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Ad hoc networks of wireless devices carried by entertainment park visitors can support a
variety of services. In such networks, communication links between the devices sporadi-
cally appear and disappear with the mobility of visitors. The network performance strongly
depends on how often they encounter each other and for how long the contact opportuni-
ties last. In this paper, we study the mobility of visitors based on GPS traces collected in
two entertainment parks. We demonstrate and discuss the implications of the observed
mobility on the efficiency of opportunistic data forwarding. We show how hourly changes
in the number and spatial distribution of the park visitors affect the delay of a broadcast
application. Our results suggest that generic mobility models commonly used in wireless
research are not appropriate to study this and similar scenarios: Targeted mobility models
are needed in order to realistically capture non-stationarity of the number and spatial dis-
tribution of nodes. Therefore, we developed a mobility simulator for entertainment parks
that can be used to scale up the evaluation scenarios to a large number of devices. The sim-
ulator implements an activity-based mobility model, where the mobility of park visitors is
driven by the activities they wish to perform in the park. The simulator is calibrated based
on the GPS traces and validated on several metrics that are relevant for the performance of
wireless ad hoc networks.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

For many wireless services, a continuous connectivity
and end-to-end paths are not necessary. Unlike in infra-
structure-based networks that provide full wireless cover-
age, in the so-called ad hoc networks wireless devices
communicate directly when within each other’s range. This
communication mode is useful when infrastructure-based
communication is costly or unavailable. When devices are
mobile (e.g. carried by people), the ad hoc communication
may experience occasional disruptions as links between de-
vices appear and disappear with changes in the distance be-
tween the devices. Network applications and protocols
. All rights reserved.
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need to be delay and disruption tolerant to benefit from
such intermittent connectivity [1,2]. This requires re-design
of many protocols, especially routing protocols, since an
end-to-end path between devices is not necessarily avail-
able throughout a communication session [3]. Therefore,
messages are forwarded incrementally through the net-
work in a store-carry-forward manner when contact oppor-
tunities arise. Understanding the mobility of people is
crucial because mobility determines the rate and the dura-
tion of contact opportunities. Human mobility, however, is
not easy to characterize. For example, working-day, shop-
ping, and campus mobility will all result in different
encounter patterns. For many practical applications, rout-
ing/forwarding algorithms must target specific mobility
scenarios, even if this limits the scope of their applicability.

Future services offered to entertainment park visitors
might rely on wireless technologies, devices, and applica-
tions [20]. Personalized location-based services, mobile
n mobility on wireless ad hoc networking in entertainment parks,
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trans-reality games, park information services, social net-
working, and multimedia sharing would make a visit to a
park more interactive and entertaining. However, it cannot
be assumed that wireless data service is available through-
out the park. Cellular 3G coverage is typically available, but
many park visitors are foreign tourists who do not have
data plans with local operators and are not willing to pay
data rooming charges. Rolling out extensive Wi–Fi infra-
structure to support wireless services in an entertainment
park is not an easy task: The largest parks are comparable
in size with big cities (e.g. the Walt Disney World Resort in
Florida spans over �100 km2, an area as large as San Fran-
cisco). Although Wi–Fi infrastructure and wireless services
would provide some added value to the visitors, it is often
not clear how would they increase the revenue (e.g. atten-
dance) of theme parks. Besides, since theme parks usually
offer very unique experiences, there is no push from com-
petition to provide such services. Due to the lack of strong
reasons that would justify costly and logistically complex
full-scale infrastructure deployment, alternative solutions
that enable gradual introduction and testing of wireless
services at low-cost are preferred. Such lightweight solu-
tions would help park management assess the needs and
tech requirements for possible future deployments. For
some theme park applications continuous connectivity
provided by fixed wireless infrastructures is not needed:
Spotty coverage might be tolerated if supported by oppor-
tunistic store-carry-forward type of communication
among visitors. Examples include distribution of park
information (waiting times at different attractions, sched-
ules of street parades and other performances), mobile
advertising, collaborative localization, participatory sens-
ing, polling/surveying, and multimedia sharing. Some of
the application scenarios are described in Section 2. The
applications may run on smart phones brought by visitors,
or on customized devices handed out to the visitors. The
latter could be optimized for opportunistic communication
and park-specific scenarios.

In this paper, we study the mobility of park visitors
based on GPS traces collected in two entertainment parks
in order to understand network requirements for opportu-
nistic communication (minimum number and density of
mobile devices and supporting infrastructure nodes). On
an example of epidemic broadcasting, we analyze the im-
pact of hourly changes in visitors’ mobility and density
on the speed of content dissemination [41]. Contact-re-
lated statistics, such as inter-any-contact time and mean
square displacement, are extracted from the traces and
their impact on the broadcasting performance is discussed.
The number of traces in our dataset, even though larger
than in most datasets used in related studies, is not suffi-
cient for large-scale evaluation. Therefore, mobility models
that can produce realistic node encounter patterns are
needed. Simplistic and rather generic mobility models,
which are often used in wireless research, assume constant
number and a stationary, steady-state spatial distribution
of nodes in an area. Targeted mobility models are needed
in order to realistically capture non-stationarity of the
number and spatial distribution of nodes. We present an
activity-driven mobility model of park visitors, which we
implemented in our ParkSim simulator [42]. The model is
Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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calibrated based on the GPS traces and other data obtained
from the entertainment parks. The outputs of the simulator
are synthetic mobility traces of park visitors, which can be
used for trace-driven simulations of mobile ad hoc
networks.

The remainder of this paper is organized as follows:
Some examples of the entertainment park applications
that may benefit from opportunistic communication are
given in Section 2. GPS traces are described in Section 3.
The performance of opportunistic broadcasting is studied
in Section 4. Contact-related statistics are analyzed in Sec-
tion 5. A mobility model derived based on the GPS traces is
described in Section 6. Section 7 concludes the paper.
2. Application scenarios

Some of the application scenarios for opportunistic net-
working in entertainment parks are described in the
following.

2.1. Mobile trans-reality games

Mobile trans-reality games often rely on wireless tech-
nologies. Some of them can be supported with a gossip-
based communication among players. A simple example
is Insectopia [4], a game where players with mobile phones
roam Bluetooth-rich environments searching for and
catching a multitude of different ‘‘insects’’. Insect types
are represented by unique Bluetooth signatures of the de-
vices. In scavenger hunt games, team members often ex-
change information needed to complete their mission.
Kim Possible [5] is a Disney game played in the Epcot park
where players take roles of secret agents equipped with
communication devices. Some games however do not re-
volve around technology and dedicated communication
devices (i.e. mobile phones). In those games, gossip-based
protocols can be used in real-world to mimic the way game
characters (e.g. toys) would communicate with each other
in a fantasy-world. For example, in a game designed for
young children, a task could be to guide a toy character
through missions during which the radio-enabled toy is
empowered (e.g. with skills and knowledge) through con-
tacts with other toys and objects in the park.

