
Generating and Ranking Diverse Multi-Character Interactions

Jungdam Won, Kyungho Lee, Carol O’Sullivan, Jessica K. Hodgins, Jehee Lee

Figure 1: We animate data-driven scenes with multi-character interactions from high-level descriptions. Many plausible scenes are generated
and efficiently ranked, so that a small, diverse and high-quality selection can be presented to the user and iteratively refined.

Abstract

In many application areas, such as animation for pre-visualizing
movie sequences or choreography of dancing or other show perfor-
mances, only a high-level description of the desired scene is pro-
vided as input, either written or verbal. Such sparsity, however,
lends itself well to the creative process, as the choreographer, ani-
mator or director can be given more choice and control of the final
scene. Animating scenes with multi-character interactions can be
a particularly complex process, as there are many different con-
straints to enforce and actions to synchronize. Our novel ‘generate-
and-rank’ approach rapidly and semi-automatically generates data-
driven multi-character interaction scenes from high-level graphi-
cal descriptions composed of simple clauses and phrases. From a
database of captured motions, we generate a multitude of plausible
candidate scenes. We then efficiently and intelligently rank these
scenes in order to recommend a small but high-quality and diverse
selection to the user. This set can then be refined by re-ranking or by
generating alternatives to specific interactions. While our approach
is applicable to any scenes that depict multi-character interactions,
we demonstrate its efficacy for choreographing fighting scenes and
evaluate it in terms of performance and the diversity and coverage
of the results.
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1 Introduction

Written or verbal descriptions of action scenes for movies (e.g., a
screenplay), television and theatre are often quite high-level and
sparse. The scriptwriter, director or choreographer specifies only
the key events in the scene and omits details such as the exact
location, style and timing of each individual action. To aid com-
munication and provide the full choreography, visual aids such as
sketches, miniatures, and simple animations are often employed.
Fight scenes are particularly difficult to choreograph as the timing
and details of the events are critical to advancing the story in a con-
vincing fashion and it is generally not possible to shoot many takes.

Our aim is to allow a user to rapidly and semi-automatically choreo-
graph scenes with multiple characters interacting from sparse, high-
level graphical descriptions, and to iteratively modify these scenes
at interactive rates. The user’s work process is thereby facilitated



by efficiently and intelligently proposing several diverse and high
quality scenes that satisfy the desired structure, which can be itera-
tively refined as required by generating new or modified candidate
scenes with every iteration.

To achieve our goals, we present a novel generate-and-rank ap-
proach that takes as input a high-level scene specification, in the
form of a graph built of sentence-like structures consisting of verbs,
subjects, and objects. In practice, this graph could be manually built
based on the instructions of a director or animator, or automati-
cally extracted from a written text (e.g., a screenplay). From this
specification we automatically generate a large number of plausible
scenes from a database of annotated motion capture clips, and then
efficiently rank these candidates in order to recommend a small and
diverse selection of the highest quality scenes. For the purposes of
this paper, we define a scene to be plausible if it matches all the
elements of the specification (i.e., it ‘satifies’ the graph in that all
the interactions are performed), whereas quality is a more subjec-
tive measure of how well the scene actually looks and/or meets the
needs of the user.

The first problem to be addressed is therefore generating plausible
candidate scenes and evaluating their quality based on prior infor-
mation consisting of a set of metrics. In our implementation we
evaluate priors such as how many individual clips are needed; how
much they need to be edited in order to satisfy the description; how
well the interactions are coordinated; and the extent to which inter-
penetrations between characters are avoided. The relative weights
of these priors are set by the user based on their quality require-
ments. For example, a previsualization artist may care more about
the overall staging of the scene and less about motion glitches or in-
terpenetrations, whereas animators may require higher production
standards. Additional quality measures could easily be added, such
as saliency or other perceptual metrics.

The second challenge faced is how to rank the plausible scenes
in order to select the subset of candidate scenes to present to the
user. The most obvious consideration is of course quality, as de-
fined above, but ranking based on this factor alone will not meet the
needs of most users, as the set of highest quality results could all be
very similar and therefore not provide enough choice. Therefore,
three further closely-related criteria are equally important: the di-
versity of the selection; how much coverage is provided of the full
space of possible solutions; and how representative each selected
scene is of a larger cluster of scenes, i.e., its level of similarity to
other, non-selected, scenes. Even though animated multi-character
scenes are structurally quite different from webpages or images, the
ranking approach is conceptually the same, in that prior informa-
tion about individual items and the relationships between them are
utilized to determine the order in which results are presented and
thereby reduce redundancy. We therefore adapt some ideas from
several modern ranking algorithms for our purposes [Brin and Page
1998; Jing and Baluja 2008; Mei et al. 2010].

Contributions: We support the creativity of the scene choreogra-
pher by allowing them a large degree of choice and flexibility in cre-
ating their desired scenario, while ensuring that the final result will
contain consistent and high quality interactions between the char-
acters. Our motion synthesis algorithms are, to our knowledge, the
first to generate a fully-connected interaction scene from a sparse
description. Our ranking approach, borrowing new ideas from other
domains such as web and image searching, provides users with a di-
verse set of the highest quality options from which they can select
and refine those that best suit their needs.

Our novel generate-and-rank approach comprises four technical
innovations: a graphical model for high-level scene specification
(Section 3); a probabilistic motion synthesis algorithm that ana-

lyzes the specification to understand the structure of multi-character
interactions in individual scenes (Section 4); an efficient and intel-
ligent scene ranking process (Section 5); and several refinement
options that allow the user to have detailed control of the results
(Section 6).

