliers (red x) arising due to specular
reflection are detected and supported with comeback colors (yellow triangle). The top row shows a series of comparisons between our
color correction and linear regression. Our approach is both more accurate in recreating the exact image colors as well as produce more
plausible color balancing for unknown colors (i.e. green frog). The bottom row shows an example where an animated image is placed in a
book and balanced by tracking the colors of a real image.

References
[1] ARToolKit. http://www.hitl.washington.edu/

artoolkit/. [Online; accessed 29-June-2012].
[2] A. Abadpour and S. Kasaei. A fast and efficient fuzzy color

transfer method. In Symp. on Signal Proc., pages 491 – 494,
2004.

[3] J. Adams, K. Parulski, and K. Spaulding. Color processing
in digital cameras. IEEE Micro, 18(6):20–30, Nov. 1998.

[4] V. Agarwal, B. R. Abidi, A. Koschan, and M. A. Abidi. An
overview of color constancy algorithms. Journal of Pattern
Recognition Research, pages 42–54, 2006.

[5] X. An and F. Pellacini. Appprop: all-pairs appearance-space
edit propagation. ACM Trans. Graph., 27(3), 2008.

[6] X. An and F. Pellacini. User-controllable color transfer.
Comput. Graph. Forum, 29(2):263–271, 2010.

[7] N. Cohen. A color balancing algorithm for cameras. EE368
Digital Image Processing, 2011.

[8] K. Dale, M. K. Johnson, K. Sunkavalli, W. Matusik, and
H. Pfister. Image restoration using online photo collections.
In ICCV, pages 2217–2224, 2009.

[9] Z. Farbman, R. Fattal, and D. Lischinski. Diffusion maps for
edge-aware image editing. ACM Trans. Graph., 29(6):145,
2010.

[10] M. A. Fischler and R. C. Bolles. Random sample consensus:
A paradigm for model fitting. Commun. ACM, 24(6):381–
395, 1981.

[11] S. Kagarlitsky, Y. Moses, and Y. Hel-Or. Piecewise-
consistent color mappings of images acquired under various
conditions. In ICCV, pages 2311–2318, 2009.

[12] S. B. Kang, A. Kapoor, and D. Lischinski. Personalization
of image enhancement. In CVPR, pages 1799–1806, 2010.

[13] G. Klein and D. W. Murray. Simulating low-cost cameras for
augmented reality compositing. IEEE Trans. Vis. Comput.
Graph., 16(3):369–380, 2010.

[14] M. Knecht, C. Traxler, W. Purgathofer, and M. Wimmer.
Adaptive camera-based color mapping for mixed-reality ap-
plications. In ISMAR, pages 165–168, 2011.

[15] Y. Li, T. Ju, and S.-M. Hu. Instant propagation of sparse edits
on images and videos. Comput. Graph. Forum, 29(7):2049–
2054, 2010.

[16] H. T. Lin, S. J. Kim, S. Susstrunk, and M. S. Brown. Revisit-
ing radiometric calibration for color computer vision. ICCV,
2011.

[17] D. Lischinski, Z. Farbman, M. Uyttendaele, and R. Szeliski.
Interactive local adjustment of tonal values. ACM Trans.
Graph., 25(3):646–653, 2006.

[18] A. Neumann and L. Neumann. Color style transfer tech-
niques using hue, lightness and saturation histogram match-
ing. In Computational Aesthetics, pages 111–122, 2005.

[19] F. Pitié and A. C. Kokaram. The linear monge-kantorovitch
linear colour mapping for example-based colour transfer. Vi-
sual Media Production, 2007.

[20] E. Reinhard, M. Ashikhmin, B. Gooch, and P. Shirley. Color
transfer between images. IEEE Comput. Graph. Appl.,
21(5):34–41, 2001.

[21] H. Siddiqui and C. A. Bouman. Hierarchical color correction
for camera cell phone images. IEEE Trans. on Image Proc.,
17(11):2138–2155, 2008.

[22] Y.-W. Tai, J. Jia, and C.-K. Tang. Local color transfer via
probabilistic segmentation by expectation-maximization. In
CVPR (1), pages 747–754, 2005.

[23] B. Wang, Y. Yu, T.-T. Wong, C. Chen, and Y.-Q. Xu. Data-
driven image color theme enhancement. ACM Trans. Graph.,
29(6):146, 2010.

[24] B. Wang, Y. Yu, and Y.-Q. Xu. Example-based image color
and tone style enhancement. ACM Trans. Graph., 30(4):64,
2011.

[25] X. Xiao and L. Ma. Color transfer in correlated color space.
In VRCIA, pages 305–309, 2006.

[26] X. Xiao and L. Ma. Gradient-preserving color transfer. Com-
put. Graph. Forum, 28(7):1879–1886, 2009.

[27] S. Yang, Y.-A. Kim, C. Kang, and B.-U. Lee. Color compen-
sation using nonlinear luminance-rgb component curve of a
camera. In ISVC (2), pages 617–626, 2011.

4328