2.2. Mobile advertising

Mobile advertising can be used in entertainment parks
to inform visitors about special events (e.g. shows, street
performances and fireworks) and shopping/dining oppor-
tunities. Advertisements may take the form of electronic
tips and discount coupons that are distributed wirelessly
from infrastructure nodes and forwarded epidemically
from a device to a device. The advertisements may target
the entire park population (flooding), or a sub-population
based on visitor’s personal profile (multicasting) or current
location (geocasting). Long waiting times at popular rides,
which are common during summer vacations and holiday
weekends, are undesirable. Opportunistic communication
can be used to inform visitors about waiting times at dif-
ferent rides so that they can organize their visit time in a
n mobility on wireless ad hoc networking in entertainment parks,
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best possible way. A network-enabled queue management
application would allow visitors to request and obtain an
electronic token for a ride on their mobile phones. The to-
ken would allow them to enter the ride at a prescribed
time of the day without waiting.
Fig. 1. The Epcot park consists of two major sections, Future World and
World Showcase. Map data � OpenStreetMap contributors, CC BY-SA.
2.3. Collaborative localization

Many of the entertainment park applications require
knowledge of guests’ current location in the park. For
example, in mobile games, the game engine often relies
on the knowledge of players’ positions to control the way
in which the game unfolds (e.g. location-specific instruc-
tions/clues are sent to players’ devices). Geocasting of mes-
sages/advertisements and other types of location-based
services also require mechanisms to localize visitors. Local-
ization solutions can be power demanding. For example,
frequent sampling of a GPS receiver would quickly drain
the battery on most mobile phones. Besides, not necessar-
ily all devices carried by visitors have the same localization
capabilities. Allowing neighboring devices to share their
location information via short range radio contacts would
help reduce the energy cost and allow less capable devices
to localize themselves more accurately. We refer to this
type of localization as cooperative/collaborative localiza-
tion [43]. It relies on opportunistic broadcasting of the
location information and smart data fusion algorithms to
refine location estimates based on neighbors’ locations ob-
tained through the broadcasts.
Fig. 2. The DLP consists of two parks, Disneyland Park and Walt Disney
Studios Park. Map data � OpenStreetMap contributors, CC BY-SA.
3. GPS traces

Lack of large-scale measurements of human mobility is
a big challenge for wireless research communities. It is dif-
ficult to organize large-scale measurement campaigns be-
cause of financial costs, logistical hurdles, privacy
concerns, and government regulations [6]. Most previous
studies of human mobility/encounter patterns for opportu-
nistic communication rely on datasets that are limited in
terms of the number of devices and/or time duration. Our
dataset (1800 GPS traces in total, out of which 1647 are
used in the analysis) is significantly larger than most data-
sets used in similar studies. For example, Bluetooth data-
sets used in [7–9], which contain records of discovered
peers, are obtained in experiments with at most 100 de-
vices. GPS datasets used in [10–13] contain up to 200
mobility traces (one of the dataset in [11] contains
15 GPS traces collected in The Walt Disney World Resort
in Florida). Wi–Fi datasets used in [9,14,15], which contain
SSIDs of access points visible by Wi–Fi devices, are much
larger (up to several thousand laptops and PDAs). How-
ever, it is difficult to infer contact from such datasets. Typ-
ically, two Wi–Fi devices are assumed to be in contact as
long as they see the same access point. This is a vague indi-
cator that they may actually be able to connect to each
other using short-range radios. Furthermore, some of the
Wi–Fi devices were not carried by their owners at all times
(e.g. laptops). Hence, observed contacts do not necessarily
characterize human mobility.
Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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Our GPS traces were collected during a research study
carried out in the Epcot Park, Florida and Disneyland Paris
(DLP), France. The layout of the Epcot park is shown in
Fig. 1. The park covers an area of �1 km2 and receives close
to 10 million visitors per years (�28,000 per day on aver-
age, significantly more on weekends and holidays). It con-
sists of two sections, Future World and World Showcase,
with approximately 20 themed sub-areas/attractions. The
Future World, which is closer to the park entrance, is more
popular of the two. Often visitors need to wait in queues to
enter attractions located in this section. The World Show-
case is centered around a lake. A number of restaurants
and stores are located throughout the park. The layout of
DLP is shown in Fig. 2. The complex covers an area of
approximately the same size as Epcot (�1 km2) and re-
ceives close to 15 million visitors per years (�40,000 per
day on average, up to 70,000 on a busy day). It consists
of two parks, Disneyland Park and Walt Disney Studios
Park, the former being the larger and more popular of the
two. Vast majority of visitors opt for a ticket that gives
them access to both parks, but do not necessary visit both
on the same day. As in the Epcot park, there are several
n mobility on wireless ad hoc networking in entertainment parks,
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Fig. 3. Number of phones in Epcot (left) and DLP (right) at different times of the day. Times when the number reaches 200, 400, and 800 are indicated. Visits
to Epcot are typically shorter than visits to DLP since Epcot is a part of larger park complex: visitors usually allocate only part of the day to Epcot.

4 V. Vukadinovic et al. / Ad Hoc Networks xxx (2012) xxx–xxx
attractions in DLP where long waiting queues are not unu-
sual. There are approximately 40 restaurants and one hotel
within the complex.

Over the course of 10 days (5 in Epcot and 5 in DLP),
close to 200 smartphones were distributed each day to a
total of 1800 randomly selected visitors (910 in Epcot
and 890 in DLP). In case of groups/families only one of
the members was selected. The phones were distributed
at the entrance between 8 am and 1 pm, and collected
when the visitors were exiting the parks. The phones ran
an application that logged their GPS locations on average
every 2 min when the satellite signals were available. In
our study, we ignore the dates of the logs, as if all GPS
traces were collected on the same day. This is needed to
study networks where the number of devices is larger than
the number of phones that were available for the experi-
ment. The number of phones in the parks at different times
of the (merged) day is shown in Fig. 3. Note that traces col-
lected on days with high and low park attendance (e.g.
parks are significantly more crowded on weekends than
on business days) cannot be merged because mobility is af-
fected by the crowdedness of the park. The traces that we
merged were collected Monday through Friday. We
checked if the waiting times at popular attractions were
similar on the five days of experiments. For each attraction,
we extracted the average visit times, which is the sum of
the waiting time and ride time, from GPS traces. Then we
calculated the waiting times on different days by subtract-
ing the ride times from the visit times. The average waiting
times for the Test Track in Epcot and the Rock’N Roller
Coaster in Disney Resort Paris are shown in Table 1.
Table 1
Average waiting times (in seconds) for two popular attractions.

Test track Rock’N roller coaster

Monday 955 613
Tuesday 779 377
Wednesday 888 739
Thursday 1032 660
Friday 1217 856

Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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Although the waiting times vary, the table does not indi-
cate that parks were substantially more crowded on some
days of the experiment than on the others (e.g. it is not
uncommon to have close to zero waiting on business days
with bad weather and more than one hour waiting on
holidays).

In addition to geo-coordinates, GPS accuracy was also
logged during the trace collection. We discarded waypoints
whose accuracy was worse than 25 m. We also discarded
traces shorter than 2 h or containing less than 50 way-
points. Results presented in the following sections are
based on the remaining 825 out of 910 Epcot traces and
822 out of 890 DLP traces. We interpolated the movements
of visitors between the remaining waypoints assuming
straight-line movements. The traces may contain gaps,
which correspond to the periods when visitors were in-
doors (e.g. in a building where GPS signal is not available).
During such periods, we assume that visitors move slowly
from the spot where the last waypoint was recorded before
they entered the building to the spot where the first way-
point was recorded after they exited the building.
4. Opportunistic broadcasting

Some of the entertainment park applications are broad-
cast in nature. For example, information about waiting
times at different attractions/rides can be broadcasted to
the visitors opportunistically. Since waiting times change
slowly, this information is not time critical and delivery
delays of up to a few tens of minutes can be tolerated.
For some other services/information, shorter delivery de-
lays might be required. Here we investigate how mobility
and density of devices affects the speed of opportunistic
broadcasting based on the GPS traces. We evaluate the
time needed to distribute a message to a certain target per-
centage of park visitors (e.g. 98% is a tentative target for
one of the applications described in Section 2). We con-
sider both Epcot and DLP scenarios.

The scenario setup for the Epcot park is as follows: A
single infrastructure node (e.g. info-station, access point),
n mobility on wireless ad hoc networking in entertainment parks,
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labeled as AP1 in Fig. 1, is located in the center of the Fu-
ture World section of the park (later we consider adding
AP2). This is one of the spots with the highest flux of visi-
tors: almost all visitors pass by this spot when entering
and leaving the park. The transmission range of the access
point is assumed to be 50 m. At time T, the access point
starts broadcasting a message to the visitors within the
range. The message spreads epidemically among visitors
as they encounter each other. Radio aspects (attenuation,
interference, energy consumption) and protocol details
(device and content discovery, connection setup delay,
content caching) are ignored. The only assumption is that
the transmission range of mobile devices is 10 m, unless
stated otherwise. When a device without the message en-
ters the transmission range of the access point or of an-
other mobile device that possesses the message, it
obtains the message instantaneously. The purpose of this
simple scenario is to estimate the lower bound on the
broadcast dissemination delay for observed mobility and
density of the devices, irrespective of wireless technology
constraints. This delay might be hard to achieve in practi-
cal systems. However, it provides an indication of how de-
lay-tolerant an application should be to benefit from
opportunistic communication and what number of devices
is needed to meet certain delay constraints. A similar setup
has been evaluated in [16] using a much smaller set of
mobility traces collected in an office building in a univer-
sity campus.