2 Related Work

There have been many previous systems that generate animations
from high-level descriptions. Perlin’s Improv system [Perlin and
Goldberg 1996] creates actors that respond to users and to each
other in realtime, using procedural animation and a rule-based be-
havior engine that takes as input English-style script describing the
actors’ communication and decision-making skills. Similar AI ap-
proaches have been proposed to generate group behaviours during
social interactions and other scenarios: Pedica et al. [2010] model
the territorial dynamics of social interactions; Yu and Terzopoulos
[2007] simulate pedestrians in urban settings using hierarchical de-
cision networks, while Funge et al. [1999] introduce the cognitive
modeling language CML, to endow their autonomous characters
with enough intelligence to work out a detailed sequence of actions
to satisfy a brief behavior outline or “sketch plan”. Most concep-
tually similar to our approach, Calvert and Ma’s [1996] Life Forms
system presents a selection of keyframed motion sequences from a
large database based on a choreographer’s sketch of a dance motion,
and provides support for further editing using procedural animation
and inverse kinematics. The authored dance sequences can then be
viewed on multiple virtual characters. We derive inspiration from
this approach in the design of our user interface.

With path planning methods, only a start and goal are provided for
the character, and the system must automatically move them along
the generated trajectory. Such motion controllers can be learned
based on motion capture data [Lo and Zwicker 2008], and parame-
terized to correspond to specific motion skills using reinforcement
learning [Levine et al. 2011]. Choi et al. [2011] generate and
traverse a graph of motion capture fragments, which may be de-
formable in order to situate them into highly constrained virtual
environments. Other sparse descriptions include simple motion
sketches that are satisfied by efficiently searching through a mo-
tion graph and generating the interpolated motion trajectory [Sa-
fonova and Hodgins 2007], or a timeline painted with simple an-
notations selected from a domain-tailored vocabulary, again using
optimized searching to deliver interactive authoring [Arikan et al.
2003]. These approaches do not however efficiently provide a high
level of scene variations while satisfying the constraints imposed
by multi-character interactions.

Another related body of work involves the automatic generation
of conversational motions. The Behavior Expression Animation
Toolkit (BEAT) takes as input a typed script and generates appropri-
ate and synchronized nonverbal behaviors and synthesized speech
[Cassell et al. 2001]. Stone et al. [2004], and later Levine et
al. [2010], use a database of recorded speech (composed of short,
clearly-delimited phrases), while Neff et al. [2008] analyzes video
to create a statistical model of a specific performer’s gesturing mo-
tions, and then generates full-body animation in the style of that
individual for any novel input text.

A major requirement for our work is to provide a user with a wide
variety of candidate scenes, from which they can intuitively select
and refine. We have incorporated design elements from several rele-
vant systems. Marks et al. [1997] introduced the concept of Design
Galleries, which present the user with a broad selection of perceptu-
ally different graphics or animations by varying sets of parameters.
The main criteria for their approach are dispersion (i.e., sampling
the full set of possible outputs) and arrangement (i.e., providing an



intuitive browsing and selection interface). Similarly, Many-Worlds
Browsing exploits the speed of multibody simulators to compute
numerous example simulations, and allows the user to browse and
refine them interactively [Twigg and James 2007], while Physics
Storyboards have been proposed to focus on key events and out-
comes to accelerate the process of tuning interactive, procedural
animations [Ha et al. 2013].

Relevant to our requirement to offer a variety of interactions that
can be further refined, Agrawal et al. [2013] present an optimiza-
tion framework for generating diverse variations of physics-based
character motions, while Liu et al. [2010] use randomized sam-
pling and forward dynamics simulation to reconstruct many varia-
tions on a given motion capture trajectory. Ye et al. [2012] also
use randomized sampling for synthesizing a variety of physically
simulated hand motions. Jain et al. [2009] present an interactive
motion editing tool for creating dynamic scenes with human and
object interaction, which allows the animator to directly change the
trajectories of the human or objects and simultaneously render the
effect of the edits on the entire scene. Optimization has also been
used to synthesize more complex human behaviors, including coop-
erative actions involving multiple characters and their interactions
with their environment and each other [Al Borno et al. 2013; Mor-
datch et al. 2012].

Focussing on the difficult problem of synthesizing multi-character
interactions, Kim et al. [2009] uses Laplacian motion editing to al-
low the user to interactively manipulate synchronized multi-actor
motions. Ho et al. [2010] use an Interaction Mesh to edit and
retarget close interactions between body parts of single or multi-
ple characters, while Shum et al. [2010] apply min-max search-
ing to produce scenes of two character interactions to follow mul-
tiple story-lines. Game theory and motion graphs have also been
used to control the motion of two characters in an adversarial game
[Wampler et al. 2010]. The scope of motion synthesis algorithms
based on min-max searching and adversarial games are often lim-
ited to interactions between two characters.

Many of scalable multi-character motion synthesis algorithms make
use of Motion Patches. The original work by Lee et al. [2006] tack-
les the problem of capturing motion data for a large and complex
virtual environment by constructing a set of building blocks that
can be arbitrarily assembled to create novel environments. Each
block is annotated with a Motion Patch, which describes the an-
imations available for characters within that block. Even though
the original work explores character animation in complex envi-
ronments, its followup studies focus on creating a dense crowd of
interacting characters. Crowd Patches involves a similar approach
[Yersin et al. 2009] for large-scale urban scenes. Support has also
been provided to simulate close interactions between characters,
using tileable Interaction Patches [Shum et al. 2008]. However,
fully connecting scattered interaction patches when the connectiv-
ity is not simple (i.e., with cycles) is difficult. Patch tiling by Kim
et al [2012] and an MCMC method by Hyun et al [2013] gener-
ate fully-connected (spatially coordinated and temporally synchro-
nized) interaction scenes, with the focus on removing all dead-end
connections. Resulting scenes tended to be random rather than con-
trolled and detailed scene descriptions could not be satisfied.

