
Hierarchical Motion Brushes for Animation Instancing

Antoine Milliez1,2∗ Gioacchino Noris2 Ilya Baran2,3 Stelian Coros2 Marie-Paule Cani4

Maurizio Nitti2 Alessia Marra2 Markus Gross1,2 Robert W. Sumner1,2

1 ETH Zürich 2 Disney Research Zurich 3 Onshape Inc.
4 Laboratoire Jean Kuntzmann (University of Grenoble, CNRS), Inria

a bTime c
Figure 1: Hierarchical motion brushes are a powerful tool for creating stylized animated content such as the fire of this example. The user
painted a set of motion brushes (a) and uses them in a scene containing two hands (b). By only painting one stroke, a complex fire effect is
created that erupts from one hand and reaches the other over time (c).

Abstract

Our work on “motion brushes” provides a new workflow for the
creation and reuse of 3D animation with a focus on stylized move-
ment and depiction. Conceptually, motion brushes expand existing
brush models by incorporating hierarchies of 3D animated content
including geometry, appearance information, and motion data as
core brush primitives that are instantiated using a painting interface.
Because motion brushes can encompass all the richness of detail
and movement offered by animation software, they accommodate
complex, varied effects that are not easily created by other means.
To support reuse and provide an effective means for managing com-
plexity, we propose a hierarchical representation that allows simple
brushes to be combined into more complex ones. Our system pro-
vides stroke-based control over motion-brush parameters, including
tools to effectively manage the temporal nature of the motion brush
instances. We demonstrate the flexibility and richness of our sys-
tem with motion brushes for splashing rain, footsteps appearing in
the snow, and stylized visual effects.

Keywords: sketch-based interaction, hierarchical animation, 3D
painting

1 Introduction

The dominant brush model used in 2D digital painting is remark-
ably simple yet remarkably powerful: a brush image is stamped
repeatedly along a drawn curve to form a painted stroke. Param-
eters such as spacing, rotation jitter, or pen pressure modulation
allow customization, but the core operation of image stamping per-
sists. Armed with his or her favorite brushes (custom brush images
and parameter settings), a talented artist can create 2D digital mas-
terpieces that attest to the power and flexibility of this concept of
“controllable reuse”, where the brush stamps are reused over and
over under the direct control of the artist.

The world of 3D animation departs from the painting metaphor with

∗e-mail:antoine@disneyresearch.com

a vast set of tools to control the shape, appearance, and movement
of characters and objects within a 3D environment. Animation soft-
ware provides a huge degree of flexibility to craft and fine tune ev-
ery minute detail, allowing animators to create extremely rich 3D
worlds and bring them to life through movement. Unfortunately,
creating high-quality animation is notoriously difficult, time con-
suming, and expensive. The flexibility over the many details of
shape, appearance, and motion that animation software offers often
translates into complexity that becomes unwieldy to manage and
unintuitive to control. When art direction calls for a stylized look
that departs from standard depiction techniques, the problem can be
exacerbated since extra care and attention must be given to ensure
that the proper visual style is achieved.

Our work combines the core concept of controllable reuse from the
traditional 2D brush model with the full power and flexibility of 3D
animation to offer a new authoring tool for animated effects. We
propose the concept of “motion brushes,” which expand the brush
stamp idea, replacing the static brush image with a 3D animated
scene comprised of geometry, appearance information, and motion.
This animated content is instantiated via a painting interface di-
rectly in the 3D environment, giving the artist fast and intuitive
control analogous to 2D digital painting. However, because the mo-
tion brush can encompass all the richness and detail of appearance
and motion offered by animation software, complex and varied an-
imated effects such as footsteps appearing and disappearing in the
snow, stylized fire traveling in an arc through the air (Figure 1), or
rain drops falling from a cloud and splashing on the ground below
can be instantiated with a single painted stroke. Although the core
concept of motion brushes is general in nature, we focus on the case
of stylized depiction where brush-based interaction is especially fit-
ting and natural.

On a technical level, the primary challenge of our system lies in
developing a method to package complex animated content into a
brush-based painting interface while still providing adequate con-
trol over the authoring process, over parameters relevant to instan-
tiation, and over the temporal nature of the data. In order to effec-
tively manage the complexity inherent in animated content, the core

representation of our motion brush system is hierarchical in nature,
both in space and time. Simple motion brushes, such as a drop
falling through the air or a splash on the ground can be authored
independently and then combined into a composite motion brush
to create a drop falling and then splashing. This hierarchical con-
struction provides a founded means to deal with complexity during
motion brush authoring. In order to achieve an effective instanti-
ation process, our system derives parameter values from scene in-
formation such as surface normals while supporting parameter cus-
tomization via the same intuitive painting interface. Control over
random jittering of values such as orientation, position, and visibil-
ity ensures a varied, non-repetitive appearance. Since our motion
brushes are animated, our system also encompasses control over the
temporal nature of instantiated copies, allowing varied start times
and temporal advection.