As described in Section 3, we merge five days of exper-
iments in the Epcot park into a single day by ignoring dates
in the GPS traces. The number of visitors with the phones
at different times of the day is shown in Fig. 3 (left). The
curve closely reflects the way in which the number of vis-
itors in the park changes during a typical day. We assume
’
200T ’

400T

’
200T ’

400T

Fig. 4. Spatial distribution of visitors with the devices at T 0200; T 0400; T800; T 00400, an
are indicated in the first row of figures.
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that, if proprietary devices, such as electronic park guides,
would be handed/rented out to the visitors, their number
would follow a similar pattern. We assume that broadcasts
are initiated at times when there are 200, 400, and 800 de-
vices in the park. There were two moments when the num-
ber of devices reached 200, one in the morning and one in
the afternoon, denoted by T 0200 and T 00200, respectively. Sim-
ilarly, there were 400 devices in the park at T 0400 and T 00400.
At the peak of the day, denoted by T800, the number of de-
vices reached 800. The spatial distributions of devices at
those moments are shown in Fig. 4 (top). In the morning
hours (T 0200; T 0400), there is an intensive inflow of visitors
into the park, who tend to cram in the Future World sec-
tion close to the entrance and the access point AP1. It takes
several hours until visitors disperse. In the late afternoon
(T 00400, and T 00200), there is an outflow of visitors. Hence,
mobility patterns, which affect the efficiency of opportu-
nistic broadcasting, depend strongly on the time of the
day. The speed of content dissemination will be different
at T 0200 and T 00200, although the number of devices is the
same. In the late afternoon, message is disseminated
against the flow of crowd—visitors who obtain the content
from the access point are likely to take the content out of
the park very soon.

The scenario setup for the DLP is similar. We first con-
sider a network supported by a single access point, labeled
as AP1 in Fig. 2, which is located close to the entrance to
the Disneyland Park. We then consider adding AP2 close
to the entrance to the Walt Disney Studios. Message broad-
casts are initiated at times when there are 200, 400, and
800 devices in the DLP; the times are indicated in Fig. 3
(right). It can be noticed from the widths of the bell-shaped
curves in Fig. 3 that visits to DLP are on average longer than
visits to Epcot, which is a part of larger park complex and
800T ”
400T ”

200T

800T ”
400T ”

200T

d T 00200 (from left to right) in Epcot (top) and DRP (bottom). Park entrances
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visitors usually allocate only part of the day to it. The
spatial distributions of devices at the times when the
broadcasts are initiated are shown in Fig. 4 (bottom).
Visitors tend to distribute evenly between the Disneyland
Park and Walt Disney Studios, except in the evening. The
latter closes at 19:00, when visitors either move to the
Disneyland Park, or leave the DLP.
4.1. Performance results: Epcot scenario

The broadcast performance results for the Epcot park
scenario with the single AP are shown in Fig. 5 (left). The
curves in the figure show the percentage of visitors in
the park that possess the message as a function of time
elapsed since the start of the broadcast (at T 0200; T 0400;

T800; T 00400, or T 00200). We stop the simulation when the
possession reaches 98% and we record the elapsed time
(DT98%) in Table 2. In the table, we also show the percent-
age of visitors that would have received the message by
DT98% if peer-to-peer (P2P) forwarding was not used
(hence, connecting to the access point was the only way
to obtain the message). We report the following
observations:

The time needed to broadly disseminate the message is
in the order of tens of minutes. For example, it took 20 and
26 min, respectively, to deliver the message to 95% and
98% of the devices at T800. At a typical peak hour there
are 10,000–15,000 visitors in the Epcot. Therefore, the
Table 2
Epcot scenario: Time DT98% needed to distribute the message to 98% of the devic
without P2P forwarding.

T AP1

DT98% (s) AP + P2P (%) AP only (%)
T 0200 1855 98 53

T 0400 1984 98 33
T800 1556 98 16
T 00400 2790 98 21

T 00200 4320 98 13

Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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scenario with 800 devices assumes that 5–8% of the visi-
tors have the devices and run the application, which is a
significant number (especially considering that a big pro-
portion of visitors are toddlers). When the range of the de-
vices increases from 10 m to 20 m (at the expense of
increased energy consumption), the time to deliver the
message to 98% of devices decreases to 15 min, which is
may be prohibitively long for some applications. To further
reduce the dissemination time, more access points are
needed and/or the number of devices should be larger.

Apart from the number of devices, dissemination time
depends strongly on the spatial distribution of the devices
and their residual times in the park after they receive the
message. This is obvious when comparing the results for
broadcasts initiated at T 0200 and T 00200 (former happens in
the morning hours while the latter is in the late afternoon).
At T 0200 almost all visitors are located in the Future World
section of the park. A share of 98% of them obtained the
message within 30 min. Contacts with the access point ac-
counted for 53% of delivered messages. To the contrary, at
T 00200, visitors are spread throughout the park. It took 72 min
to achieve 98% possession. Contacts with the access point
accounted for only 13% of delivered messages. This illus-
trates the variety of performances that could be expected
with the same number of devices, but at different times
of the day. Furthermore, results in Fig. 5 (left) show that
the message disseminates faster at T 0200 than at T 0400 and
T800. Hence, a larger number of devices does not guarantee
es and the percentage of devices that would receive the message by DT98%

AP1 & AP2

DT98% (s) AP + P2P (%) AP only (%)
1855 98 53
1984 98 33
1380 98 20
2690 98 39
4240 98 36

n mobility on wireless ad hoc networking in entertainment parks,
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better performance due to changes in spatial distribution
and residual visit times.

We next study the effect of adding the second infra-
structure node (AP2 in Fig. 1) on the speed of dissemina-
tion. Placing the node in the World Showcase may help
reduce the broadcast delay in the afternoon hours, when
many visitors are located in this section of the park, as
shown in Fig. 4 (top). As expected, the results in Fig. 5
(right) and in the last three columns of Table 2 show that
AP2 does not contribute to the message spreading at T 0200

and T 0400. At T800 and T 00400, the message disseminates some-
what faster compared to the previous setup, as indicate by
the slope of the curves in Fig. 5 (left) and Fig. 5 (right). A
significant speed-up is achieved at T 00200 when visitors from
the back of the park, where AP2 is located, start to spread
the message as they move across the park towards the exit.
However, the addition of AP2 has very little effect on the
time needed to reach 98% of devices, regardless of the time
of the day. It is hard to deliver the message to the last few
percent of visitors since they may be isolated from the rest
(e.g. sitting on a boat in the middle of the lake). Another
reason is constant inflow/outflow of visitors to the park.
We evaluated the effect of adding two more APs at the bor-
der between the Future World and the World Showcase
sections of the park. The additional APs helped speed up
the dissemination, but the ‘‘last few percent’’ problem re-
mained. An alternative to increasing the infrastructure
coverage (either by adding more APs or by increasing their
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Table 3
DLP scenario: Time DT98% needed to distribute the message to 98% of the device
without P2P forwarding.

T AP1

DT98% (s) AP + P2P (%) AP only (%)

T 0200 1445 98 30

T 0400 1375 98 21
T800 1510 98 8
T 00400 1700 98 15

T 00200 2800 98 31
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range) is to enable mobile devices to adapt their range
according to the rate of encounters, current dissemination
level, and remaining battery power.

