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Figure 1: Multi-view stereo combined with a data-driven leaf synthesis approach can produce realistic reconstructions of dense foliage.

Abstract

Flora is an element in many computer-generated scenes. But trees,
bushes and plants have complex geometry and appearance, and are
difficult to model manually. One way to address this is to capture
models directly from the real world. Existing techniques have fo-
cused on extracting macro structure such as the branching structure
of trees, or the structure of broad-leaved plants with a relatively
small number of surfaces. This paper presents a finer scale tech-
nique to demonstrate for the first time the processing of densely
leaved foliage - computation of 3D structure, plus extraction of
statistics for leaf shape and the configuration of neighboring leaves.
Our method starts with a mesh of a single exemplar leaf of the tar-
get foliage. Using a small number of images, point cloud data is ob-
tained from multi-view stereo, and the exemplar leaf mesh is fitted
non-rigidly to the point cloud over several iterations. In addition,
our method learns a statistical model of leaf shape and appearance
during the reconstruction phase, and a model of the transforma-
tions between neighboring leaves. This information is useful in two
ways - to augment and increase leaf density in reconstructions of
captured foliage, and to synthesize new foliage that conforms to a
user-specified layout and density. The result of our technique is a
dense set of captured leaves with realistic appearance, and a method
for leaf synthesis. Our approach excels at reconstructing plants and
bushes that are primarily defined by dense leaves and is demon-
strated with multiple examples.
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1 Introduction

This paper describes the 3D capture, modeling and synthesis of
dense foliage. Digital modeling of the real world is everyday tech-
nology. For example, Google Street View is a standard way to
browse cities online, Google Earth extends this to 3D, while a late-
breaking concept like the IllumiRoom' uses a model of an indoor
environment to achieve custom projection. But much of the exist-
ing work has focused on structured man-made environments, and
the modeling of flora has had relatively little attention. Some rea-
sons for this have been the lower commercial potential of modeling
flora in the first waves of research on modeling the real world, and
the acceptability of utilizing a small set of generic plant models for
some applications e.g. for architectural design. There is addition-
ally the technical hurdle - the complexity, diversity and non-rigidity
of flora mean that there are fundamental research problems to ad-
dress, and techniques that work for structured environments do not
always readily extend.

Capture of flora enables multiple new applications. Firstly, games
and movies continue to demand more sophisticated digital environ-
ments. In the games domain, Pure® has extensive, realistic natural
environments. Content such as this is created manually which is
time-consuming and costly. In the movie industry, Avatar® illus-
trated breathtaking flora environments but again required intensive
and expensive manual work. Accurate flora models will enable new
educational tools such as immersive reality [Wilson 2009] and pro-
vide an archiving method for natural environments. In the scientific
community, tools to do quantitative analysis of flora imagery, such
as estimation of carbon sequestration [Ahrends et al. 2009], have
started to appear but there is great potential for future research plus
crossover to the fields of vision and graphics. The concept of “Cit-
izen’s Observatories” [COBWEB 2013] proposes that citizens use
regular hand-held devices to capture their natural environment, to
build a massive online database which is both a public resource and
a valuable source of data for researchers. Such databases of the bio-
sphere require new ways to analyze, visualize and mine the data.

One of the ways in which the capture of flora differs from structured
environments is that it poses a multi-scale problem. For example, a
tree has interesting structure at the upper scale of its branches and
at the lower scale of its leaves. This suggests that a collection of
different algorithms is needed for scanning a flora environment. In
keeping with this philosophy, this paper focuses on a specific goal
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- modeling of dense foliage like that shown in Figure 1. The ex-
pectation is that it could be one component of a larger system, and
can complement other work. Tree modeling has produced impres-
sive results in recent years, but existing approaches have focused on
capturing the high-level branching structure of a tree so that the 3D
result looks similar to the real tree from a distance - the fine-scale
twigs and leaves are often synthesized arbitrarily rather than being
captured. Our work is intended to provide directly captured foliage,
with the option of synthesizing foliage based on measured statistics
of leaf shape and foliage configuration.