Our core contribution is the motion brush concept that allows de-
tailed animated sequences to be packaged into hierarchical brushes
that can be reused in new scenes via painting. This conceptual de-
velopment is supported by the technical decisions related to hier-
archical management, parameter control, and temporal evaluation
necessary to make the motion brush concept effective. We demon-
strate a number of examples where motion brushes encapsulate
complex animation that can be easily instantiated and customized
via painting, demonstrating an effective new contribution and work-
flow in the computer animation pipeline.

2 Related Work

Stroke-based interfaces have been widely used in computer graph-
ics due to their intuitive nature and expressive power. The stamp-
based brush model, a core component of modern 2D digital paint-
ing software [Photoshop 2012; GIMP 2013], repeatedly applies an
image stamp along a drawn curve. By randomizing or cycling dif-
ferent image stamps used (e.g., “image pipes” or “image hoses” in
GIMP), interesting 2D brush effects are possible. In [Měch and
Miller 2012], an extension to that concept is provided through in-
teractive tools for generating procedural patterns.

The skeletal strokes system [Hsu et al. 1993] builds upon this con-
cept by showing how to effectively deform an image along an entire
stroke, rather than simply stamping copies. Other work focuses on
simulated media [Lu et al. 2013; Chu et al. 2010] or using stroke op-
erations to fine-tune brush parameters after their application [Kazi
et al. 2012]. Our work takes inspiration from these 2D methods to
propose a new authoring workflow for 3D animation. Our motion
brushes enhance the traditional 2D stamp model to incorporated
3D animated scenes into a stroke-based instancing system. Brush
parameters and control of the temporal nature of motion brushes
are derived from environmental information or fine-tuned via addi-
tional stroke operations.

Painting interfaces have also been used for instancing geometry in
3D applications. ZBrush [ZBrush 2013] allows users to “paint”
with 3D meshes in order to add geometric detail to a sculpted ob-
ject, while the GeoBrush system [Takayama et al. 2011] supports
interactive geometry cloning from one mesh to another. Maya
Paint Effects [Maya 2014] offers a system to instance sophisti-
cated procedurally-defined geometry into a scene via a stroke-based
painting interface. The instanced objects are defined by a customiz-
able branching structure that naturally supports organic shapes such
as flowers, trees, and other plants. XGen [Thompson et al. 2003],
which is also incorporated into Maya, can instantiate curves or full
3D geometry to fill the surface of primitives, making it especially
appropriate for hair, fur, forests or other situations where many
copies of the same object are needed to fill a region. “Grooming”
tools are provided to fine tune parameters. Some existing methods
such as [Schwarz et al. 2007a] provide paint-inspired gestures to in-

stantiate predefined geometry, and let users repaint parameters over
the instantiated geometry. This presents similarities to our method,
while not offering the ability of content reuse and coarse-to-fine
animation control hierarchical motion brushes natively provide.

These methods address the transfer of static geometric detail or the
instancing of static geometric copies of an object. For example,
Maya Paint Effects instances static copies of procedural geometry.
The parameters used to define the geometry can be animated after
the fact, but the representation does not allow custom movement
to be packaged into the effects themselves. Likewise, XGen’s sup-
port of new primitives is restricted to static shapes; keyframe ani-
mation is discarded when new XGen primitives are created. Our re-
search places the core focus on animation. As such, motion brushes
support arbitrary keyframe animation along with geometric and ap-
pearance information, allowing artists to hand craft the movement
of primitives over time and package them into a reusable brush.
Incorporating animation in this way allows motion brushes to en-
capsulate a rich set of animated effects that are not easily achieved
with existing systems.

Painting parameters in a scene was explored in various areas of re-
search. The system presented in [Ulicny et al. 2004] lets users paint
over crowd agents to set their mood or color. However this inter-
action is only local and no means are provided to edit large num-
bers of crowd agents at once. In [Schwarz et al. 2007b], a variety
of properties can be painted over instantiated geometry in 2D by
editing buffers storing the parameters. This method does not scale
well to using instances that move in the scene, since the buffers do
not change. This is a major drawback for animation applications.
Moreover, considering that the set of parameter painting gestures
is sparse within a scene, scaling up to 3D applications using such
buffers does not offer the best performances in memory. [Salisbury
et al. 1997], [Olsen et al. 2005], and more recently [Kazi et al. 2014]
demonstrate a variety of field painting tools used in 2D for non-
photorealistic rendering which were an inspiration for this work.