4.2. Performance results: DLP scenario

The broadcast performance results for the DLP scenario
with the single AP are shown in Fig. 6 (left) and in the first
three rows of Table 3. In the morning hours (T 0200; T 0400, and
T800), message dissemination is initially slower than in the
Epcot, as indicated by the slope of the curves. The contribu-
tion of the AP1 is also smaller (30% in DLP vs. 53% in Epcot
at T 0200). The reason is that AP1 is in the Disneyland Park,
while many people visit the Walt Disney Studios first and
do not pass anywhere close to AP1. The time to dissemi-
nate the message to 98% of the visitors (DT98% in Table 3)
is however shorter than in the Epcot. Visitors in the DLP
are more mobile and, therefore, the problem of delivering
the message to the last few percent of visitors is not as
apparent as in the Epcot. For example, it took 540 s to
reach 80% of visitors in the Epcot at T 0400, which is signifi-
cantly faster than 940 s in the DLP. However, it took an-
other 1424 s to achieve the 98% target in the Epcot, while
only 430 s in the DLP. This illustrates how differences in
spatial distributions and mobility levels affect the perfor-
mance in the two scenarios. In the morning hours, Epcot
visitors are clustered close to the AP1 and not particularly
mobile: The message dissemination is achieved mostly
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s and the percentage of devices that would receive the message by DT98%

AP1 & AP2

DT98% (s) AP + P2P (%) AP only (%)

1435 98 49
1205 98 36
1475 98 19
1618 98 18
2800 98 31
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through the infrastructure. At the same time, DLP visitors
are dispersed and highly mobile: The message dissemina-
tion is achieved mostly through the mobility. In the even-
ing at T800 all DLP visitors are in the Disneyland Park since
Walt Disney Studios are closed at that time. The message
dissemination is significantly slower than in the morning
hours since the message disseminates against the flow of
people who are leaving the park.

We also studied the effect of adding the second infra-
structure node in the Walt Disney Studios (AP2 in Fig. 2).
AP2 helped increase the dissemination speed in morning
hours, since visitors entering the Walt Disney Studios are
likely to pass next to it. This is evident from the slope of
the curves in Fig. 6 (left) and Fig. 6 (right). However, as in
the Epcot scenario, the time to reach 98% of visitors was
not affected much by the additional AP since last of the vis-
itors are reached through peer-to-peer encounters rather
than infrastructure. In the evening hours, AP2 has no effect
on the delay since all visitors are in the Disneyland Park.

5. Encounter statistics

In Sections 5.1 and 5.2, we analyze several contact-re-
lated statistics that are relevant for the performance of
broadcast message dissemination (inter-any-contact time,
mean square displacement, number of neighbors, and rate
of new contacts) and correlate them with the results of the
previous section. Additional statistics (inter-contact time
and contact duration) are analyzed in Section 5.3: These
statistics are not directly related to the performance of
the application studied in the previous section, but they
might be highly relevant for other examples of opportunis-
tic networking in theme parks.

5.1. Encounter statistics: Epcot traces

Inter-any-contact time (IACT) is the time elapsed be-
tween starts of two successive contacts of a device with
other devices. IACT determines the frequency of contact
opportunities and, therefore, it affects the speed of
opportunistic broadcasting. It strongly depends on the
device density (i.e. time of the day). We observed IACTs
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in 30-min intervals following T 0200; T 0400; T800; T 00400, and
T 00200. Their complementary cumulative distribution func-
tions (CCDFs) are shown in Fig. 7 (left). The curve labeled
as T 0200 represents CCDF of IACTs observed in [T 0200;

T 0200 þ 30 min], for example. With distribution fitting, we
found that the distribution of IACTs is accurately described
by the gamma distribution with the shape parameter be-
tween 0.6 and 0.7 depending on the time of the day (95%
confidence intervals for the MLE of the shape parameter
were within ± 7% of the MLE at T 0200 and T 00200 and with-
in ± 1.5% at T800). This is consistent with the results pre-
sented in [17], but not with the power-law distribution
observed in [18]. The Bluetooth sighting traces analyzed
in [18] did not capture all contacts since neighbors were
searched for every 120 s. Although the resolution of our
traces is the same, shorter contacts can be detected be-
cause positions of visitors can be interpolated between
GPS samples. Besides, the traces in [18] were collected in
a conference environment with a lower degree of mobility
compared to entertainment parks. Results in Fig. 7 (left)
show that the average IACT corresponds well to the device
density illustrated in Fig. 4 (top): It decreases with the
number of devices and, for the same number of devices,
it is shorter in the morning (e.g. at T 0200) than in the after-
noon (e.g. at T 00200).

Beside the density, the number of contact opportunities
depends on the level of mobility, which can be measured
by the mean square displacement (MSD). Displacement
measures how far away a mobile node is from its starting
position after some time t. Let pt 2 R2 be the position of a
node at time s (e.g. in an x–y coordinate system). Mean
square displacement after time t is given by
MSDðtÞ,EfPsþt � P2

sg. MSD(t) increases with t, such that
MSD(t) � tc. The exponent c indicates the speed of diffu-
sion. For Brownian motion c = 1. When c > 1, the mobility
is superdiffusive. For example, when a node moves on a
straight line MSD(t) � t2, hence c = 2. Nodes whose mobil-
ity exhibits stronger diffusion will cover larger area com-
pared to nodes with weaker diffusion. As a consequence,
they will encounter more new nodes. The speed of diffu-
sion makes huge impact on the performance of forwarding
algorithms [10].
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Table 5
DLP traces: Number of neighbors and contacts.

T T 0200 T 0400 T800 T 00400 T 00200

# of neighbors 1.09 1.16 1.50 1.08 0.33
# of contacts [min�1] 0.55 0.64 0.81 0.60 0.18
% of new contacts 60.0 65.6 75.8 61.7 77.8
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We calculated the MSD(t) of each park visitor in a
30-min interval following T (i.e. T 0200; T 0400; T800; T 00400, and
T 00200) by varying s from T to T + 30 min-t. Fig. 7 (right)
shows the average MSD(t) at different times of the day
on a log–log scale. The initial slopes of the curves c > 1
indicate that park visitors exhibit superdiffusive behavior
over an interval of �10 min. The figure shows that the
MSD is larger in the afternoon when visitors tend to move
faster between the attractions to make the best use of the
time before the park closes. The larger MSD, however, did
not result in faster message dissemination, as shown in
Fig. 5. Higher mobility in the afternoon leads to a wider
dispersion of visitors and, therefore, fewer neighbors/con-
tacts. This is obvious when comparing the average number
of neighbors (devices within the range of 10 m) and con-
tacts per minute at T 0400 and T 00400 or T 0200 and T 00200 in Table 4.
The table also shows that the percentage of new contacts is
rather high. Hence, there are few repeated contact with the
same devices within the 30-min interval after T, which is
consistent with the superdiffusive behavior observed in
Fig. 7 (right). Note however that the lack of GPS data from
indoor locations, where repeated contacts are likely to oc-
cur, may have affected the percentage of new contacts in
Table 4.
5.2. Encounter statistics: DLP traces

The CCDFs of inter-any-contact times in the DLP are
shown in Fig. 8 (left). The average IACTs correspond well
to the device densities at different times of the day illus-
trated in Fig. 4 (bottom). As in the Epcot traces, the shape
of the distribution of IACTs is best described by the gamma
distribution. A major quantitative difference compared to
Table 4
Epcot traces: Average number of neighbors and contacts.