3 Graphical Scene Description

The goal of our authoring system is to generate a variety of ac-
tion scenes based on a high-level written or verbal description (e.g.,
Figure 2a), which should specify the individual motions of the char-
acters, what events occur, and how the characters interact with each
other. We provide a graphical user interface to design a diagram of
the scene description, called an event graph (Figure 2c(i)), which

exploits subject-verb-object structures to describe events. (While
we do not currently perform any natural language processing to au-
tomatically create the specification from a written script, this would
be a useful enhancement.) In this event graph, actions are rep-
resented by event nodes if those actions can be described using a
clause with a verb, one or more subjects, and possibly objects and
phrases. The directional edges of the graph describe the tempo-
ral sequencing of events and the transitions of an character from
one event to the other. Each event node can have multiple incom-
ing and outgoing edges that correspond to the characters’ actions;
either both characters are actively involved, or one is active (red ar-
rows in event nodes) and the other responsive (blue arrows in event
nodes). We currently only allow each event to involve one or two
characters for ease of implementation and clarity of presentation,
and leave the case of event nodes depicting simultaneous interac-
tions between three or more characters for future work.

To provide high quality, data-driven animation of the events de-
scribed in the scene, a comprehensive database of suitable mo-
tions should be constructed. For the fighting scenarios we use as
a demonstration of our approach, we captured one hour’s worth of
data from professional stunt-men and actors (Figure 2b). Motion
capture sessions were conducted following standard procedures.
We provided twelve high-level themes (e.g., men fighting over a
woman, burglar in house, classroom bully, big vs. small guy.) to the
actors, which they interpreted and choreographed themselves and
also performed some free-style acting/stunt scenarios. Any general
or other domain-specific databases could also be used as long as
they contain a sufficient variety of relevant interactions. We man-
ually label the motions of each individual motion captured actor
using an appropriate vocabulary (though this process could be au-
tomated using existing motion classification approaches) consisting
of verbs (e.g., bump, push), adverbs (e.g., gently) and phrases (e.g.,
fall-down). A single motion clip for an actor may have multiple
labels (e.g., slap, gently, on-the-face). From viewing the original
interaction pairs, the constituent motion clips are labelled appropri-
ately (e.g., slap-active, slap-responsive) as it is possible to pair an
active motion with a responsive one that was not simultaneously
captured (Partner Changing in Section 6). We also identified phys-
ical contacts between body parts (e.g., fist on opponent’s face) and
the environment (e.g., foot on ground) in a semi-automatic man-
ner and added this information to each motion clip’s annotation.
Initially, thresholding on distance and relative velocity are used to
detect contacts, for which we rectify any false detection manually.
More general motion clips (e.g., wandering) are labeled as ‘Idle’,
and are used to make connecting paths between scene events. The
plausibility of these ’filler’ motions could easily be enhanced by
adding new labels to refine the annotations.

From the labelled data we build a motion graph, which describes
the connectivity between motion clips in the database [Lee et al.
2002]. Traversing the graph allows longer motion sequences to be
generated. In Figure 2c(i), the character John follows a sequence of
event nodes (Walk, Bump, Point, Push, Punch, Kick). Motion clips
with an action verb are called event clips and can be associated with
an event node that has the same verb label. All plausible motion se-
quences for John should therefore begin with a Walk event clip,
followed by the other event clips in order. Each pair of subsequent
event clips may be connected through a sequence of Idle motion
clips. From the event clips and their rich connectivity, a large num-
ber of plausible motion sequences for each scene character can be
generated that satisfy the event graph with respect to label match-
ing. Combinations of these motion sequences for all scene charac-
ters constitute a plausible scene if their relative position, direction
and timing match when interactions and physical contacts occur.
A summary of some definitions and notations we use in this and
subsequent sections is provided in Table 1.



Figure 2: Overview. (a) The text script of a fight scene. Action verbs and phrases are highlighted. (b) Our motion databases have its frames
labeled using our system vocabulary. We also pre-compute a collection of random connecting paths for every pair of action verbs to build a
Transition Table (ii), and an Affinity Matrix (iii) to encode the similarity between all pairs of motion clips. (c) At runtime, the user designs
an event graph that matches the text script. Our system generates a collection of random candidate scenes from the event graph and ranks
them to present a few top-ranked plausible scenes to the user.

Name Description
Character ci scene character
Event Node ni single- or multi-character event
Event Graph connects event nodes to make scene
Event Clip: ei motion clip associated with event node
Event Path: pi,j sequence of event nodes between ni and nj

Cycle: c(pi, pj) when two paths share start and end nodes
Transforms: T move active and responsive characters
T a
i , T

r
i move a and r characters through event clip ei

T a
i,j , T

r
i,j move a and r between event clips ei and ej

T ar
i , T ra

i a and r’s relative position and orientation in clip ei
tai , t

a
i,j , t

r
i , t

r
i,j associated times

Bodies: B body coordinate systems and parts
Bk

i coordinate system of character ci at frame k
bk,mi position of ci’s body part m at frame k
tki associated time

Table 1: Definitions and Notation

4 Candidate Scene Generation

The successful application of our generate-and-rank approach re-
lies on our ability to generate a large collection of plausible candi-
date scenes. Naı̈ve random walks in the motion graph rarely gen-
erate convincing motions because multiple characters will not ap-
pear coordinated and too many transitions can result in low-quality
motion sequences. In this section, we present a new algorithm to
produce a variety of multi-character motion sequences that satisfy
the event graph.