The Dynamic Element Textures work presented in [Ma et al. 2013]
is very relevant to this paper. They observed that when animating
groups of primitives such as a school of fish, their motion can be
decomposed into a hierarchy of coarse to fine scale motions. A low-
frequency motion control governs the overall direction and shape of
the group, while the finer scale motion controls depict the anima-
tion and variation of individual elements. This backs up this work,
where our framework inherently provides control over coarse-to-
fine motion. Fine-scale motion can be controlled when defining a
motion brush, which can be used to paint over a mesh depicting a
coarser motion, which can itself be reused at an even coarser level,
and so on. Editing motion on such hierarchical levels was explored
in [Kazi et al. 2014], where elements with granular motion move
in motion fields painted by users, and in [Dontcheva et al. 2003]
where users can use physical widgets to direct the motion of dif-
ferent parts of virtual characters. The technique presented in this
paper however provides tools for reusing content and authoring the
motion of multiple characters at once.

Finally, painting interfaces also play a strong role in research that
targets stylized depiction such as the WYSIWYG NPR system
[Kalnins et al. 2002] or OverCoat [Schmid et al. 2011; Bassett et al.
2013]. The painterly aesthetic offered by these systems aligns well
with the concept of motion brushes. Whereas WYSIWYG NPR and
OverCoat focus on stylizing objects or characters through painting,
motion brushes provide a mechanism to enhance the brush model it-
self. Combined together, these complementary ideas permit strong
aesthetic control over both the brush depiction and movement. As
a result, we develop the motion brush system using ideas from the
OverCoat framework, allowing the creation of brushes for stylized
nonphotorealistic fire and other art-directed visual effects. In this
way, our motion brush system contributes to the overall field of

nonphotorealistic rendering [Bénard et al. 2011] with a new tool
for creating stylized animation.

3 Method

In this section, we present the motion brush concept and its asso-
ciated workflow. After this technical discussion, we give details
on the implementation and interface in 4. Finally, sections 5 and 6
provide results and a forward-looking discussion of the method.

3.1 Overview

Motion brushes package animated content in a representation that
can be intuitively applied in new contexts. In traditional digital
painting, a stamp-based brush takes an input image and stamps it
over and over along a painted stroke. Motion brushes are similar,
but instead of a single image, they instantiate an animated scene
into a 3D world. We refer to a particular instance of the animated
scene as a “motion stamp.”

In the simplest case, a motion brush could be defined by a single
plane texture mapped with an image. When used, this motion brush
would behave similarly to a regular stamp-based brush: the user
draws a stroke and the motion stamps–made up of the single tex-
ture map–are generated along the stroke. However, our framework
supports much more complex motion brush definitions. The scene
could be more detailed, having various pieces of geometry, differ-
ent textures, and be animated over time. Similarly to stamp-based
brushes, the user can parametrize the spacing and orientation while
generating motion stamps, ultimately controlling the visual result.
However, unlike traditional stamp-based brushes, parameters of the
motion stamps related to space and time remain editable. Moreover,
at any stage of creation, the user can export the current scene as a
new motion brush and use it to create new scenes or to define new,
more complex, motion brushes.

Regardless of the complexity of the animation being produced, the
following steps typically apply in our proposed workflow:

Authoring motion brushes. To create a new motion brush, the
user builds an animated scene. Conceptually, no restriction on tools
and formats apply. However, our implementation favors stylized
motion brushes and is designed to work with [Maya 2014] for an-
imation definition and OverCoat [Schmid et al. 2011] for painterly
stylization. Thus authoring a motion brush entails creating and an-
imating 3D geometry in Maya and stylizing its appearance using
OverCoat’s 3D painting tools.

Painting with motion brushes. Motion brushes are used to in-
stantiate animated geometry in a 3D scene via a painting interface.
Given a 2D stroke drawn with a stylus or other input device, we em-
bed this stroke into the 3D scene using an embedding optimisation
[Schmid et al. 2011] that allows strokes to conform to object sur-
faces or depart from the surface into the surrounding space. Once
the stroke has been embedded within the scene, it is sampled and
motion stamp instances are created according to parameters such as
brush size and spacing. Jittering parameters add randomness to ori-
entation, scale, animation start time, and other values. We describe
these steps in section 3.4.

Painting parameters. After painting with a motion brush, the
user can edit the result by redefining instantiation parameters re-
lated to its orientation, size, animation starting time, or other rele-
vant parameters. The interface we provide for editing the parame-
ters is based on painting gestures, as described in 3.5.

Building hierarchies. A motion brush may instantiate a scene
containing other motion brushes. This hierarchical construction
make it possible to build complex, detailed motion brushes from

M Motion brush associated with this motion stamp.
o Opacity.
T Transformation matrix defining position,

orientation and scale.
tstart Animation starting frame for this instance.
loop Specifies if the animation loops.

Table 1: Parameters P for a motion stamp m.

simpler components. The only formal restriction we place on the
hierarchical representation is that it form a tree structure. For more
details, see section 3.6.