T T 0200 T 0400 T800 T 00400 T 00200

# of neighbors 1.82 2.40 2.49 0.69 0.31
# of contacts [min�1] 0.47 0.61 0.77 0.29 0.16
% of new contacts 85.4 86.8 88.0 90.7 89.7
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the IACTs in the Epcot traces is observed at T 00400: IACTs in
the DLP tend to be significantly shorter. Since T 00400 in DLP
traces corresponds to 19:15 h, as shown in Fig. 3 (right),
the most probable reasons for the difference are: (1) The
Walt Disney Studios closes at 19:00 h; the flow of people
out of that park increases the number of encounters. (2)
A street parade starts at 19:00 h in the Disneyland Park;
many visitors gather at the center of the park to watch
the parade, which increases the density and the number
of potential encounters. Shorter IACTs at T 00400 helped to
achieve faster message dissemination in the DLP, as shown
in Figs. 5 and 6. The average number of neighbors is given
in the Table 5. This number is significantly smaller than in
Epcot at T 0200; T 0400, and T800, which is expected from the
spatial distributions shown in Fig. 4. The number of neigh-
bors is approximately the same at T 00200, and significantly
larger at T 00400 due to (1) and (2). This illustrates the impor-
tance of localized events that can only be captured in de-
tailed targeted mobility models. The second row in
Table 5 shows the number of contacts per minute. Except
at T 00400, the frequency of contacts is approximately the
same as in Epcot, in spite of the larger number of neighbors
in Epcot. This indicates that DLP visitors are more mobile.
The MSD shown in Fig. 8 (right) confirms this. Although
the MSD is bigger in the DLP traces, the slope of the MSD
curves is approximately the same as in the Epcot traces.
Hence, the superdiffusive properties of visitors’ mobility
in the two scenarios are similar. The number of new con-
tacts as a percentage of all contacts is however signifi-
cantly smaller in the DLP traces, as shown in the bottom
row of Table 5. This may appear contradictory to the fact
that MSD is bigger, which suggests that DLP visitors are
more mobile, and therefore, encounter more new visitors.
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It could be that coordinated movements of groups of visi-
tors, which would result in repeated contacts of the same
pairs of devices, are more common in the DLP. We have
not investigated if this is actually the case.

5.3. Other statistics

We analyze inter-contact times (ICTs) and contact dura-
tions (CDs) in Epcot and DRP traces, discuss their relevance
for the performance of opportunistic networking, and com-
pare their statistical distributions with some previous
findings.

Inter-contact time (ICT) is the time elapsed between
starts of two successive contacts of the same pair of de-
vices. ICT is relatively independent (but not entirely inde-
pendent) of the number of visitors in a park compared to
the inter-any-contact time (IACT). The distribution of ICTs
can be used to derive the residual time until a new contact
occurs and, therefore, the time until any of the relays
encounters the destination of the message. Hence, the dis-
tribution of ICTs is closely related to the end-to-end delay
of (unicast) forwarding algorithms—longer ICTs lead to
longer delays. ICTs have been studied extensively in the lit-
erature [9,13,15]. In [9], the authors show that the distri-
bution of ICTs aggregated over all pair of devices exhibits
a heavy tail such as one of a power law. This is at odds with
the exponential decay implied by most mobility models
that are widely used in wireless studies. The authors pose
a hypothesis that the mean packet delay of any opportu-
nistic routing scheme is infinite if the power law exponent
of ICTs is smaller than or equal to one. Results in [13] indi-
cate that the tail distribution of ICTs actually exhibits a
dichotomy—it follows power-law decay only up to some
characteristic time, beyond which the decay is exponential.
In Fig. 9 (left) we confirm the same tendency in our GPS
traces. The figure shows the complementary cumulative
distribution function (CCDF) of ICTs aggregated over all
pairs of visitors that encountered each other at least twice
during a day. The shape of the curve indicates that the tail
indeed follows a power low decay up to a characteristic
time of �100 min. The fast drop beyond the characteristic
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time indicates exponentially decaying tail. The slope of this
decay is related to the space boundaries (i.e. size of the
park) and the length of the traces (i.e. park visit durations).

Contact duration (CD) is the time two devices remain in
contact assuming certain transmission range. Actual trans-
mission link duration is shorter than the corresponding CD
because devices need to discover each other and set up the
connection. Many short contacts arise when park visitors
are bypassing each other. Longer contacts occur when vis-
itors are static and collocated (e.g. while they are waiting
in queues or sitting in restaurants). It is therefore not sur-
prising that the distribution of CDs shown in Fig. 9 (right)
appears to be heavy-tailed. Contacts need to be longer than
the device discovery delay to be useful for content distri-
bution. Hence, the tail of CCDF is of particular interest.
Using distribution fitting in Matlab, we found that CDs in
DLP traces can be accurately described by the generalized
Pareto distribution with shape parameter 0.28 for the
transmission range of 10 m and 0.30 m for 50 m. This con-
firms that the distribution of CDs is indeed heavy-tailed.
Interestingly, CDs in Epcot traces could not be matched
to the generalized Pareto distribution with the same accu-
racy. The shape of the tail indicates that their distribution
is heterogeneous. We do not have a straightforward expla-
nation for this difference: CDs are in a complex way depen-
dent on the park layout and activities performed by
visitors. As expected, our results show that longer trans-
mission range significantly increases the probability of
long contacts.

The presented statistics describe encounters of individ-
ual nodes. In many practical scenarios, however, clustering
of nodes (e.g. due to social grouping) and rate at which
clusters split and merge also plays a significant role in con-
tent forwarding. A model that translates the split and
merge rates to the stationary cluster size distribution is de-
scribed in [19]. The distribution indicates to what extent a
scenario provides partial multi-hop routes that can be used
to complement opportunistic forwarding between clusters.
It may have important implications for some of the enter-
tainment park application scenarios. Unfortunately, much
of the social clustering information is lost in our GPS traces
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since, in case of groups, only one of the members was given
a GPS device.
6. Mobility simulator

There is already a number of pedestrian mobility mod-
els and simulation tools, which are used for research in
various fields, including wireless networking. Some of
them are mentioned in the following. So why do we need
yet another mobility simulator? Available tools are either
simplistic and do not correspond to any specific real-world
mobility scenario, or they target some common scenarios,
such as urban working-day mobility. For practical applica-
tions, models must target specific mobility scenarios, even
if this limits the scope of their applicability. We created a
model that targets entertainment park mobility and cap-
tures many features that are specific for such parks. Enter-
tainment park mobility could be of significant interest to
the research community because of the variety of wireless
applications that can be deployed there.
6.1. Related mobility models

It is impossible to capture all details of human mobility
in a model. Therefore, models typically focus on aspects
that are considered relevant for their intended use (e.g. re-
search in the areas of transportation, urban planning, social
sciences, or in our case wireless networking). According to
[22], human mobility can be described at three levels: stra-
tegic, tactical, and operational.

� At the strategic level, people decide on their destina-
tions based on activities that they want to perform, as
well as the order in which the activities are performed.
It is extremely difficult to model human behavior at this
level. Existing models focus on particular mobility sce-
narios (e.g. working day mobility, airport mobility).
They are often empirical and based on observations
and surveys.
� At the tactical level, people decide which routes to take

between destinations. In reality, route choices are often
results of some complex utility maximization which
includes many route parameters (travel time, distance,
attractiveness, safety, etc.). Yet most route-choice mod-
els used in simulations, including ours, are based on
simple shortest path algorithms.
� At the operational level, people chose their walking

speed and direction to avoid collisions with obstacles
and other pedestrians. Mobility models used in the
research of wireless networks typically assume free,
unobstructed flow of people. However, in ad hoc net-
works, interaction among pedestrians may affect the
rate and the duration of contact opportunities used for
data transfer.

Mobility at the strategic level is often referred to as
macro-mobility. The tactical and operational levels consti-
tute micro-mobility. Many of the available models focus
on micro-mobility and lack proper representation of
macro-mobility (choice of destinations driven by person’s
Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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activities) or vice versa. Our model includes both macro-
and micro-mobility. It is still computationally simple en-
ough to simulate the mobility of tens of thousands of peo-
ple in real-time. Here we provide a brief overview of
existing mobility models and simulation tools with a spe-
cial focus on those commonly used in wireless networking
research.