Our focus is on fully automatic capture of dense foliage. Other
work has used image-based tools for semi-manual creation of leafy
plant models. But a method requiring manual interaction is not
applicable to dense foliage with at least hundreds of leaves. Our
proposed solution is to take an exemplar leaf with known geometry
and a small number of images of the flora to be reconstructed, and
then run an iterative 3D recovery process to generate a dense re-
construction. The idea is to capture the dominant uppermost leaves
in a first iteration, build a statistical model of leaf shape and ap-
pearance from these leaves, and then add more challenging leaves
from the background on subsequent iterations with the statistical
model as a guide. Since it is very challenging to recover extremely
dense foliage due to occlusions, we augment our reconstruction al-
gorithm with a novel leaf synthesis approach that takes advantage
of the statistical model to generate new leaves which are indistin-
guishable from the directly captured flora. We also show that our
synthesis method can be used to synthesize new plants from the
captured species within a user-defined volume, providing a valu-
able approach to scene generation in video games and films. To
our knowledge, this is the first method to focus on automatic cap-
ture of fine scale leaf details of flora. The key contributions can be
summarized as follows:

e An iterative method for reconstructing dense leaves from a
handful of photos.

e An approach to build statistical models of captured leaf shape
and appearance, and leaf neighbor relationships.

e A new leaf synthesis technique that can be used to increase the
density of a computed leaf reconstruction, or to incorporate
flora into scenes under artistic direction.

2 Related Work

Producing high-quality flora models is a challenging task. Previous
approaches have focused either on providing tools to alleviate the
difficult modeling process, or on capture techniques to reconstruct
flora from the the real world.

Flora Modeling. A number of researchers have described inter-
active tools for flora modeling. Primarily, sketch-based and other
interactive systems are popular due to their ease of use [Munder-
mann et al. 2003; Okabe et al. 2005; Anastacio et al. 2006; Chen
et al. 2008; Tan et al. 2008; Pirk et al. 2012b]. These methods
are typically used for generating single leaf structures or the overall
shape of trees. Wither et al. [2009] design a sketch tool based on sil-
houettes that allows users to create several trees at various levels of
detail. Another approach to simplify flora modeling is biologically-
motivated L-systems [Lindenmayer 1968; Prusinkiewicz and Lin-
denmayer 1990; Prusinkiewicz et al. 1994] or procedural mod-
els [Greene 1989; Deussen and Lintermann 2005; Talton et al.
2011; Pirk et al. 2012a], which automatically generate botanical
structures of plants through a set of rules. This approach can be
extended to include interactive control [Lintermann and Deussen
1999; Palubicki et al. 2009], however with procedural approaches
it can be very complex to design adequate rules in order to generate

realistic plants, where image-based reconstruction techniques can
capture specific flora species with a desired appearance. Procedural
approaches are actually often used to complement reconstruction
algorithms, to fill in missing details. In our paper we also use a
form of synthesis to fill in missing details, however our technique
is to learn the appropriate flora structure and color models from the
captured data.

Flora Capture. Recently, a number of techniques have emerged
for reconstructing the shape of trees and plants from images or laser
scans of real foliage. Reche-Martinez et al. [2004] use a volumet-
ric approach from a small number of images. Neubert et al. [2007]
model trees from particle flows in a volume generated from im-
ages. Xu et al. [2007] and Livny et al. [2010] create tree mod-
els from laser-scanned point clouds, and Livny et al. [2011] de-
signed a lobe-based representation to efficiently store the tree mod-
els. These methods all focus on capturing the large-scale branching
structure or distant appearance of trees, while arbitrarily synthe-
sizing the fine-scale leaf details. In contrast, our method aims to
reconstruct plant-specific leaf geometry and appearance, allowing
us to render these important details as they appear on the real tree.
Our technique could complement the above methods, as they could
be combined to form complete tree reconstructions. In the area of
tree physiology, Sonohat et al. [2006] present a system for scanning
partial flora and then synthesizing additional leaves using botanical
rules. While their goal is to speed up the task of exhaustive leaf
digitization for tree architecture analysis, our approach is similar
in spirit although we require only images as input and learn a sta-
tistical model of the captured leaves for guiding a new synthesis
algorithm.

Some methods attempt to model large-scale tree motion from
video [Diener et al. 2006; Li et al. 2011]. Capturing foliage mo-
tion at the fine scale is outside the scope of our paper, however we
consider this an interesting direction for future work.