Our synthesis algorithm is probabilistic and thus we cannot guar-
antee that each individual scene generated by our algorithm is al-
ways plausible with respect to all conditions and requirements. We
present two ideas to alleviate the problem. The first idea is our
cycle analysis of the event graph, which allows us to pick plausi-
ble scenes with high probability. Secondly, many candidate scenes
are generated in the generate-and-rank framework and top-ranked
scenes among them are highly likely to be plausible within error
tolerance.

Connecting Paths: Each event node can be associated with many
event clips (Figure 3). Pairs of (active, responsive) event clips are
associated with each event node involving two characters. Consider
event clips ei and ej associated with two sequential event nodes. A
motion path between ei and ej through the ‘Idle’ part of the motion
graph creates a seamless sequence of connected motions. There
may be many such motion paths available between any two event
clips, with each path requiring different amounts of body transla-



Figure 3: Scene Generation: (a) a simple event graph and (b)
its motion cascade. We prune event clips that (c) have no outgo-
ing branches and (d) are not cycle-feasible. (e) a candidate scene
instantiated from the motion cascade.

tion, rotation, and time.

We pre-compute a collection of connecting paths for each pair of
event clips to build a transition table (Figure 2b(ii)), the columns
and rows of which respectively correspond to sources and destina-
tions of transitions between event clips. Each transition (i, j) con-
tains a variety of paths from ei to ej that complete within a certain
time limit, or is empty if the shortest path takes too long. In our

experiments, the time limit is set to four seconds, and we picked up
to 300 paths for each transition (i, j). This collection is expected to
cover variations in body translation, rotation and timing while per-
forming the transitional motions from ei to ej . We also require each
individual path to have as few branching transitions through the
motion graph as possible, so we order connecting paths by increas-
ing number of branches and picked paths with fewer branches first.
In this way, most paths we generated have only a few branches,
thereby minimizing jerky motions.

Motion Cascade: Many event clips and their rich connectivity
form a underlying structure that is embedded in an event graph.
We call this structure a motion cascade. In Figure 3, we show a
simple event graph (a) and its embedded motion cascade (b) for
illustration. Event node n4 is a single-character node, while the
others involve two characters, one of whom is active (in red) and
the other responsive (in blue). The edges are solid black if there
are any pre-computed paths available between event clips. Even
through we draw the edge as a single line, many connecting paths
might be available. Given a motion cascade, an instance of a multi-
character scene is generated by picking an event clip ei for each
individual node ni (or a pair of active-responsive event clips for a
two-character node) and choosing a connecting path for each indi-
vidual pair of subsequent event clips.

A sequence of event nodes in the event graph forms an event path
pi and, if two such paths share the same start and end event nodes,
they form a cycle c(pi, pj). John (orange) and David (green) tra-
verse paths p1 = (n1, n2, n3, n5) and p2 = (n1, n4, n5), respec-
tively, and their paths coincide at n1 and n5 to form a cycle. This
means that they interact for event n1, go their separate ways for
other events, and then meet again for event n5. A pair of active-
responsive event clips at the start of a cycle is cycle-feasible if they
both have connecting paths to the event clips of another pair at the
end.

Figure 3 also shows that some event clips are ‘dead-ends’, i.e.,
either one or both characters have no outgoing branches (c), or
they are part of a pair that is not cycle-feasible (d). Such action
clips should be pruned before we begin to instantiate our candidate
scenes. Whenever any event clip is pruned, we trace its path for-
wards and backwards to remove any further inconsistencies (e.g.,
see node n1 in (c), where the edges of these pruned paths are dotted
grey). This process could also introduce a potential dead-end, so
building a scene is an iterative process of repeatedly picking event
clips and connecting paths one by one from the motion cascade and
pruning potential dead-ends.

Motion Selection For Each Cycle: The motion cascade has the
potential to produce a very large number of combinations of motion
sequences that constitute plausible scenes. However, instantiating
one as a candidate is a non-trivial task if the connectivity of the
event graph is complex. We first discuss how to generate plausible
motion sequences along a single cycle and the full version of the
algorithm will be presented later in this section.

We define a set of transforms for each event clip. T a
i and T r

i are
3 × 3 homogeneous matrices describing two-dimensional transla-
tion on the ground plane and rotation about the vertical axis, which
bring the body of the active and responsive characters respectively
from the beginning of event clip ei through to its end, while T a

(i,j)

and T r
(i,j) move the characters between event clips. At the start of a

pair of active-responsive motions, the relative position and orienta-
tion of the interacting characters are represented by the matrix T ar .
Similarly, at the end of the active-responsive pair, the relative posi-
tion and orientation of the interacting characters are represented by
the matrix T ra. Times tai , t

r
i , t

a
i,j , t

r
i,j denote the associated lengths

of the aforementioned event clips and connecting paths in time.



Figure 4: Cycle ordering

Therefore, given the cycle for John and David, Equation (1) and
Equation (2) respectively impose spatial coordination and temporal
synchronization between motion sequences for the scene instance
in Figure 3(e)).

T ra
1 T a

1,2 T
a
2 T

a
2,3 T

a
3 T

a
3,5 T

ar
5 = T r

1,4 T
a
4 T

a
4,5 (1)

ta1,2 + ta2 + ta2,3 + ta3 + ta3,5 = tr1,4 + ta4 + ta4,5 (2)

Motion sampling: Randomly picking event clips and connecting
paths among available options rarely meets the cycle conditions in
Equation (1) and Equation (2). We sample many such motion se-
quences along two adjoining paths and choose the best pair among
them. The best pair of motion sequences thus obtained are highly
likely to be plausible within error tolerance if sufficiently many
samples are picked and examined. In our experiments, we picked
10,000 random samples for each cycle. The spatiotemporal error is
measured using

ξ = ‖v′ − v‖+ wa|θ′ − θ|+ wt|δ′ − δ| (3)

where v ∈ R2 and θ ∈ R, respectively, are the translation and
rotation components of the left side of Equation (1), δ ∈ R is the
left-hand side of Equation (2), v′, θ′, δ′ are from the right-hand
side of the respective equations, and wa, wt are weights. In our
experiments, we determined the weights wa = 1.12 and wt =
0.38 such that the averages of translation, rotation, and time of all
available event clips and connecting paths are normalized.