The Random Waypoint (RWP) [23] is a popular model
that describes mobility patterns of independent, non-inter-
acting nodes in an open area. Each node moves along a zig-
zag line from one waypoint to the next. RWP model is
elementary and it is easy to argue about the paths being
unnatural. It owns its popularity to simplicity and mathe-
matical tractability. The RWP has been used as a basis for
many other models. Based on empirical observations,
[11] proposes Levy Walk model, which assumes power-
law distributions of trip lengths between waypoints and
pause times in the waypoints. Constrained Random Way-
point models, such as the one proposed in [24], include
geographical restrictions—nodes are restricted to travel be-
tween waypoints using pathways. A survey of random
walk models is provided in [25]. The macro-mobility in
these models is simplistic; destinations and their visit or-
der are chosen randomly without any strategic planning.
This type of mobility hardly represents any realistic sce-
nario. On the operation level, free unobstructed movement
of people is typically assumed. The effect of these assump-
tions in the performance evaluation of wireless ad hoc net-
works has been studied in [26].

Similar to our model, some models have been derived
based on observed mobility and geographical data. For
example, the Weighted Waypoint model [27] defines a
set of destinations, such as restaurants and classrooms
on a university campus. Based on empirical distributions
of pause times at each destination and transition probabil-
ities between the destinations, the model constructs a
Markov chain of nodes’ movements. The UDel mobility
model [28] aims to capture a typical day-cycle of a work-
ing person based on data collected by the US Bureau of La-
bor Statistics. In the model, the mobility of people is
driven by activities performed on a realistic city map:
schedules and durations of activities are calibrated based
on the data. Similarly, the model in [29] uses data from
the US National Household Travel Survey. A drawback of
using statistics aggregated from various locations is that
models become rather generic. Other examples of empir-
ical models are the Working Day Movement model imple-
mented in the ONE simulator [30] and the model
implemented in the CanuMobiSim simulator [31]. Most
empirical models employ strategic destination planning
based on activity scheduling. Scheduled activities are
mapped to destinations where they can be performed.
Activity-based user modeling belongs to the mature field
of travel demand modeling in transportation research.
Surveys of activity-driven approaches are provided in
[32,33].

Elaborate efforts to capture human walking behavior
on the operation level have been made in the fields of ur-
ban and transportation planning and traffic engineering.
The social force model (SFM) described in [34] assumes
that each pedestrian is driven by two types of forces: so-
n mobility on wireless ad hoc networking in entertainment parks,
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cial and physical. The social forces reflect the intentions of
pedestrians not to collide with other people and obstacles;
in response to these forces pedestrians accelerate or
decelerate. Several commercial multi-agent simulators
use the SFM to generate mobility; the most notable are
VISSIM [35], Legion Studio [36], and SimWalk [37]. Be-
sides the SFM, cellular automata models (CAM) provide
convenient way to capture human walking behavior
[38]. In the CAM models, walking space is divided into
small cells, which can generate potential fields that repre-
sent the local effect of obstacles and other pedestrians on
walking direction and speed. PedGo [39] is an example of
a simulator based on the CAM. VISSIM, Legion Studio, Sim-
Walk, and PedGo are often used in urban and traffic plan-
ning to design public spaces such as airports, subway
stations, and sport stadiums. They aim to capture speed-
distance relations that emerge when pedestrians navigate
obstacles and other pedestrians. These relations are
responsible for the formation of pedestrian crowds—cap-
turing them is of paramount importance in emergency
evacuation scenarios. These models are often called
microscopic since they focus on walking behavior rather
than on strategic macro-mobility. Therefore, defining
large-scale mobility scenarios using these tools requires
significant efforts from users. Furthermore, they are often
computationally intensive, which limits the number of
pedestrians that can be simulated.

6.2. Park representation

The first step to simulate the mobility of entertainment
park visitors is to create a representation of park’s spatial
layout in the simulator. ParkSim does not implement its
own layout editor where a park could be drawn. Instead,
the park layout is specified in the OpenStreetMap (OSM)
format [40]. Therefore, any OSM editor can be used. An
advantage of using the OSM is that large parts of major
entertainment parks are already mapped in details, as
shown in Fig. 1 and Fig. 2. The OSM maps are easily parsed
by the simulator because they use XML syntax. We distin-
guish between two types of areas in parks: walking areas
Fig. 10. Left: Geometric representations of a walkw
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and activity areas. Visitors use walking areas to move be-
tween activity areas. The outlines of the areas need to be
specified in the OSM map editor before the park map is
parsed by the simulator.

6.2.1. Walking areas
Most walking areas are already specified as such in OSM

maps. We distinguish between two types of walking areas:
walkways and plazas. In the OSM, a walkway is repre-
sented by a series of waypoints. In ParkSim, this series is
split up into segments where each segment contains only
two consecutive waypoints. The shape of segment is then
computed as a rectangle whose height is equal to the dis-
tance between the waypoints and the width is set accord-
ing to the assumed width of the walkway. Fig. 10 (left)
illustrates the geometry of a walkway. A plaza is repre-
sented as a polygon with an arbitrary number of edges. A
number of connection points located at the edges of the
polygon connect the plaza to the adjoining walkways, as
shown in Fig. 10 (right). For simplicity, we assume that vis-
itors use a shortest path when they move between two
connection points (i.e. two adjoining walkways) across a
plaza. One drawback of this is that a shortest path may fall
outside of a concave polygon. This can be avoided by split-
ting up such plaza into multiple smaller convex plazas.

6.2.2. Activity areas
Activity areas are locations where park visitors perform

typical park-related activities. We distinguish between
four different types of activity areas: attractions, rides, res-
taurants, and event areas. The activity areas need to be
specified as polygons in the OSM editor before being
parsed by the simulator. The characteristics and parame-
ters that can be configured for the activity areas are:

� An attraction is an indoor or outdoor location that visi-
tors can visit. The number of visitors that an attraction
can accommodate is limited by the available space, per-
sonal space requirements, and safety regulations. How-
ever, an attraction is usually able to accommodate all its
visitors except when a park is extremely crowded.
ay. Right: A plaza with adjoining walkways.

n mobility on wireless ad hoc networking in entertainment parks,

http://dx.doi.org/10.1016/j.adhoc.2012.05.011


V. Vukadinovic et al. / Ad Hoc Networks xxx (2012) xxx–xxx 13
There is a single entrance/exit point to each attraction
from adjoining walking areas. The probability distribu-
tion of visit durations and mobility model by which vis-
itors move inside an attraction can be specified in the
simulator.
� A ride is a special type of an attraction whose capacity is

limited to the extent that an entrance policy must be
specified. There is a queuing space at the entrance to
the ride where visitors can wait to enter if the ride is
currently full. A reservation scheme described in Sec-
tion 4.1 allows visitors to take a so-called fastpass ticket
for the ride to avoid long queues. The capacity and ride’s
duration can be specified in the simulator.
� A restaurant is an eating area, which has a specified

capacity, but no queue at the entrance. When in a res-
taurant, visitors are static. The capacity and the proba-
bility distribution of visit durations can be specified in
the simulator.
� An event area is an area where visitors gather to watch

some popular park events, such as street performances
and fireworks. An event area encompasses some of the
walking areas on which visitors may stand to watch
the event. The starting time, duration, and popularity
of an event can be specified in the simulator.

6.3. Mobility model

Visitors arrive to the park entrance according to an
empirical arrival rate distribution. The arrival rate depends
on the time of the day. The total number of arrivals is a
parameter of choice (parks tend to be more crowded on
weekends and holidays). Once they pass the entrance gate,
their mobility is driven by the model implemented in the
ParkSim simulator. The model describes mobility at two
levels: Macro mobility determines how visitors select
activity areas to visit and how they prioritize between dif-
ferent activities. Micro mobility determines how they
move between and inside activity areas and how they
avoid colliding with each other in walking areas and in
Fig. 11. Left: A park guest can be in one of the three states: walking, queuing, or v
An example of an event area with an indication of possible watching spots.
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queue lines. The total time that a visitor spends in the park
is drawn from an empirical visit time distribution. At the
end of his visit, the visitor walks towards the exit.
6.3.1. Macro mobility
A visitor can be in one of the following three states:

walking (visitor is moving in a walking area), visiting (visi-
tor is visiting an activity area), or queuing (visitor is waiting
to enter a ride). Initially, a visitor is in the walking state
and appears at the park entrance. He then chooses to visit
one of the activity areas that are specified as possible initial
destinations. The initial destinations are typically located
close to the park entrance. The visitor walks towards the
initial destination (activity area) using the shortest path
provided by the walking areas.