Finally, image-based modeling approaches combine reconstruction
with user interaction to produce realistic plants [Quan et al. 2006;
Ma et al. 2008] and trees [Tan et al. 2007]. The method of Quan
et al. [2006] is able to produce accurate leaf geometry, but does not
easily scale to large, dense plants and bushes which would require a
substantial amount of user-interaction. Our automatic approach of
image-based reconstruction, learning a statistical model of the flora
and then synthesizing additional leaves is better suited for large-
scale data-driven modeling.

Leaf Appearance. In addition to reconstructing geometry, our
method captures a statistical color model of the leaves. Other work
has looked deeper into leaf appearance modeling. Baranoski and
Rokne [2001] analyzed the reflectance of leaves and observed that
they reflect light similarly to an ideal diffuse reflector, and Habel
et al. [2007] leverage this fact when computing a compact, approx-
imate shading model for real-time leaf relighting. While complex
leaf appearance modeling can improve the visual quality of our re-
sults, the topic is beyond the scope of this paper.

Fitting Template Geometry to Points. Our reconstruction algo-
rithm includes a technique to fit leaf geometry to 3D points in a
RANSAC sampling framework. Schnabel et al. [2007] also use
RANSAC to locate primitive shapes in range scan data. Papazov
and Burschka [2011] extend this idea to find the pose of more com-
plex but specific shapes in point clouds that contain little noise.
In contrast, we fit arbitrary leaf shapes to noisy point clouds with
a non-rigid alignment technique and demonstrate how a statistical
model can be built and used as a fitting guide.
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Figure 2: Overview of our approach.

3 Overview

The input to our method is a small number of overlapping images of
the leaves, and at least one exemplar leaf that we reconstruct from a
pruned example (Section 4). A standard structure-from-motion ap-
proach [Snavely et al. 2006] provides the camera parameters, and
we develop a custom multi-view stereo reconstruction algorithm
to generate a dense point cloud from the foliage (Section 5). The
geometry of the flora is obtained from a novel non-rigid leaf fit-
ting approach, which iteratively aligns the exemplar to the point
cloud data in a RANSAC framework [Fischler and Bolles 1981]
(Section 6). While fitting the leaves to the point cloud, we build
up a statistical model of leaf shape and appearance based on the
3D morphable model of Blanz and Vetter [1999]. The model is
trained on unoccluded leaves which are expected to dominate the
fitting in the first iteration, and we use the model to guide fitting
in subsequent iterations. Finally, the statistical model is combined
with a novel synthesis algorithm to position new leaves in the scene
with the realistic structure and appearance of the plant. We demon-
strate two applications of leaf synthesis, one to increase the density
of real captured flora, and the other to generate new foliage in a
user-defined area with the same characteristics of the captured flora
(Section 7). Figure 2 illustrates our system.

4 Acquisition

There are two phases to the acquisition process. We first record
images of the flora to be reconstructed, and then we capture at least
one leaf exemplar.

Scene Acquisition. The flora is photographed from a small num-
ber of viewpoints, which contain partially overlapping views of the
leaves. In all of our experiments we capture between 8 and 20 views
with a handheld camera (Canon 500D), while simply walking by
the plant at a distance of approximately 1 meter. Since we require
only hand-held, uncalibrated camera images, our approach can be
used for flora modeling in both urban and remote natural environ-
ments. Approaches that rely on laser scanners, in contrast, require
more expensive hardware that is less portable.

Constructing an Exemplar Leaf. In order to reconstruct leaves
that are faithful to the geometry of the plant, we require an ex-
emplar leaf of the specific species. To construct an exemplar, a
leaf is pruned from the plant and scanned to get the 3D geometry.
For this step, we use a multi-view stereo approach [Bradley et al.
2008] initialized by the calibration method described by Beeler et
al. [2010], although any other suitable scanning method could be
applied. Some of the exemplars we prepared for our datasets are
shown in Figure 3. Once an exemplar is constructed for a species,

it can be used for all instances of that plant. Note that we require
only a single exemplar leaf, however multiple exemplars could also
be scanned if the foliage exhibits large variations in leaf shape.

Figure 3: Leaf exemplars for our datasets.

5 Initial Reconstruction

Reconstruction starts by estimating the internal parameters and rel-
ative locations of the camera images. We use a freely-available
structure-from-motion software package*, developed for the Photo-
Tourism work by Snavely et al. [2006]. The structure-from-motion
algorithm also generates a sparse set of 3D points for visible fea-
tures in the images, which can be used for computing initial depth
estimates for the cameras. We call these points Ps.