If one of two adjoining paths is much longer than the other (i.e.,
more event nodes along the path), we may not be able to find any
plausible motion sequences that match, because our system limits
the lengths of connecting paths. The solution we use is to insert
pseudo event nodes, where the character idles for a short while in
order to fill in the gaps of our sparse description. In this way, we
can generate arbitrarily long connections to match adjoining paths,
or to create idling behaviors at the beginning and end of the scene
if no description is provided for certain characters.

Cycle Ordering: The event graph, in general, has a number of
nested, adjacent cycles, which should be visited in an appropriate
order. Consider the event graph in Figure 4. If we select the motions
of a2 and a3 first to form two cycles c2 and c4, and the motions of
a4 and a5 later to form another cycle c7, then the motions of the
third character pair a3 and a4 would have already been decided
before we can examine whether their motions are well matched
around middle cycle c6. When we visit each individual cycle, at

Algorithm 1 Scene generation from a motion cascade
// Preprocessing

1: Build a table of connecting paths

// At runtime
2: Decide the order of cycles in the event graph
3: for # of candidate scenes do
4: for each cycle do
5: Prune infeasible event clips
6: Pick motion sequences for a free path
7: end for
8: Motion editing and time warping
9: end for

least one side of the cycle should remain undecided so that we re-
tain the freedom to coordinate interactions between characters.

Algorithm 1 shows the overall process for producing a candidate
scene, and we now discuss the cycle ordering in Line 2. Our cycle
ordering algorithm chooses the last order cycle first and eliminates
it from the event graph, then repeat this until only one remains,
which will be the first order cycle. In Figure 4, it removes cycles
from c1 to c7, while our motion synthesis algorithm will visit them
backward from c7 to c1 (Line 4 to 7). We choose a cycle at each
iteration as follows: we pick any simple event path pi,j between
event nodes ni and nj . A simple event path is a path that is only
composed of two degrees internal nodes. If there exists an alterna-
tive path p′i,j between the two event nodes, then p and p′ form a
candidate cycle and there exist another cycles which share p′ with
it except when only one cycle remains. Among many candidate cy-
cles, we pick the one with the shortest shared path and eliminate p
at each iteration. Whenever the motion synthesis algorithm visits a
new cycle, its p′ is already decided and p remains undecided. For
example, in Figure 4, the path traversed by a6 forms cycle c1 with
a5’s path. Cycle c1 will be picked first because it has the short-
est shared path of length 1. Then we eliminate a6’s path from the
graph and repeat the algorithm until we have no more paths to elim-
inate. This algorithm can guarantee that there will be a free path,
for which motion sequences are not determined yet, whenever a
new cycle is visited.

Generalized Paths and Cycles: The definitions of event paths and
cycles generalize further in two respects. First, a single event path
can be traversed by multiple characters in relay. Secondly, a path
can be traversed backwards in time. This assumption means that
the event graph can be undirected, and we do not need two paths
to define a cycle anymore. A generalized cycle can be defined as
a single path that traverses the event graph and returns to its start
node. Even though this generalization may seem extreme, our algo-
rithm readily works with generalized paths and cycles without ma-
jor modification, thus allowing the algorithm to deal with a wider
range of graph configurations that it otherwise could not handle.
Figure 5 shows such a case, which does not have two adjoining for-
ward paths, but does have a generalized cycle. The transformations
along such a cycle are inter-personal when characters take turns,
and inverted when backward edges are chosen, which should result
in the identity transformation. The generalized cycle in Figure 5
poses spatial and temporal conditions as follows:

T ra
1 T a

1,2 T
ar
2 (T a

3,2)
−1(T ra

3 )−1T r
3,4(T

ar
4 )−1(T r

1,4)
−1 = I (4)

ta1,2 − ta3,2 + tr3,4 − ta1,4 = 0 (5)

With these generalized paths and cycles, we can guarantee that
a collection of motion sequences constitute a plausible scene if
the motion sequences are plausible along individual cycles. This
property allows us to account for the complex connectivity of the



Figure 5: A generalized cycle with backwards traversal

event graph simply by examining individual cycles one-by-one, and
therefore makes our algorithm simple, efficient, and easy to imple-
ment.

Motion Editing: Even though interactions are carefully coordi-
nated via cycle analysis, there will still be mismatches in the charac-
ters’ positions and timings. We use motion editing and time warp-
ing to rectify these residual artifacts. Consider a scene consisting
of individual characters’ motions, each of which is a seamless se-
quence of motion clips. Interpersonal constraints are defined at mo-
tion frames in which interactions and physical contacts occur. Let
the indices i and j denote characters, k and l frames, and m and n
body parts. Let Bk

i be the body-attached coordinated system and
tki is the time of character i at frame k and bk,mi be the position of
his body part m. Each interaction applies three constraints on the
body, body parts and time respectively:

(Bk
i )
−1Bl

j

(
(B̃k

i )
−1B̃l

j

)−1

= I (6)

tki − tlj = 0 (7)

‖bk,mi − bl,nj ‖ − ‖b̃
k,m
i − b̃l,nj ‖ = 0 (8)

where the tilde indicates the reference values measured from the
original motion capture data. The first constraint ensures that the
relative position and orientation between characters are preserved ,
and the second preserves the relative position of end-effectors (e.g.,
the fist and the face when one character punches the face of an-
other). The thirdsecond equation favors precise synchronization of
an action and its response. We employ Laplacian motion editing by
Kim et al. [2009] to solve this constrained optimization problem,
as it makes smooth changes on a collection of motions to meet the
constraints, while minimizing motion deformation.