3.2 Definitions

A motion brush is an elementary digital scene comprised of geom-
etry that moves over time. More formally, let M refer to a motion
brush associated with an animated scene. We denote |M | the dura-
tion of the brush animation. For time t ∈ [1, |M |], Mt is the state
of M at the time t, which corresponds to the tth frame of the brush
animation. We use S to denote a motion stamp, which is an in-
stance of a motion brush M created as the user paints. Besides the
content of the scene, a motion stamp stores a number of parame-
ters P that characterize this particular instance. Table 1 enumerates
the parameters used in our implementation. Please note that our
method is not restricted to the set of parameters presented in this
paper. As described in Section 4, extending this set requires little
implementation.

3.3 Authoring motion brushes

Our authoring framework for motion brushes involves two core
components. First 3D geometry is created and animated using tra-
ditional animation tools. Our implementation works with Maya
[Maya 2014] and supports polygonal models animated with any
keyframe or simulation method. This flexibility gives artists a great
deal of creative freedom. We fix the convention that the origin of
the Maya scene will be aligned with the point at which the scene
is instantiated as a motion stamp. Likewise, the x-axis direction
will align with the direction of painting. In this way, artists can an-
ticipate how animation should be developed in order to achieve a
desired effect when it is used as a motion brush.

The animated scene can be used as-is to define a motion brush,
and we present one example (Figure 5) showing this functionality.
However, we support a second component that makes use of the
OverCoat 3D painting system [Schmid et al. 2011; Bassett et al.
2013] for stylization. Animated geometry created in Maya is im-
ported into OverCoat where its appearance can be stylized using
OverCoat’s 3D painting functions. OverCoat paint strokes are as-
sociated with the geometry and can be rendered to create highly
stylized looks.

Once modelling, rendering, and stylization has been completed, the
user can decide to create a motion brush from the edited scene, and
our system caches all relevant information, including mesh connec-
tivity, vertex positions at each frame of the animation, and Over-
Coat painting information necessary to achieve the chosen stylized
look.

3.4 Painting with motion brushes

Motion brushes are used to embellish 3D scenes with animated con-
tent. Painting with motion brushes is similar to traditional painting
with stamp-based brushes. The user selects a motion brush and sets
relevant brush parameters such as the brush size Rs, spacing r, or
opacity o. The user then draws a stroke using a stylus or other input

Rw

dw

Rs

ds

Figure 2: Radius Definition. Rs is projected onto the embedding
mesh obtaining a world space brush size Rw which is used to create
the motion stamps. To do so, we search for the intersection between
a camera ray centered at the brush and the surface, obtaining the
distance dw. Then, we apply: Rw = Rs · dw/ds

S

S(i)
S(0)

ti

t0

nin0

Figure 3: Stroke Sampling in 3D. The stroke S defines the tangent
(red). The normal (blue) is taken from the embedding surface. If
the stroke extends off the surface, the normal is propagated using
rotation minimizing frames.

device. This stroke is represented as a polyline which is embed-
ded into the 3D scene using the method described in [Schmid et al.
2011] and stored persistently for future modification. The value Rs

is adjusted based on projection to determine the world-space brush
size Rw of the motion stamps (Figure 2). The spacing value s is
set by the user as a percentage of Rw to determine the sampling
frequencey along the stroke.

Next, local coordinate frames are computed along the embedded
stroke. When the embedded stroke lies on some 3D object in the
scene, the frame is defined by the stroke tangent, the object’s sur-
face normal and the cross product of the two. In the more gen-
eral case where strokes depart from an object’s surface, our system
propagates normal information using rotation minimizing frames
[Wang et al. 2008].

Finally, motion stamps are instantiated in the scene along the stroke
according to the stroke spacing value, aligning the origin of each
stamp with the local coordinate frame of the stroke. As defined in
3.2, each of these stamps is characterized by a set of parameters P .
The parameters for each stamp are assigned values controlled by the
user through the UI. While legacy parameters typical to 2D painting
interfaces, such as radius, opacity, etc. are controlled similarly to
within such software, the ones specific to motion brushes require
specific UI components, as described in section 4.

When instantiating a motion stamp Si using a hierarchical motion
brush, a hierarchy of stamps will be instantiated in the scene. We
propagate the parameter values used to instantiate Si through the
hierarchy tree of stamps, from the root down, to ensure an intuitive
behavior for the user. Further details on propagating these values is
provided in 4.

3.5 Parameter painting

The manipulation of motion stamp parameters unlocks a number
of possibilities, drastically increasing the artistic freedom of mo-

tion brushes. Our method supports three types of editing based on
painting gestures:

Direct editing. The most straightforward tool we provide the user
with lets them directly repaint parameters. The user selects a pa-
rameter p from P , sets its new value v through UI elements, and
uses the ”parameter brush” to paint over existing motion stamps.
The stamps below the cursor have their parameter p changed to the
new value v.