The goal of the initial reconstruction step is to generate a dense
point cloud representation of the leaves, which we will call Py. Our
reconstruction approach differs from many standard multi-view re-
construction algorithms (see Seitz et al. [2006] for a survey), which
try to find a single 3D surface that best describes the images. In
our case, a dense set of leaves is actually many small surfaces of
varying shape and size, often containing many self-occlusions and
depth discontinuities. For this reason, we require an approach that
decouples the estimation of the 3D structure from the surface re-
construction. Depth map approaches [Goesele et al. 2006; Strecha
et al. 2006; Bradley et al. 2008], which compute per-pixel depth es-
timates for each camera, are well-suited for our problem. The depth
maps can then be easily combined into a single dense point cloud.

We develop a simple correlation-based depth map reconstruction
algorithm, but note that several other multi-view stereo methods
could be used instead. For each camera C'p, we identify a neighbor-
ing reference camera C'r with significant view overlap. The depth
map for C'p is computed by searching for each pixel pp of Cp in
the image of Cr, and then triangulating to get depth values. We
use a sliding window-match technique, by shifting a local 15 x 15
pixel window centered on pp along the corresponding epipolar line
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in Cr, and choosing the sub-pixel match with the highest normal-
ized cross-correlation score. The search is constrained to points
that lie within the bounding box of the sparse points Ps. Depth val-
ues are computed independently for each pixel in a greedy fashion.
As we have mentioned, the leaves form a chaotic array of tiny sur-
faces, and this tends to hinder global solutions such as optimizing
over the entire unknown depth map [Szeliski 1999]. While our lo-
cal reconstruction algorithm can lead to significantly more outliers
in the combined point cloud, our leaf-fitting approach is designed
to robustly handle a large number of outlying points.

6 Leaf Fitting

Our leaf fitting approach identifies multiple occurrences of fits be-
tween the exemplar leaf mesh and the dense point cloud computed
in Section 5. The technique is iterative, continually aligning new
leaves and then updating the point cloud by removing those points
assigned to reconstructed leaves. We start by describing how a sin-
gle leaf is aligned, and then discuss our framework for global leaf
fitting.

6.1 Single leaf alighment

We wish to fit our leaf exemplar to points in the point cloud that
correspond to a real leaf. We initialize the exemplar with a random
initial pose somewhere in the volume spanned by the points.

Rigid alignment. The iterative closest point (ICP) algo-
rithm [Besl and McKay 1992] is an efficient approach for rigid
alignment of geometry, and we extend this technique to perform
non-rigid alignment of the leaf to a subset of points in the vicinity of
the initial pose. Depending on this initialization, the nearby points
may by inliers or outliers, however at this stage the alignment pro-
ceeds optimistically. We perform n ICP steps, while computing dis-
tances for p percent of the mesh vertices each step (refer to Table 1
for a list of all parameter values used in the algorithm). Distances
are computed efficiently using a kd-tree. After rigid alignment, we
compute a score for this transformation ¢ as
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where v; are the vertices of the leaf mesh and c(v;) are the closest
points in the point cloud.

It is well-known that ICP requires a good starting location, so if the
initial pose was close to a real leaf then S; will be lower than if the
leaf ended up aligning to outlier points. We empirically determined
a threshold 7, which indicates if the exemplar has been rigidly fit to
the pose of a real leaf. When S; < 7, we proceed with non-rigid
alignment, in order to obtain a better fit of the leaf to the points.

Non-rigid alignment. The goal is to deform the leaf in a way that
it best fits the points, but also remains faithful to the plant species
in terms of leaf shape. At the beginning, we have only one template
leaf and so we wish to stay as close as possible to this leaf shape
while globally deforming the mesh. As-rigid-as-possible mesh de-
formation is a popular field of study, and we employ the common
Laplacian surface editing method of Sorkine et al. [2004], in an iter-
ative closest point framework. Starting from the transformed exem-
plar mesh, we iteratively compute new vertex positions by minimiz-
ing the following global energy functional over the set of vertices
V:
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where L(v;) is the Laplacian operator, J; are the Laplacian coordi-
nates of the un-deformed exemplar mesh, and \ defines the rigidity
of the leaf. In each iteration, c(v;) re-computes the closest points
to the mesh vertices. As with rigid ICP, we take n steps of our non-
rigid alignment procedure. In practice, n is chosen large enough
that the deformation converges (see Table 1). The process of align-
ing a single leaf to a subset of a point cloud is shown in Figure 4,
first illustrating the result of rigid alignment and then the final de-
formed non-rigid fit.