5 Scene Ranking

The plausibility or quality of an animated scene can be quite sub-
jective, depending on the target application and/or the viewer’s per-
sonal goals and preferences. We take inspiration from webpage and
image ranking research and apply some of those concepts to the
problem of ranking our choreographed scenes. A common theme
that underpins modern ranking algorithms is the characterization
of relationships between the items to be ranked. The PageRank
algorithm originally exploited in the Google search engine uses hy-
perlinks between webpages to build a ranking graph [Brin and Page
1998]. A webpage is considered important if it has many incoming
hyperlinks from important webpages. The algorithm determines
the ranking of webpages, which correspond to graph nodes, based
on prior information (any immediate measure of ranking that might
not be fully reliable) and propagation of prior ranking across hyper-
links.

Although images do not have explicit links between them, Jing and
Baluja [2008] proposed the VisualRank algorithm that creates a link
structure among images based on image similarity metrics. An im-
age is therefore considered important if it is similar to important
images. We adopt this idea to construct a ranking graph of animated
scenes. The similarity between scenes serves as edge weights, and
the prior ranking of each individual scene is computed based on our
plausibility measure. Propagating prior ranking across visual sim-
ilarity links results in top-ranked scenes being at the centre of the
overall distribution.

Yet another factor we have to consider is the diversity of top-ranked
scenes. Unlike images, it is difficult to quickly browse through
many candidate scenes, so only a few scenes can be suggested to
the user at each iteration of the choreography cycle. Therefore, it is
important to have a few top results that are visually different from
each other. We employ the idea of diversity ranking [Mei et al.
2010] that pursues a balance between centrality and diversity in the
top ranked results, and also ensures that the full space of candidate
scenes is sampled. We can see from Figure 6 that the top ten scenes
selected using our algorithm based on diversity ranking provides
high diversity, as they are less similar to each other; and coverage,
as the candidate scenes are sampled more evenly throughout the
space of plausible solutions.

In order to apply these ideas from modern ranking algorithms, we
need some metrics to efficiently evaluate the plausibility and sim-
ilarity of scenes to facilitate interactive work flow. We therefore
define the plausibility P of the scene as the weighted sum of five
metrics. Motion editing with multiple actors often involves a trade-
off between the degree of deformation and the accuracy of con-
straint satisfaction. Although allowing large deformations would
satisfy all constraints precisely, we often want to limit the degree
of deformation to achieve better quality of motion while allowing
small residual mismatches in constraints. Pdeform measures the de-
gree of editing needed to fit motions together for multi-actor co-
ordination, which is calculated using a weighted sum of Laplacian
deformation energies for spatial and temporal warping, calculated
during motion editing [Kim et al. 2009]. Presidual is the weighted
sum of residuals in Equations (6)–(8) and Pcol penalizes collisions
and inter-penetrations between actors. The diversity metric Pdiv

penalizes multiple occurrences of identical actions, because view-
ers often respond negatively when they spot exactly same actions
appearing repeatedly in a single scene. Finally, Ppref allows the
animator to directly specify his or her preferences on individual ac-
tions. In our experiments, the weight values are 2.0 and 0.5 for the
spatial and temporal components of both Pdeform and Presidual, 3.0
for collision, 1.0 for diversity, and 0.0 for user preference.

The animated scene consists of important actions and responses,
with more neutral connections between these events. Our similar-
ity measure compares actions and connections at different levels of
detail. The similarity between two scenes S, S ′ is formulated as
follows:

dist(S,S ′) =
∑

i dist(ei, e
′
i)

(# of event nodes)
+ wp

∑
j dist(pj , p

′
j)

(# of event edges)
+

ws(1−
|E(S) ∩ E(S ′)|
|E(S) ∪ E(S ′)| ) (9)

similarity(S,S ′) = 1

dist(S,S ′) + ε
(10)

where dist(ei, e
′
i) and dist(pj , p

′
j) are the dissimilarities between

two event clips and two connecting paths respectively. For the



Figure 6: Scene ranking. Dimensionality reduction by MDS (multi-dimensional scaling) depicts a collection of 200 scenes in a two-
dimensional plane. The Top-10 ranked scenes were chosen based on (a) quality only, (b) PageRank + visual similarity, and (c) our algorithm
based on diversity ranking, which demonstrates better diversity and coverage than both others.

computation of action similarity, we use dynamic time warping to
align motions in time. The dissimilarity between individual poses
is computed based on 39 binary features, suggested by Müller et
al. [2006]. We compute the similarity between all pairs of event
clips to construct an affinity matrix during a preprocessing phase
(Figure 2b(iii)). For connecting paths, a detailed comparison of
full-body poses and time alignment is not helpful. Instead, we only
compare their spatial transformations T and the length in time us-
ing Equation (3). The third term indicates the duplication of event
clips in two scenes we are comparing. Scene S is composed of a set
of event clips E(S) and |E(S)| is its cardinality. If a set of event
clips appear in both E(S) and E(S ′) in different orders, these two
scenes would be perceptually very similar to each other, but the dis-
similarity term would not recognize their similarity. The third term
compares the duplication of event clips regardless of their ordering.