Parametrization along the stroke. The structure of a stroke can
be used to coordinate the parameters of motion stamps relatively
to one another. For that purpose, every stroke carries an arc-length
parametrization along its painting direction. The user can use this
arc length value to control any scalar parameter associated with the
motion brushes, such as the opacity o or start time tstart, obtaining
motion stamps that gradually appear or disappear, or offsetting the
start time of the animation, as shown in Figure 10. In our imple-
mentation, the user can specify a custom mapping using a piece-
wise linear curve widget.

S1

S2

S3

m

d2

d1

d3

Figure 4: The user paints three vector field strokes, S1, S2, and
S3. The field contribution at the location of the motion stamp m is
computed as sum of the field values (or vectors) at the nearest points
on Si, weighted by the distances di using the Shepard interpolation
scheme.

Field parametrization. Our implementation provides a painting
interface where the user draws field strokes from which either a
scalar or a vector field is generated and mapped to a parameter of
the selected motion stamps. Scalar fields can influence opacity and
animation start time. Vector fields can change the orientation of
the motion stamps (Figure 5), or be used to advect their position.
The influence of the field stroke(s) on the motion stamps is shown
in Figure 4. For a motion stamp m, we project its position onto
each field stroke Si. Naming the parameter value carried by Si at
the projected position P (Si) and di the distance from m to Si, we
compute the value of the parameter P on m using Shepard interpo-
lation of the field strokes:

Pm =
∑

Si∈Strokes

1

d2i
P (Si)

In addition to direct specification via painting, the user can import
external data such as the velocity field from a physical simulation.
Figure 12 shows an example from a fluid simulation created in
Maya. The velocity field is used to advect motion brush strokes,
while the density field is mapped to a scaling of the motion stamps.

3.6 Hierarchical motion brushes

Motion brushes become particularly powerful when combined to-
gether. As previously stressed, we allow any scene to be used as a
motion brush. This remains valid for complex scenes created using

a b c

rough painting oriented

Figure 5: The grass example demonstrates our vector field parametrization. (a) A few motion brushes made of animated blades of grass are
created and (b) used to roughly paint the terrain. (c) The user then paints a vector field (red) orienting the grass as if moved by the wind.

motion brushes. This formulation provides a natural way to manage
complexity: simple brushes can be created, saved, and then used
to form more complex ones. This provides a very intuitive way
to reuse content at different levels of detail, but also proves useful
for designing coarse-to-fine animations. In [Ma et al. 2013], com-
plex animations comprising of elementary animated pieces such as
a school of fish can be seen as combinations of coarse-scale and
fine-scale motions. Hierarchical motion brushes give direct control
to the user to create such complex animations. Designing elemen-
tary animated brushes corresponds to what will be a fine-scale mo-
tion in the final scene, while using those brushes to paint on a mesh
animated at a lower frequency depicts the coarse-scale motion that
will govern the overall shape of the animation.

4 Implementation and UI elements

4.1 Implementation

Core A motion brush is a digital scene containing meshes that po-
tentially carry strokes painted with existing motion brushes. Those
strokes contain motion stamps, that are potentially roots of subtrees
in the scene hierarchy, as described in 3.6. See Figure 7 for an ex-
ample of such a hierarchy. When editing a mesh that carries strokes,
or individually editing such strokes, or when those are animated, a
parsing of the tree is necessary to update every stamp in the scene.
For example in the case of Figure 7, stretching the main mesh will
stretch the stroke it carries using the method described in [Bassett
et al. 2013]. The stamps on that stroke are moved to stay on the
deformed stroke, and so on. However, when no such change is op-
erated, parsing the tree becomes unnecessary. In particular when
users move the camera around the mesh to paint on it from differ-
ent angles, they expect an interactive feedback. Our solution on an
implementation point of view is to keep a list of ”renderable” ele-
ments such as stamp geometry, and paint strokes in the case of our
implementation using the Overcoat technology. The renderer then
never accesses the tree and renders that list of elements directly.

Parameters As previously stated, motion stamps instantiated
through painting carry a set of parameters that need to be initialized.
The higher level stamps (the ones directly owned by the painted
stroke) have their parameters assigned values obtained through UI
elements, as described in Section 4.2. However, when instantiating
a hierarchical stamp, the parameters for its child stamps already
have significant values by design. Therefore, we equip motion
stamps with a inherit() method that computes values for its
parameters depending on their parent stamp. For example, when
designing the hierarchical brush in Figure 9, the drop was set to
start at frame 1, and the splash at frame 10. When instantiating a
stamp using this hierarchical brush in an animated scene so that it
starts at frame 24, we want the drop to start at frame 24, and the
splash to start at frame 33. So our inherit() method will con-
tain the line this.startFrame += parent.startFrame
- 1;.