Figure 4: Aligning the leaf exemplar mesh to points. The inter-
mediate result after rigid alignment is shown in the center, and the
result after non-rigid alignment is on the right. The inset shows a
side view.

When deforming the leaf to match the shape of the points, it is im-
portant to take special care of the leaf boundary. Even when the
overall leaf shape matches perfectly, if the boundary does not align
to a real leaf then artifacts may appear at the fringe, which we illus-
trate on the left of Figure 5. To address this problem, we propose
an extension to the non-rigid alignment method which loosely in-
corporates knowledge of leaf boundaries. In many cases, edges in
the input images correspond well to leaf boundaries, in particular
when the edges are combined into 3D and a consensus is formed
from multiple views. We take advantage of this by automatically
marking point cloud samples that were triangulated from edge pix-
els, and then selecting only from this set when choosing the closest
points c¢(v;) for any vertex v; that lies on the boundary of a leaf.
Since the rigidly deformed leaf is already close to its final position,
it is safe to assume that nearby points marked as edges will corre-
spond to a boundary. As a result, boundary vertices are pulled into
a better position during the optimization, which we demonstrate on
the right side of Figure 5.

Figure 5: Explicitly handling leaf boundaries during non-rigid
alignment can improve leaf reconstruction.




Statistical model. The Laplacian deformation method above is
useful when only a single leaf exemplar is available. However,
if we assume for now that we have many example leaves of the
species, then we can build a statistical model of the shape variance
and perform non-rigid alignment in a shape-space spanned by the
model parameters. We use the 3D morphable model of Blanz and
Vetter [1999] since it is easy to compute and the model parameters
translate directly to the deformation modes of the leaf, which al-
lows us to optimize directly for model parameters during non-rigid
alignment. The model is defined as follows:

m—1
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where S is the average of the m input shapes and s; are the eigen-
vectors of the covariance matrix, defining the shape space of the
leaf. The model is built using Principal Components Analysis
(PCA) of the set of exemplar leaves. Given such a model, non-
rigid alignment proceeds as before, except that we minimize the
following energy over the set of model parameters a; € A:
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where C is the set of all closest points c(v; ). The benefit of this ap-
proach is that the optimization affects the entire leaf, rather than on
a per-vertex basis as in Equation 2 which can lead to highly irregu-
lar leaves in poorly sampled regions of the point cloud. Performing
non-rigid alignment using the statistical model helps us fit leaves to
noisy and incomplete point clouds while remaining within the space
of example leaf shapes. This approach assumes we have several ex-
emplar leaves, which we will construct in a global framework.

6.2 Global RANSAC framework

The quality of single leaf fitting depends highly on the initial
pose of the exemplar, since it is based on local alignment of
points. For this reason, we take a Random Sample and Consensus
(RANSAQC) [Fischler and Bolles 1981] approach to robustly locate
true leaves in the noisy point cloud. RANSAC can be described as
the process of randomly choosing a solution, and then computing
how well the data supports the solution. If the process is repeated
many times, a consensus can be formed. We use RANSAC to ob-
tain an initialization for the leaf fitting method described above,
which allows us to robustly reconstruct leaves even in the presence
of many outlying points.

Our RANSAC method begins with a large number of copies (/Nr,)
of the exemplar and starts the single leaf fitting procedure in par-
allel. After the rigid alignment step, we sort the N leaves by
their fitting score (Equation 1) and perform the non-rigid alignment
sequentially starting with the most confident rigid fit. After Ny,
fits using Laplacian deformation alignment (Equation 2) we build
a statistical model of the fit leaves (Equation 3) and perform sub-
sequent alignments using the model (Equation 4). Each time a leaf
is aligned to the points we extract its surface texture from the orig-
inal cameras through projection, and then add it to the final list of
leaves. All nearby points (within a distance of € from the leaf) are
then removed from further processing, and any other leaf that had
also fit to those points is ignored. Note that we also build a statisti-
cal model of leaf appearance in addition to shape, and both models
will be used in our leaf synthesis algorithm described in Section 7.