At the destination, the visitor can either (i) enter the
activity area if the area is not full; his state changes to vis-
iting, (ii) if the activity area is a ride, the visitor can join the
queue; his state changes to queuing, (iii) decide to visit the
area at some later time; his state remains unchanged as he
walks toward the next destination. When a visitor enters
an activity area, he randomly chooses visit duration from
an area-dependent visit duration distribution. In case of
rides and events, the visit duration is deterministic. While
inside an activity area, the visitor moves according to an
area-specific micro-mobility model. At the end of the visit,
the visitor chooses his next activity area based an activity
matrix. The activity matrix contains probabilities with
which visitors chose to visit other attractions and rides in
the park, given the last visited attraction or ride. The prob-
abilities are derived from GPS traces of park visitors. Cur-
rently, the activity matrix does not account for possible
differences between visitors of different age and/or sex.
Visits to the restaurants and event areas are not driven
by the activity matrix, but by visitors’ hunger and by a
timetable of park events, respectively. When a visitor se-
lects his next destination, his state changes to walking.
The state transition diagram is shown in Fig. 11 (left).
isiting. The diagram shows possible transitions between the states. Right:
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Table 6
Different types of activities are scheduled and prioritized.

Activity area Visits driven by Priority

Attraction, ride Activity matrix Low non-preemptive
Restaurant Guest’s hunger Medium non-preemptive
Event Event

timetable
Medium non-preemptive or high
preemptive

Ride (with a
fastpass)

Time on the
fastpass

High preemptive
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Different activity areas (attractions, rides, restaurants,
event areas) have different priorities. It may happen that,
for example, a visitor interrupts his visit to an attraction
in order to attend an event. Therefore, an event may have
a preemptive priority over some other activities. A visitor
may, for example, decide to visit a restaurant, but he will
do so after his visit to an attraction is finished. Hence, a res-
taurant visit has a non-preemptive priority over attrac-
tions. Priorities of different activities are summarized in
Table 6. Note that different events may have different
priorities.

In the following, we provide more detailed descriptions
of how visitors queue to enter rides, and how they visit res-
taurants and events.

6.3.1.1. Fastpass model. In some entertainment parks, a vis-
itor who does not want to wait in a queue to enter a ride
may take a so-called fastpass. The fastpass specifies a
30-min slot in which the owner has to return to the en-
trance of the ride in order to enter without queuing. In
our simulator, a visitor decides to join the queue or to take
a fastpass depending on the estimated waiting time TW,
which is calculated based on the number of visitors in
the queue, the capacity of the ride, and the ride’s duration.
In entertainment parks, estimated waiting times are often
displayed on screens. Since we lack empirical evidence, we
assume that the probability of taking a fastpass PFP in-
creases linearly with TW, and it is equal to one for
TW > 90 min. The visitor joins the queue with the probabil-
ity 1-PFP. The starting time of the fastpass validity is calcu-
lated as the current time plus the estimated waiting time,
rounded up to the next full or half-to-full hour. A visitor
can visit other activity areas until the validity of the fast-
pass starts. However, he gives a high priority to the ride
for which he holds a fastpass: if he is visiting another activ-
ity area, he will estimate the time to walk back to the ride
and leave the current area early enough to use his fastpass.
A visitor can hold only one fastpass at a time.

6.3.1.2. Restaurant visit model. The probability that the next
activity area visited by a visitor is a restaurant increases
linearly with the time spent in the park. Six hours after
entering a park, the visitor will eat at least once. The prob-
ability of choosing a particular restaurant is inversely pro-
portional to the walking distance to the restaurant. In
addition to the distance, restaurant popularity could be ac-
counted for. However, due to the lack of empirical data, we
currently assume that all restaurants are equally popular.
The popularity of restaurants could not be extracted from
the GPS traces because most restaurants are collocated
Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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with the attractions (e.g. inside the same building). There-
fore, it was impossible to conclude if a person is sitting in a
restaurant or visiting/watching the attraction. A side-effect
of this is that the visit time to attractions extracted from
the GPS traces may include the time spent in the restaurant
inside that attraction.

6.3.1.3. Event visit model. An event area is defined in the
OSM map as a polygon that encompasses some of the
park’s walking areas. The walking areas inside the event
area can be used by visitors to select a spot to watch the
event (e.g. firework, street performance). When a visitor
arrives to the event area, he will select a random spot in
the walking areas that are within a certain radius, as
shown in Fig. 11 (right). This avoids overcrowding of the
walking areas when only few walkways enter the event
area. An event has a starting time, duration, spot selection
radius, popularity, and priority as parameters. The popu-
larity is the probability that a random visitor in the park
will attend the event. An event may have a medium non-
preemptive priority (e.g. a street parade) or high preemp-
tive priority (e.g. a park evacuation).

6.3.2. Micro mobility
Micro-mobility determines how visitors select routes

between activity areas, how they avoid colliding with each
other in walking areas, and how they move inside activity
areas and queues. Micro mobility is responsible for the for-
mation of pedestrian crowds (e.g. platooning on congested
sidewalks). In opportunistic networks, micro mobility
affects the time that two radio devices stay within each
other’s range and the number of devices they encounter
per unit time.

6.3.2.1. Routing. In theme parks, most people choose the
shortest path to the next activity area based on, for exam-
ple, a map of the park that is handed out to them at the
ticket counter or based on posted signs. In many cases,
the next attraction will be within their sight. ParkSim uses
the Dijkstra algorithm to calculate shortest paths between
activity areas. The algorithm computes an ordered list of
walkways that determines waypoints for walking. A visitor
walks straight towards the next waypoint if not disturbed
by other visitors; otherwise the direction of his movement
is determined by a collision avoidance algorithm. To avoid
cases where all visitors walk in the middle of the walkway,
a random offset is added to the waypoint so that the visitor
actually moves towards a randomly selected point on the
ending edge of the current segment. Target walking speeds
of visitors are drawn from a specified speed distribution.
The actual walking speeds depend on the crowdedness of
a park.

6.3.2.2. Collision avoidance. Simulated visitors try to avoid
colliding with each other while walking. The visitors are
represented by circles of a specified radius. Each visitor
has a rectangular field of view, as shown in Fig. 12 (left).
The figure illustrates a scenario where two visitors would
collide after three simulation timeslots/steps if their walk-
ing directions remain unchanged. The collision avoidance
algorithm extrapolates the trajectories of all persons with-
n mobility on wireless ad hoc networking in entertainment parks,
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Fig. 12. Left: An example of a potential collision that is avoided by changing the direction of movement. Right: An example of a queue line structure.

Fig. 13. A sample mobility trace from ParkSim. Not all activity areas are
shown in the figure.
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in the field of view of a visitor in order to predict impeding
collisions. If one or more collisions are predicted, the algo-
rithm changes the direction and/or the speed of the visitor
to avoid the collision(s). The algorithm will first try to
change the directions without changing the speed. It this
is not possible, for example because the visitor would have
to step outside of the walking area, the speed is changed.
We omit the details of the algorithm for brevity. The algo-
rithm is executed at each time step for each visitor inde-
pendently. It is a best-effort algorithm, which does not
ensure a completely collision free movement, but it cap-
tures the effect of crowded walking areas on the speeds
of the visitors.

6.3.2.3. Queuing behavior. A queue line is modeled as a grid
of cells with specified width and length. Each cell provides
space for one visitor, as shown in Fig. 12 (right). When
entering the queue, a visitor selects a free cell that is clos-
est to the entrance; ties are broken randomly. The visitor
moves forward whenever some of the visitors in front of
him are allowed to enter the ride. Since the number of cells
is limited, it may happen that an arriving visitor finds all
cells occupied. In such cases, he selects another activity
area to visit, according to the activity matrix. Note that a
visitor who decides to take a fastpass does not enter the
queue.