Main mesh

Stroke

Stamps

Stroke

StampsT

Figure 7: Example of a scene graph using motion brushes. The
user created a cube brush and used it to paint a stroke on a cone.
The obtained scene was described by the tree T . The painted cone
was then used as a motion brush along with the cube brush to paint
on an rounder mesh. When instantiating the stamp using the cone
brush, T was added as a subtree to the scene hierarchy.

Extending the motion brushes within any application comes down
to extending the list of parameters P . This is made very easy by our
implementation: one only needs to provide a UI control for initial-
izing the new parameters, provide a formula for propagating them
through the stamp hierarchy, and use the parameters in the renderer,
which will access the stamps directly and use the parameters values
for rendering.

4.2 Interface

In order to give full control to the user over the painted scene, we
interface all the parameters on which motion stamps depend. In the
same fashion as in traditional 2D painting software, sliders are used
to control the scalar values such as the opacity, spacing, etc. As for
the animation starting time, our system includes a timeline widget
which is essentially a slider that lets the user set the current time and
review the animation by moving over time. When painting with an
animated motion brush, the start frame for the instantiated stamps’
animation is the current one. This lets users move in time and paint
when they want an animation to start.

In several use cases, the user might want to have a parameter vary
along a stroke. While this is editable post-painting as described in
3.5, we also offer that option up front. A curve editor lets users
design the shape of the parameter value along the strokes, as show-
cased in Figure 11.c where a user-designed curve is used to delay
the start of the motion stamp animations along the stroke.

a b c

Figure 6: This example demonstrates the edition of coarse-to-fine motion. A bird brush is first defined (a), then used to paint a mesh depicting
a wave (b). That wave of birds is used on a plane moving forward (c) to create a flock of birds.

Furthermore, a powerful UI element we provide lets users chose
which motion brushes will be used along the strokes they paint.
Our interface displays a stroke profile, onto which users can drag
and drop brushes. Through sliding delimiters, the user can chose
which brush should be used on which portion of the strokes they are
about to draw. This is particularly useful when several brushes are
combined in a semantic way (beginning, middle end), or when the
user wants to randomize which motion brush to use, by grouping
several brushes on the same portion of the stroke.

stroke
profile

delimiters

brush
group

child
brushes

a b

Figure 8: This illustration combines various elements and is simi-
lar to the corresponding UI element in our implementation, shown
in Figure 5. (a) The orange bar represents the paint stroke. The
user places motion brushes on it. The delimiters in blue let the
user indicate the desired distribution of the motion brushes along
the stroke. Motion brushes can be stacked in groups (red). During
the instantiation, motion stamps on this section of the stroke will be
associated randomly with one of the brushes in the group. (b) Any
motion brush can include a hierarchy of brushes.

5 Results

The following examples target specific areas of this method, but
share the intent of creating diverse visual styles. The reader is in-
vited to watch the accompanying video to see the corresponding
animated sequences.

5.1 Spatial and temporal hierarchy

To show the importance of spatial and temporal hierarchies, we pro-
pose a simple example shown in Figure 9. Notice that such hierar-
chy is used throughout all the results of this paper. To obtain the
effect of rain, the user creates separate motion brushes for drops of
rain and splashes on the ground. These two can then be combined
into a single composite motion brush. Once created, the motion
brush is then be painted across on the ground. By randomizing the
start time of each instance, a stylized rain effect is achieved. Ad-
ditional complexity is obtained in this example by generating mul-
tiple splash effects and randomly choosing among them when the
drop hits the ground. Notice how all the components of this scene

timedrop brush splash brush

hierarchical brush

Figure 9: Rain Example. This example shows how complex scenes
can be constructed with a hierarchy of simple brushes. A drop and
a splash brushes are designed, and combined into a single hierar-
chical motion brush. On the right, this motion brush is used to fill
a scene with rain.

are very simple on their own, while complexity is obtained through
hierarchy and instancing.

5.2 Parametrization

For a system to be usable in practice, complexity must be subject
to artistic control. As shown in section 3.4, our system provides
control over a number of parameters in an intuitive way.

Figure 10 shows an example of parametrization along the stroke. A
motion brush with footprints is created and applied to a number of
strokes drawn on a ground. Without any parametrization, footprints
would appear at the same time everywhere. The appropriate result
is achieved by adding a delay on the animation start of the instances
along the stroke. Figure 11 shows the same principle, this time
applied on a motion brush painted over a moving proxy geometry.

a b c

Figure 10: Footprint example showing parametrization along the
painting direction. (a) A motion brush with left and right footprints
is created. (b) Three strokes are drawn on the ground, and the
start time of the motion brush instances is parametrized along the
stroke. (c) As a result, footprints are generated one after the other,
as if invisible people where walking on the snow.

a b c
t offset start

48

5
0.0 1.0stroke length

Figure 11: This figure illustrates the creation of the fire example shown in Figure 1. From two textured planes depicting pink flames (a), a
motion brush is created and used to paint over the pipe connecting the two hands (b). Notice that the pipe is rigidly attached to the yellow
hand, while the blue hand slides along the pipe, reaching the position shown here. (c) shows the curve generated by the user to correctly time
the delay of the flames, giving the illusion of the fire following the blue hand.