Updating the point cloud. From the Ny, candidate leaves, typi-
cally only a small percentage are stored as true leaf fits, and many
are discarded. However, from these leaves we gain valuable knowl-
edge of the partial structure of the foliage. We use this knowledge
to update the point cloud in an additional pass of multi-view stereo.
In the first execution of stereo reconstruction, we used the sparse
points resulting from the structure-from-motion algorithm to pro-
vide very approximate depth estimates to constrain the stereo search
(refer to Section 5). We now formulate more reliable depth es-
timates by projecting the current set of reconstructed leaves onto
the camera images and measuring the per-pixel depth. In-between
leaves, depth values are interpolated, providing a complete target
depth map for each camera. Stereo reconstruction is then performed
exactly as before, building a dense point cloud, except that this time
we omit pixels that are associated with an existing leaf fit, and we
search for points only at the target depths (plus/minus an offset
«). This approach improves the point cloud data for leaves that
we could not fit confidently in the previous iteration.

The leaf fitting and point updating method iterates until no more
leaves are located. The final result is a set of captured leaves with
per-leaf textures that closely represent the true geometry and ap-
pearance of the real plant. Figure 6 shows an example point cloud
and set of leaves after one iteration of the algorithm, along with the
final set of leaves after eight iterations.

Parameter Value
n - ICP steps 100

p - percent of vertices 5%

T - rigid score threshold 03-0.5
A - leaf rigidity 100
N1, - leaves per iteration 10,000
N - statistical model training size 100

€ - point removal distance 5 mm
« - target depth offset 10 cm

Table 1: Parameter values used in our fitting algorithm.

Parameters. A number of parameters control the behavior of our
leaf fitting algorithm (Table 1). All parameters are empirically set
once and used for all datasets, with the exception of the rigid score
threshold 7, which varies depending on the size of the leaf and the
number of exemplar mesh vertices.

7 Synthesis

Due to heavy occlusion, it may not be possible to purely recon-
struct every leaf of a plant or bush, especially if it contains many
depth layers (for example, the bush in Figure 1). In this case a
user may wish to extend leaves into the unseen area. Similarly, an
artist may wish to extend foliage into new areas when building vir-
tual scenes for movies and video games. Scene creation can be a
very time consuming task when flora is required. To address these
issues, we propose a novel leaf synthesis method that can automat-
ically generate new foliage that resembles the captured plant. Our
algorithm attempts to preserve the structure of captured flora at two
different scales: the individual leaf shape and color, and the global
placement and orientation of all leaves.

Our synthesis approach is to iteratively create new leaves until a
desired resolution is reached. The process has two steps. First a
leaf is generated, and then it is placed in the scene. Both steps aim
to maintain the global structure and appearance of the flora that was
captured.



Figure 6: Iterative leaf fitting. Point cloud after 1 iteration (left), fit leaves after 1 iteration (middle), fit leaves after 8 iterations (right).

7.1 Leaf Generation

In order to generate individual leaves that are faithful to the cap-
tured species we employ the statistical model that we built during
the fitting phase (Section 6.1). Recall from Equation 3 that we have
a model of leaf shape parameterized over the coefficients a;. New
leaf shapes can easily be generated by varying the coefficients. In
each iteration of synthesis, we create a new leaf by randomly se-
lecting values of a; within the range of the training set that we used
to construct the model. Similarly, we can use a statistical color
model of the captured data and randomly choose a texture for the
leaf. We illustrate the statistical model for one of our datasets in
Figure 7, which shows the mean leaf shape (S in Equation 3) with
mean color, and several random permutations of the model coeffi-
cients to generate new synthetic leaves.

N AhH

Mean Shape Random Permutations of Model Coefficients

and Color

Figure 7: Statistical model of leaf shape and color for the plant in
Figure 10. Varying the model parameters randomly generates new
synthetic leaves.