6 Scene Refinement

The ability to refine the top ranked results is an essential component
of our generate-and-rank approach, which allows the scene chore-
ographer to have immediate and detailed control over the results.
The user is provided with a range of refinement options through
an appropriate user interface. The computation cost for the refine-
ment varies depending on how deep a dive into the hierarchy of the
process flow is needed to execute it.

Interactive Manipulation: The user may often find highly ranked
scenes to be satisfactory except for small glitches that can be eas-
ily fixed. He may want to remove collisions between characters,
require an character to face a particular direction or to reach a par-
ticular location at a particular time. Any scene generated from our
system is readily annotated with interaction constraints. Therefore,
we can use Laplacian motion editing while maintaining the integrity
of multi-character coordination, which is the most immediate and
direct type of refinement we facilitate.

Re-ranking and Re-generation: The user can adjust weights of
rank metrics, which are then reflected in the next round of rank-
ing. Re-ranking candidate scenes can be done quickly in about one
second. A more expensive option is re-generation, which involves
either a change to the event graph, or adding a new set of motion
data and labels. In the former case the motion cascade should be
rebuilt to generate a new set of candidate scenes, which takes just a
few minutes for simpler examples and may take up to an hour for

the largest example we tested. The latter, more extreme, change re-
quires the motion database to be updated from scratch, which can
take a few hours.

Action Replacement: Given any scene, we might wish to replace
a particular event clip (or a pair of active-responsive clips) with
another, while leaving the remaining scene intact. The new event
clips at an event node will be connected to the remaining part of
the scene by choosing appropriate connecting paths along incident
event edges. A brute-force approach examines all possible com-
binations, which takes O(Np) computation time, where N is the
number of available connecting paths and p is the number of (both
incoming and outgoing) event edges. If the event node has two char-
acters, action replacement takes O(N4) time. We suggest a more
efficient algorithm of O(pN3) time complexity. For simplicity of
algorithm description, we assume that a pair of active-responsive
event clips in a two-character event node is replaced with another
pair (a, r), so p = 4. From earlier, T a and T r are the associated
transformations, while T ar and T ra are the inter-personal transfor-
mations between the partners at the start and end of the event clips
(Figure 7). Characters a and r are supposed to be connected to the
remaining part of the scene through four connecting paths. Homo-
geneous matrix Ci for 1 ≤ i ≤ 4 denotes the position and orien-
tation at the end of a connecting path, where it should be incident
with either a or r. We need to choose four connecting paths such
that the error Econnect, i.e., the sum of misalignment distances, is
minimized:

Econnect = dist(C−1
1 C2, T

ar) + dist(C−1
2 C3, T

r)+

dist(C−1
3 C4, T

ra) + dist(C−1
4 C1, (T

a)−1) (11)

Our algorithm is based on dynamic programming. Assuming that
we first choose the n-th connecting path for C1, deciding the other
three paths requires the construction of a table of p × N fitness
values, by solving the recurrence equations:

V (1, j) = cost(1, n, j) (12)
V (i, j) = min

k
V (i− 1, k) + cost(i, k, j) (13)

where cost(i, k, j) is the misalignment of choosing the k-th con-
necting path for Ci and j-th connecting path for C(i+1) mod 4, as-



Figure 7: Action replacement

suming that the preceding connecting paths have been chosen op-
timally. V (i, j) is the accumulated misalignment of choosing j-th
connecting path for (i + 1)-th event edge assuming that previous
choices of connecting paths are optimal. Because of the cyclic or-
dering of the event edges, index i is modulo 4. The table entries
are filled based on dynamic programming. Backwards tracing from
V (4, n) identifies a cyclic path through the table. We repeat the
dynamic programming for each n to examine all possible combina-
tions and choose the best one that minimizes the error Econnect in
Equation (11). Even though we only explained about spatial co-
ordination of connecting paths, temporal synchronization is also
considered to compute Econnect. So, the dist function of Equa-
tion (11) is computed by Equation (3) using spatial and temporal
error. In practice, the brute-force O(N4) algorithm takes about 10
seconds to find the optimal set of connecting paths, while our algo-
rithm takes less than one second to achieve an order of magnitude
performance gain.

Partner Changing: Even though the motion cascade readily pro-
vides very many candidate scenes, sometimes richer variability is
required for a specific event node, for which a limited number of
event clips are available. Partner Changing is the process of com-
bining active and responsive motion clips captured separately in
order to enrich variability. Consider two pairs of action-response
clips (a, r) and (a′, r′). Each pair has inter-personal transforma-
tions at some frames in which interactions or physical contacts oc-
cur. Each 3 × 3 homogeneous transformation describes the rel-
ative position and orientation of two interacting characters. Part-
ner changing generates new crossing pairs (a, r′) and (a′, r), if
there exists a correspondence between interactions in the two orig-
inal pairs, while corresponding transformations are similar within
user-specified thresholds. The averages of corresponding transfor-
mations serve as interaction constraints for the new crossing pairs.
Laplacian motion editing with halfway constraints solves for mo-
tion deformations that match crossing pairs well.

7 Results

We demonstrate the power and scalability of our generate-and-rank
approach through a variety of examples. Figure 8 shows the event
graphs for additional examples. Each example has a story of events.

• Payback: Three guys are sitting on the ground, stretching and
exercising. Another guy bugs and irritates them repeatedly.
They all stand up and pay him back for the irritation.

• Tournament: Eight people fight in an elimination tourna-
ment. The winner goes through to the next round, while the
loser falls down and stays on the ground. The final winner
cheers for victory.

• Movie: We recreate a scene based on a fight sequence from
an actual movie (Snatch, c©Columbia Pictures, 2000), where
two guys point, yell, punch, kick, grab, and throw each other.
Although all our motions had been captured with no reference
to this scene, our system was able to emulate the original se-
quence very well.