In Figure 5, the user generates a grass-filled terrain using motion
brushes with animated blades of grass. Through the dialog shown in
Figure 5 (a), the user specifies that motion stamps should randomly
chosen from four motion brushes available. After painting the ter-
rain with grass (5 (b)), the orientation of the grass looks chaotic as
it depends on the paint direction. To simulate the effect of wind, the
user draws a vector field (red arrows in 5 (c)), which re-orient the
motion stamps. The accompanying video shows a further editing
step, where the user applies a scalar field parametrization to offset
the animation start of the motion stamps, generating a wave effect.

Another example of field parametrization is shown in Figure 12. In
this example, the goal of the user was to generate stylized smoke
made of Santa sleds. For that purpose, motion brushes depicting
Santa Claus and a reindeer were created. To create realistic smoke
dynamics, a fluid simulation was computed in Maya, and the ve-
locity and density field were imported into our application. The ve-
locity field was used to advect the strokes, while the motion stamps
were scaled based on the density field.

6 Conclusion

We have presented hierarchical motion brushes, a novel tool com-
bining the controllable reuse of traditional brushes with the power
and flexibility of 3D animation authoring tools. Motion brushes
are not restricted to 3D applications and are suitable for 2D as well
as 2.5D applications. We decided to demonstrate the reach of this
method over a number of 3D examples that depict stylized animated
effects encapsulated into a brush framework.

Limitations of our current method point to several areas of future
work. One limitation of this method is that, while motion brushes
may instantiate complex data, the coordination of such data must
be orchestrated by the user. In technical terms, this limitation is ex-
pressed by the fact that the scene hierarchy is a tree with informa-
tion propagating only from the root to the leaves. While this allows
for coordination between direct neighbors in the tree hierarchy, sep-
arate branches remain unaware of one other. Abstractions to author
the coordination between different motion brush animations is an
interesting area of future research. In common applications such as
video editing software, this can be achieved through a timeline wid-
get containing several tracks. In the case of software using motion
brushes, we need a more complex timeline letting users coordinate
different animations at different hierarchical levels. A more elab-
orate approach would be to incorporate an event system to trigger
Motion Brush animations, which would help a lot with authoring
the relative timings of motion stamps.

A second limitation lies in the desire to have real-time feedback
while instantiating large numbers of animations. In our implemen-

tation, we opted to preemptively cache as much data as possible,
resulting in relatively long loading times (within one minute) but
good responsiveness while working on any of the scenes shown in
this paper. Similar to most 3D animation tools, one may consider a
solution where the user operates with a fast real-time preview ren-
der, while the final results are generated offline using a production-
quality render. In general, particular care should be taken in the
implementation of this method, especially if targeting production
environments, in order to minimize evaluations of the brush hierar-
chy.

One very interesting area of research is the one of contextualized
painting, where motion brushes react differently when used on dif-
ferent parts of the canvas. Our current implementation would re-
quire users to paint various parameter fields in the scene and map
those parameters to the motion brushes they use. This becomes
a tedious process and automatically computing such fields would
be very useful. For instance, one could think of a brush which
paints grass on soil and moss on rocks. One could also conceive
a system where motion stamps are aware of each other and present
contextualized behaviors with respect to the presence of other mo-
tion stamps. This could be used, for instance, to paint a seaside
scene, where water warriors riding the waves charge sand warriors
waiting on the beach, the warrior animation being dependent on the
proximity of other warriors. This could be implemented by having
instantiated stamps alter the parameter fields in the scene for ex-
ample. We believe that motion brushes provide a solid base upon
which such directions can be explored, and hope to see in the near
future new tools bringing more stylization and power to the tip of a
brush.

References

BASSETT, K., BARAN, I., SCHMID, J., GROSS, M., AND SUM-
NER, R. W. 2013. Authoring and animating painterly characters.
ACM Trans. Graph. 32, 5 (Oct.), 156:1–156:12.

BÉNARD, P., BOUSSEAU, A., AND THOLLOT, J. 2011. State-of-
the-Art Report on Temporal Coherence for Stylized Animations.
Computer Graphics Forum 30, 8 (Dec.), 2367–2386.

CHU, N., BAXTER, W., WEI, L.-Y., AND GOVINDARAJU,
N. 2010. Detail-preserving paint modeling for 3d brushes.
In Proceedings of the 8th International Symposium on Non-
Photorealistic Animation and Rendering, ACM, NPAR ’10, 27–
34.