7.2 Leaf Placement

Placing new synthetic leaves is a difficult task. On the one hand, the
arrangement should reflect the random structure of nature, while on
the other hand purely random placement is usually not faithful to
the growing structure of the captured flora (see Figure 13). We pro-
pose a data-driven method for leaf placement, using the captured
leaves to guide the position and orientation of new leaves. Our al-
gorithm is based on the following theory: if you choose any two
leaves in the captured leaf set, that pair exhibits a valid spatial re-
lationship for two leaves of the given species. In other words, the
transformation between those two leaves represents natural growth,
and we can therefore use this transformation to place new leaves.
Consider the example shown in Figure 8. On the top we have sev-
eral leaves from the captured set, and we examine the pair L; and
Lo shown in red. If we compute the transformation 7" that regis-
ters L1 and L2 (in a least-squares sense), we could argue that this
transformation could exist again between a different pair of leaves.
Therefore, it is safe to choose a third leaf, L3 shown in magenta,
and place a new leaf at L3 + 7" shown in blue.

Based on this theory, our algorithm for synthesis starts by comput-
ing transformations between all pairs of captured leaves, and then
ordering the transformations by the Euclidean distance of the leaf
centers (from closest to farthest), since we find that the transfor-
mation between neighboring leaves is a better indicator of plant
structure than that of distant leaf pairs. To place a new leaf that we
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Figure 8: Placement of synthesized leaves uses captured data in
order to remain faithful to the foliage structure.

generated in the previous section, we randomly choose a transfor-
mation 7; from the set of all NV ordered transformations. The index
1 is chosen to favor leaves that are close together (i.e. favor a low
index) by sampling the positive side of a Gaussian distribution cen-
tered at index zero with variance %. The parameter d; allows the
user to control how strictly we favor a low index, in other words
how closely the synthetic leaves will match the structure of the cap-
tured flora.

Once a transformation 7; is chosen, the algorithm proceeds to ran-
domly select a current leaf in the output volume and place the new
leaf with a pose transformed by 7;. If the new leaf location falls
outside the user-defined volume, or is with a distance of d2 to an
existing leaf (from center to center), then it is discarded and the
process repeats. This second parameter, ds, controls the final den-
sity of the synthesized flora. In practice, it can be helpful to set ds
quite high for spreading the foliage sparsely into large new areas,
and then decrease it for filling in the leaves densely. Once a leaf is
placed we can optionally update its texture. Some flora have a dis-
tinctive spatially-varying color profile, for instance if parts of the
plant get more sun than others. In general we found that neighbor-
ing leaves are often more similar in appearance than distant ones.
Since new synthesized leaves start off with a random texture from
the statistical color model (Section 7.1), the appearance of a posi-
tioned leaf may seem out of place amongst its local neighbors. For
this reason, we generate a new texture from the leaf color model,
but this time using the set of neighboring leaves as a guide. Specif-
ically, we randomly choose model parameters again, but this time



within the range of the parameters of the leaves that are within a
distance of dsz from the new leaf. This final parameter controls the
variation in synthesized leaf appearance.

We propose two applications for leaf synthesis. The first is to in-
crease the overall density of a captured plant, for instance if heavy
occlusions prevented a full reconstruction. The second is more
artistic in nature, to grow foliage in new scenes as defined by an
arbitrary volume. In the next section we will demonstrate both ex-
amples.

8 Resuults

We demonstrate our leaf reconstruction and synthesis algorithms on
four different flora species with dense leaf structure.

Figure 9 shows a reconstruction for a bush with broad leaves present
at varying depths. The initial reconstruction (2nd image) captures
the first few depth layers of leaves. Given this information about
the structure and appearance of the bush, we use our data-driven
synthesis approach to fill in the deeper layers. A simple volume
(3rd image) specifies the area we wish to fill in. The final result
(4th image) is a dense bush with foliage that closely resembles the
real plant. Figure 1 shows a close-up render of the result. Please
refer to the accompanying video for more results.

In Figure 10 we show the result of reconstructing dense ground
leaf cover. This dataset contains many partial occlusions, however
our method successfully reconstructs many leaves, as shown at top
center. Using our synthesis approach within the bounding box of
the captured flora we can controllably increase the density of the
leaves. Here we demonstrate several different densification levels
(100% more leaves, 200%, 300% and 400%).

A third species result is shown in Figure 11. Here we demonstrate
the ability to use multiple exemplars, by pruning and scanning three
different leaves (shown in the center). Densification is performed
in a similar way to Figure 9. The final result closely resembles the
real foliage and represents the general appearance of the captured
species.

