
Interactive Surface Design with Interlocking Elements

Mélina Skouras1,2,3 Stelian Coros1,4 Eitan Grinspun5 Bernhard Thomaszewski1

1Disney Research Zurich 2ETH Zürich 3MIT CSAIL 4Carnegie Mellon University 5Columbia University

Figure 1: We present a computational approach to designing assemblies made from interlocking quadrilaterals of the same size and shape.

Abstract

We present an interactive tool for designing physical surfaces made
from flexible interlocking quadrilateral elements of a single size
and shape. With the element shape fixed, the design task becomes
one of finding a discrete structure—i.e., element connectivity and
binary orientations—that leads to a desired geometry. In order to
address this challenging problem of combinatorial geometry, we
propose a forward modeling tool that allows the user to interac-
tively explore the space of feasible designs. Paralleling principles
from conventional modeling software, our approach leverages a li-
brary of base shapes that can be instantiated, combined, and ex-
tended using two fundamental operations: merging and extrusion.
In order to assist the user in building the designs, we furthermore
propose a method to automatically generate assembly instructions.
We demonstrate the versatility of our method by creating a diverse
set of digital and physical examples that can serve as personalized
lamps or decorative items.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling;

Keywords: interlocking, quadrilateral elements, physical surfaces.

1 Introduction

The assembly of complex structures from a small number of sim-
ple elements is a powerful design paradigm, one that harnesses
economy of scale, freedom in form and function, and lightweight
portable deployment. Drawing inspiration from existing puzzle
lamps, we focus on the design of free-form surfaces built by in-
terlocking multiple instances of a single element. The element that

we consider in this work is quadrilateral in nature, having four ports
that interlock with ports of neighboring elements (see Fig. 2). For
such surfaces built from a single repeated element, the geometry
of the surface is entirely governed by combinatorial considerations:
the graph topology and the binary orientation of each element. See
Fig. 2 for an example.

Designing in this restrictive space is challenging. In particular for
novice users, deciding how to layout and connect individual el-
ements in order to achieve a desired shape is very difficult and
comes as a distraction from the creative intent—traits that quickly
combine into a frustrating experience. We therefore propose a for-
ward design tool that allows the user to think directly in terms of
shape, rather than having to worry about connections between in-
dividual elements. The enabling technology for this design expe-
rience are high-level modeling tools that combine the widely fol-
lowed paradigms of modular design and geometry extrusion in a
simple-to-use front-end. Transparent to the user, however, we ex-
ploit geometric and combinatorial techniques to facilitate the design
process: to fuse two design modules into one, we leverage a discrete
differential geometric approach to quickly rule out incompatible in-
terfaces among the exponentially growing graph combinatorics. To
extrude a geometric form, we use an online graph search that finds
self-similar interfaces in arbitrary assemblies, allowing them to be
replicated periodically to achieve directable extensions of the struc-
ture. With these tools, users can quickly design larger models that
would be very tedious to create by hand via trial and error.

Figure 2: Three identical interlocking elements are connected in
different ways to create a variety of shapes. Blue color indicates
flipped elements with opposite orientations.

A design tool is only useful if it produces valid, realizable designs.
Our system therefore accounts for two key fabrication constraints:
(a) the flexible plastic or paper material from which the models are
fabricated is inextensible, and (b) physical contact precludes pack-
ing more than a small number of elements incident to one graph
node. In order to reflect these characteristics during the design pro-
cess, we translate them into quantitative geometric and combinato-
rial constraints on the underlying search algorithms. Complement-
ing shape design, we further propose a method to generate assem-
bly instructions that guide the user through the fabrication process.
Finally, we demonstrate the feasibility of the resulting designs by
fabricating several physical surfaces.

2 Related Work

Our fascination for this subject has been sparked by recent
work on creating physical artifacts made from interlocking three-
dimensional [Xin et al. 2011; Song et al. 2012] or planar [McCrae
et al. 2011; Hildebrand et al. 2012; Schwartzburg and Pauly 2013;
Cignoni et al. 2014] pieces. While these works focus on generating
the geometry of interlocking elements, we focus on the creation of
networks from a given, specific interlocking element.

Building on previous works that develop interfaces for the crafting
of tangible artifacts, we help the user to create networks of inter-
locking elements via an assisstive user interface. We are partic-
ularly inspired by the beadwork system of Igarashi et al. [2012],
which guides the user in creating a polygonal mesh representation
for the beadwork model. Fabrication constraints are considered by
automatically adjusting edge lengths to comply with the minimum
inter-bead distance. In a similar spirit, we also employ a polygonal
mesh to abstract the design, but our problem brings forward new,
intimate connections between topology and geometry.