DONTCHEVA, M., YNGVE, G., AND POPOVIĆ, Z. 2003. Layered
acting for character animation. ACM Trans. Graph. 22, 3 (July),
409–416.

a b c

Figure 12: Stylized smoke example. A fluid simulation (a) is computed in Maya. Two motion brushes–one with a Santa sled and reindeer,
and one with spinning stars–are used to paint a number of strokes. The strokes are advected in space using the velocity field, while their size
and opacity is parametrized by the density field. The resulting effects are shown in (b) and (c) respectively.

GIMP, 2013. The GNU Image Manipulation Program.
http://www.gimp.org/.

HSU, S. C., LEE, I. H. H., AND WISEMAN, N. E. 1993. Skeletal
strokes. In Proceedings of the 6th Annual ACM Symposium on
User Interface Software and Technology, ACM, New York, NY,
USA, UIST ’93, 197–206.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing
strokes directly on 3D models. ACM Transactions on Graphics
(Proc. SIGGRAPH) 21, 3 (July), 755–762.

KAZI, R. H., IGARASHI, T., ZHAO, S., AND DAVIS, R. 2012.
Vignette: Interactive texture design and manipulation with
freeform gestures for pen-and-ink illustration. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Sys-
tems, ACM, New York, NY, USA, CHI ’12, 1727–1736.

KAZI, R. H., CHEVALIER, F., GROSSMAN, T., ZHAO, S., AND
FITZMAURICE, G. 2014. Draco: Bringing life to illustrations
with kinetic textures. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ACM, New York, NY,
USA, CHI ’14, 351–360.

LU, J., BARNES, C., DIVERDI, S., AND FINKELSTEIN, A. 2013.
Realbrush: Painting with examples of physical media. ACM
Transactions on Graphics (Proc. SIGGRAPH) (Aug.).

MA, C., WEI, L.-Y., LEFEBVRE, S., AND TONG, X. 2013. Dy-
namic element textures. In SIGGRAPH 2013, 90:1–90:10.

MAYA, 2014. Autodesk Maya. http://www.autodesk.com/maya.

MĚCH, R., AND MILLER, G. 2012. The Deco framework for
interactive procedural modeling. Journal of Computer Graphics
Techniques (JCGT) 1, 1 (Dec), 43–99.

OLSEN, S. C., MAXWELL, B. A., AND GOOCH, B. 2005. Interac-
tive vector fields for painterly rendering. In GI ’05: Proceedings
of the 2005 conference on Graphics interface, Canadian Human-
Computer Communications Society, School of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, Canada, 241–
247.

PHOTOSHOP, 2012. Photoshop CS6 by Adobe Systems Incorpo-
rated. http://www.adobe.com/photoshop.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND
SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., SIGGRAPH ’97, 401–
406.

SCHMID, J., SENN, M. S., GROSS, M., AND SUMNER, R. W.
2011. Overcoat: An implicit canvas for 3d painting. In ACM
SIGGRAPH 2011 Papers, ACM, New York, NY, USA, SIG-
GRAPH ’11, 28:1–28:10.

SCHWARZ, M., ISENBERG, T., MASON, K., AND CARPENDALE,
S. 2007. Modeling with rendering primitives: An interactive
non-photorealistic canvas. In Proceedings of the 5th Interna-
tional Symposium on Non-photorealistic Animation and Render-
ing, ACM, New York, NY, USA, NPAR ’07, 15–22.

SCHWARZ, M., ISENBERG, T., MASON, K., AND CARPENDALE,
S. 2007. Modeling with rendering primitives: an interactive
non-photorealistic canvas. In Proceedings of the 5th interna-
tional symposium on Non-photorealistic animation and render-
ing, ACM, NPAR ’07, 15–22.

TAKAYAMA, K., SCHMIDT, R., SINGH, K., IGARASHI, T.,
BOUBEKEUR, T., AND SORKINE, O. 2011. Geobrush: In-
teractive mesh geometry cloning. Computer Graphics Forum
(proceedings of Eurographics) 30, 2, 613–622.

THOMPSON, II, T. V., PETTI, E. J., AND TAPPAN, C. 2003.
Xgen: Arbitrary primitive generator. In ACM SIGGRAPH 2003
Sketches &Amp; Applications, ACM, New York, NY, USA, SIG-
GRAPH ’03, 1–1.

ULICNY, B., CIECHOMSKI, P. D. H., AND THALMANN, D. 2004.
Crowdbrush: Interactive authoring of real-time crowd scenes.
In Proceedings of the 2004 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, SCA ’04, 243–252.

WANG, W., JÜTTLER, B., ZHENG, D., AND LIU, Y. 2008. Com-
putation of rotation minimizing frames. ACM Trans. Graph. 27,
1 (Mar.), 2:1–2:18.

ZBRUSH, 2013. Zbrush, 4R6 by Pixologic.
http://www.pixologic.com/zbrush.