Our most challenging dataset is the plant in Figure 12, which con-
tains thousands of leaves with many occlusions. Our reconstruction
algorithm captures a dense sampling of the leaves, and we increase
the density by an additional 50% using the synthesis algorithm.

To highlight the importance of utilizing learned leaf structure and
configuration during synthesis, we compare our data-driven syn-
thesis technique to a synthesis approach that randomly places and
orients leaves within the volume. Figure 13 shows the result, where
the captured bush leaves from Figure 9 are densified by a factor of
50%. Our data-driven approach synthesizes leaves that more natu-
rally blend with the captured flora. In particular, note that the syn-
thesized leaves in the data-driven approach have a similar frontal
configuration to the captured leaves. While this effect could be
achieved using a heuristic, we achieve the result using a physically
realistic learned model of leaf configuration.

Finally, Figure 14 demonstrates artistic use of the algorithm. Here
an artist is constructing a scene and has identified two volumes
where two different species of flora should grow. Our method au-
tomatically fills these volumes with foliage that resembles the cap-
tured leaves both in structure and appearance. In front of the arch-
way we use the model learned from the bush dataset (Figures 1
and 9) and inside the archway we synthesize ivy-like vegetation
from our ground-based leaves dataset (Figure 10). The result is
natural-looking flora at the cost of only a few images of the real-
world example.

Figure 13: The captured leaves from Figure 9 are increased in den-
sity by 50% using two different schemes. Top row: densification us-
ing our data-driven leaf synthesis. Bottom row: densification using
randomly placed leaves. For both rows, the left and right images
have identical structure, but the synthesized leaves are shown in
blue at right.

All our photo-realistic results were generated with the Mitsuba
renderer [2012] and a custom leaf BSDF plug-in that implements
a simple phenomenological leaf appearance model and its Monte
Carlo importance-sampling routines. Our appearance model is
composed of three components: front-facing diffuse reflection,
modulated by the captured leaf reflectance; back-facing diffuse
transmission, similarly modulated by a de-saturated filtering of the
captured leaf reflectance; and front-facing specular reflection based
on Blinn’s [1977] formulation.

9 Conclusion

This paper describes the 3D reconstruction of dense flora. The
problem has been little investigated so far and represents a diffi-
cult scene type for 3D reconstruction because of repeated struc-
ture, low variation in color, and a multiplicity of small overlapping
surface patches. Nevertheless, our capture algorithm demonstrates
good quality reconstructions for varied examples of foliage, and
our novel approach for data-driven leaf synthesis can be used to in-
crease the density of captured flora or to design foliage elements of
a scene under artistic control.

Limitations. A limitation in the current system is that we capture
only one species of leaf at a time. Dense foliage often consists of
mixed and closely adjacent species, and correct handling requires
extension to our method. For example, advance segmentation could
be done as a preprocess, or a joint process could simultaneously ap-
ply leaf exemplars for the multiple species that are present. A fur-
ther challenge is that capturing in direct sunlight results in shadows
baked into the leaf textures. The result in Figure 12 is an example.
Thus capture is best done under diffuse ambient illumination, such
as on a cloudy day or in the shade. It is also preferable to capture
on a calm day, so that the foliage remains still during acquisition.
Finally, our method is more suited for foliage that contains a cer-
tain amount of natural randomness rather than well-structured and
regular patterns.

Future work. We identify several directions for future work. One
possibility is to detect leaves in the images as a pre-filter to guide
the leaf fitting. Another idea is to infer stem layout from captured
leaves in order to produce a complete plant. Furthermore, the com-
bination of our leaf reconstruction and synthesis methods together
with large-scale tree capture techniques can lead to complete multi-
scale tree models.

Flora modeling is an early-stage research area, but we believe that
it has applications across games and movies, education, scientific



Figure 9: Reconstruction and synthesis for a bush with varying depth. From left to right: a reference image, the captured leaves, user-
specified volume for extending the leaves deeper, and final result for capture + synthesis.

Figure 10: Reconstruction of dense ground leaves. Top row: the reference image, captured leaves and addition of synthesized leaves by

100%. Bottom row: addition of 200%, 300% and 400% respectively.

measurement, and archiving of natural environments. As far as we
are aware, this work represents a first attack on automatically re-
constructing dense foliage from images. Coupled with the method
for data-driven synthesis, our technique provides an invaluable tool
to model complex flora environments.
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