• Random fight: Twenty actors fight randomly with each other
(Figure 9). This example demonstrates the scalability of our
approach: the event graph includes 268 events and 320 edges,
and our algorithm identified 52 cycles in the graph.

Our system generates 1000 candidate scenes for each example.
Each candidate scene is between 30 to 80 seconds long and has
a very high-dimensional representation (scene-time × frames per
second× number of actors× degrees of freedom per pose). Multi-
dimensional scaling (MDS) allows us to visualize the level of simi-
larity in our high-dimensional data. As Figure 8 shows, each scene
has a clustered distribution. The top ten results selected using qual-
ity only and PageRank with visual similarity links tend to be quite
similar and do not offer much coverage of all clusters. Our algo-
rithm based on diversity ranking, however, always selects a highly
relevant yet diverse set of scenes for the top ranked results, which
broadly cover the space of candidate scenes.

Performance statistics are measured on a desktop PC equipped with
an Intel Xeon CPU E5-2680 (8 cores, 2.7 GHz) and 32GB main
memory, except for the random fight example. Creating such a large
scene is memory intensive, so we computed the random fight exam-
ple on another machine with four processors of an Intel Xeon CPU
E7-4870 (2.4 GHz) and 1TB memory. Our database consists of
78,502 frames of motion data cleaned up and labeled. The motion
graph constructed from the database includes 70,861 frames (about
40 minutes long) of deadend-free, strongly-connected components.
The motion database has 25 verb labels and 20 phrase labels (Ta-
ble 2). In the preprocessing phase, the construction of a motion
graph, an affinity matrix, and a table of connecting paths took 5.7,
10.6, and 88.5 minutes, respectively. Therefore, rebuilding these
structures from scratch takes about 105 minutes of computation in
total.

The runtime computation for each example is summarized in Ta-
ble 3. The units are in meters for distance, radians for angle, and
seconds for time, unless otherwise specified. The breakdown of
the runtime computation shows that motion editing and motion se-
lection around each individual cycle are the most time-consuming
components. Kim et al [2009] suggested an acceleration technique
based on frame sub-sampling, which we have not yet incorporated
into our system, but which we expect will deliver an order of mag-
nitude improvement in performance. The computation time for
motion selection depends on the number of samples we pick for
each individual cycle. In principle, we have to test more samples
for longer cycles since they may provide more diversity of motion
choices. Table 4 shows how the number of samples may affect the
motion quality for the three-person example. The quality improves
as the number of samples increases and the improvement plateaus
at about 10,000 to 20,000 samples per cycle. Currently, we pick
10,000 samples per cycle regardless of its length, and there are op-
portunities for further improvement by picking samples adaptively.



Figure 8: The event graph and MDS visualizations of examples. Top ten results are selected by (a) quality only, (b) PageRank + visual
similarity, and (c) our algorithm.

8 Conclusions and Future Work

Even though our focus has been on choreographing fight scenes in
this paper, our approach could be easily extended to deal with other
types of scenes where there is a requirement for the coordination of
multiple interacting actors, such as dancing, sports or social interac-
tions. We focused on fighting scenes because they are particularly
difficult to synthesize and therefore present a significant challenge.
The problem becomes simpler the fewer physical contacts there are
between the actors. Instead, other factors, such as facial expression,
lip synch, gaze direction and gesture, would become more impor-
tant. These factors have been the subject of many studies and are
highly complementary to and compatible with our approach. Poten-
tial application areas include pre-visualization of action scenes for
movies or TV, interactive storytelling, crime scene reenactments,
and choreography of ensemble dances or ballet duets. The key chal-
lenge would be the effort required to build domain-specific motion
databases and system vocabularies.

Our system currently can handle up to two actors for each event.
This limitation is not inherent to our approach, but was rather cho-
sen for convenience of system implementation and clarity of expo-
sition. In principle, our algorithms can readily handle more general
forms of events with arbitrarily many subjects and objects. How-
ever, the diversity of solutions and therefore the level of control
afforded the choreographer will be reduced when smaller two per-

son events are so tightly synchronized as to be combined into one
bigger event.

One limitation of our approach is the handling of causal chains.
Consider the script: ‘Jack punches Tom. Tom dodges and kicks him
back.’ where the punch event is the direct cause of the dodge event
and both events occur almost simultaneously. The dodge event
causes another kick event immediately afterwards to form a chain
of causality, which could generate very dense interactions. It also
does not allow room for extended connections between subsequent
events and might require that the sequence had been included in the
motion capture session. Dealing effectively with long causal chains
and dense interactions is a challenging goal for future research.

Another promising direction for future work is to incorporate
physics simulation into our generate-and-rank framework. Physics
simulation can provide rich variability and realism without ex-
panding the size of motion databases. As shown by Twigg and
James [2007], generate-and-browse is a viable option for steering
complex multi-body dynamics simulations, from which our system
could benefit greatly in order to generate more realistic interactions
and collision effects. The perceptual plausibility of the causality
between the selected action-response motion pairs is also an impor-
tant factor that should be evaluated and taken into account, as shown
by Hoyet and colleagues [2012], and physical simulation could also
enhance perceived visual quality.



Figure 9: Random fighting

Camera views and sound effects are also important elements of
scene choreography. For the examples described in this paper, we
manually specified camera views and annotated sound effects. A
straightforward extension would be to include audio information
in the motion database, allowing us to synthesize sound effects to
match the constructed scenes. Stunt directors not only choreograph
fight action sequences but also have expert knowledge on how to
best showcase them by selecting the camera view that achieves
maximum visual impact. Incorporating such domain expertise into
the design of our motion databases would also be very valuable, in
the same way that Calvert and Ma [1996] incorporated the input of
expert dance choreographers.
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