6.3.2.4. Intra-area mobility. When they are inside activity
areas, the mobility of visitors is different from the mobility
in walking areas. Currently, there are two intra-area mobil-
ity models in the ParkSim: Random Waypoint and Random
Sitpoint models. In the popular Random Waypoint model
[23], a visitor moves from one random waypoint to the
other along a zigzag line that connects them. This model
is used for some attractions and rides. In the Random Sit-
point model, a visitor moves towards a random point in-
side an activity area and remains there until the end of
his visit. This model is used for restaurants, event areas,
and some attractions and rides. In the future, we will mod-
ify the indoor mobility models for some of the activity
areas to better capture the true behavior of people at those
locations.

6.4. Model calibration and validation

We use the Epcot park as an example to describe how
we calibrated and validated the model. The layout of the
Please cite this article in press as: V. Vukadinovic et al., Impact of huma
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park is shown in Fig. 1. The ParkSim model of the park con-
tains 22 attraction areas, six rides, 12 restaurants, and an
event area centered around the lake. During the calibra-
tion, various parameters of the model, described in Sec-
tions 6.2 and 6.3, are set based on data collected in the
park. The data comes from two sources: long-term atten-
dance statistics collected by the park management and
GPS traces of park visitors described in Section 3. The
hourly distribution of arrivals to the park, schedules and
durations of park events (e.g. fireworks on the lake), and
ride durations are obtained from the park management.
The activity matrix and the distributions of visit durations
for some of the activity areas are obtained from the GPS
traces. Most of the data is confidential and, therefore, not
disclosed in this paper. Some of the model parameters
are set arbitrary due to the lack of relevant data (e.g. visit
durations for the restaurants). A sample mobility trace ob-
tained from the ParkSim is shown in Fig. 13 as an illustra-
tion. The model validation focuses on the opportunistic
broadcasting scenario described in Section 4 and on the
encounter statistics analyzed in Section 5.

We used synthetic mobility traces produced by the
ParkSim to simulate the message dissemination in the
Epcot. We measured the time needed to deliver the mes-
sage to 75%, 90%, and 98% of devices at different times of
n mobility on wireless ad hoc networking in entertainment parks,
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Table 7
Time needed to distribute the message to 75%, 90%, and 98% of the devices.

T GPS traces ParkSim traces

DT75% (s) DT90% (s) DT98% (s) DT75% (s) DT90% (s) DT98% (s)

T 0200 239 651 1855 172 565 1590

T 0400 545 990 1984 410 787 1765
T800 621 1033 1556 589 929 1415
T 00400 1144 1484 2790 944 1220 2394

T 00200 3885 4040 4320 2818 3458 3776.
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the day. The results are summarized in Table 7 together
with the results obtained earlier with the GPS traces.
The table shows that the dissemination delay is some-
what shorter with the synthetic ParkSim traces. The
following simplifications in the ParkSim model have
caused the discrepancy:

(1) Some of the lesser attractions, visitor service areas,
shops, and walkways are not included in the model.
Hence, the model restricts the movement of visitors
to fewer locations in the park, which results in
higher density and more frequent encounters.

(2) The model assumes Random Waypoint or Random
Sitpoint mobility inside activity areas. In reality, vis-
itors move differently in each of the activity areas: In
some they roam freely, while in others they move in
groups following pre-determined routes. In some
they move on foot, while in others they ride vehicles
(roller coasters, mini cars, flight simulators). The
simplified intra-area mobility model may overesti-
mate or underestimate the frequency of encounters,
depending on the particular activity area.

(3) The activity matrix, which contains transition prob-
abilities between attractions, is assumed to be con-
stant over time. It is constructed based on average
day-long statistics extracted from the GPS traces.
In reality, the transition probabilities may depend
on the time of the day and the number of visitors
in the park.

The simplifications (1) and (2) are needed in order to
abstract away fine details of the park layout. Our intention
is to avoid micro-modeling of the park at the level of
individual activity areas. We consider the discrepancies
in Table 7 acceptable, especially considering that, due to
the time granularity of GPS sampling and unavailability
of GPS signal at indoor location, the performance obtained
with the GPS traces is only indicative, and not the ‘‘ground
truth’’ with respect to which the correctness of the model
Table 8
Number of neighbors and contacts assuming transmission range of 10 meters.

T GPS traces

# neighbors # contacts [min�1] % new contacts

T 0200 1.82 0.47 85.4

T 0400 2.40 0.61 86.8
T800 2.49 0.77 88.0
T 00400 0.69 0.29 90.7

T 00200 0.31 0.16 89.7
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can be accurately measured. The simplification (3) requires
further attention. Since the activity matrix contains aver-
age transition probabilities observed in the GPS traces, it
is biased towards the peak hour when the largest number
of transitions is observed. Therefore, it is not surprising
that the discrepancy in Table 7 is smaller for T800 than
for T 0200 and T 00200. We will continue to investigate the pres-
ence and significance of hourly changes in transition prob-
abilities to determine if such changes should be included in
the model.

We also extracted the average number of neighbors,
number of contacts, and percentage of new contacts from
the ParkSim traces. The results are shown in Table 8 to-
gether with the results extracted from the GPS traces.
The number of neighbors in the ParkSim traces is slightly
lower than in the GPS traces. This may seem contradictory
to (1). Note, however, that the number of neighbors in in-
door activity areas is overestimated in the GPS traces since
all visitors of an indoor area appear to be close to its en-
trance. It can also be observed from Table 8 that the num-
ber of contacts per minute is significantly larger in the
ParkSim traces, while the percentage of new contacts is
smaller. This is due to the Random Waypoint mobility,
which is assumed for some of the activity areas. Such in-
tra-area mobility results in frequent encounters, many of
which are repeated. The crucial factor for the speed of mes-
sage dissemination is the number of new contacts, which is
the product of the number of contacts and the percentage
of new contacts. The number of new contacts per minute is
approximately equal for the Epcot and ParkSim traces.
While intra-area mobility may have a significant impact
on contact durations and number of repeated contacts,
new contacts occur mostly due to macro-mobility (i.e.
movements of visitors from one activity area to the other).
Therefore, for the message dissemination scenario, it is suf-
ficient that the macro-mobility of visitors is captured in the
model. For some other application scenarios, it might be
necessary to expand the ParkSim with more detailed
intra-area mobility models.
ParkSim traces

# neighbors # contacts [min�1] % new contacts

1.74 0.80 54.1
2.27 0.93 53.9
2.31 1.19 55.2
0.58 0.48 55.9
0.26 0.30 52.8
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7. Conclusions

Intermittent connectivity could be useful for many
entertainment park applications if efficient routing/for-
warding algorithms are designed. To be practical, the algo-
rithms must target specific applications and mobility
scenarios. We studied the mobility of park visitors based
on a fairly large dataset of GPS traces. Using a broadcast
application as an example, we showed the impact of hourly
changes in the number of devices and their spatial distri-
bution on the speed of content dissemination. We analyzed
several contact-related statistics to interpret the observed
performance. Since our entertainment park scenarios as-
sume sparse deployment of infrastructure nodes, the den-
sity of mobile devices is crucial to reduce the delay of
content delivery. Mobility models and simulations are
needed to evaluate scenarios where the number of devices
exceeds the number of available GPS traces. Our results
suggest that generic mobility models are not sufficient:
Targeted mobility models are needed in order to capture
the non-stationarity in the number and spatial distribution
of nodes. Therefore, we developed the ParkSim tool to sim-
ulate the mobility of entertainment park visitors. It imple-
ments an empirical mobility model based on data collected
in entertainment parks. Synthetic mobility traces produced
by ParkSim are validated against the GPS traces of park vis-
itors. The results indicate that ParkSim can be a useful tool
to assist performance evaluations of wireless ad hoc net-
works. The tool can easily be adapted for scenarios where
pedestrians exhibit similar mobility patters, such as trade
shows, zoos, open-air museums, and multi-stage festivals.
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