In a broader scope, design tools for physical surfaces have received
considerable attention from the graphics community in recent years.
The range of surfaces is diverse, including paper-craft models [Mi-
tani and Suzuki 2004; Kilian et al. 2008], paper popups [Li et al.
2010; Li et al. 2011], plush toys [Mori and Igarashi 2007], inflat-
able surfaces [Skouras et al. 2012; Skouras et al. 2014], wire-mesh
sculptures [Garg et al. 2014], or models designed using construction
kits with a discrete set of primitives [Zimmer and Kobbelt 2014].

One particular line of work has explored the design and fabrication
of self-supporting surfaces for masonry structures [Whiting et al.
2009; Vouga et al. 2012; de Goes et al. 2013; Deuss et al. 2014].
An alternative way of building self-supporting surfaces is by us-
ing reciprocal frames [2013], i.e., statically-stable structures made
from interposed rods. We consider interlocking rather than self-
supporting surfaces; both build surfaces out of elements without
resorting to adhesives. However, rather than determining the pa-
rameters of a continuous design problem, the restriction to a single
fabrication element renders our problem wholly discrete.

This turn toward the discrete is reminiscent of rationalization in
architecture, i.e., the task of converting a given free-form surface
into a design that is realizable with a restricted set of fabrica-
tion elements or techniques. As one example, Cutler and Whiting
[2007] approximate free-form surface with planar panels using a
constrained remeshing algorithm. Another example is the work by
Eigensatz et al. [2010], who address the question of how to tile a
free-form surface using as few custom-shaped panels as possible.
The methods by Yang et al. [2011] and Deng et al. [2015] al-
low the user to explore spaces of meshes subject to nonlinear con-
straints such as planar quad meshes or circular meshes. While our
approach has some similarities, it again differs in the fact that we
are constrained to a single element shape, resulting in an even more

restrictive design space. In order for the user to navigate this chal-
lenging design landscape, our method offers high-level modeling
tools that encourage interactive shape exploration as a means of
form finding and, ultimately, promote creativity.

3 Model

We consider the design of physical surfaces made from quadri-
lateral elements of the same size and shape. With a single type
of element, the shape of the surface is determined entirely by its
discrete structure, i.e., the connectivity of the elements and their
orientations. Computing the embedding of a network with given
structure, i.e., its deformed shape in 3D-space, is a critical part of
our design tool that needs to be both fast and robust to warrant
interactive feedback during design. As a prerequisite, we need
a representation for networks of interlocking elements that (a)
encapsulates all information required to determine the deformed
geometry and (b) supports modeling operations for shape design
(Sec. 3.1). Finally, in order to determine the global equilibrium
shape, we need to understand the kinematic constraints governing
the local deformations (Sec. 3.2).

3.1 Rhomboid Elements and Mesh Representation

𝐱1

𝐱2

𝐱3

𝐱4

α

𝛽

𝑙𝑎

𝑙𝑏

The quadrilateral elements that we con-
sider are rhomboids, i.e., parallelograms
with opposite sides of equal lengths,
adjacent sides of unequal lengths, and
oblique interior angles. The physical
elements are typically made from thin
sheets of plastic material and will readily
bend, but strongly oppose stretching. A
flat rhomboid element is defined by its
two side lengths la < lb and interior
angles α < β = π − α as shown in the
inset figure. Each of the four nodes is equipped with an oriented
hook, serving as a fixture to connect edges from neighboring
elements. Two elements are connected by inserting a long edge
of one element into a short slot on the other element. Physically,
this connection is achieved by bending the long edge such that
the distance between its nodes becomes equal to the short edge
length la. This leads to the characteristic curved appearance of the
elements, but it also produces forces on the nodes of the receiving
element. These forces secure the connections, leading to a stable
assembly of interlocking elements.

Mesh Representation We represent an interlocking element as-
sembly by an oriented manifold quad mesh, using the terminology
of a tagged half-edge data structure. Let a mesh be formed from
n vertices at positions {x1, . . . ,xn} organized into quadrilateral
faces {f1, . . . , fm}. The interior mesh edges consists of pairs of
half-edges, each associated to an incident face.

𝐅 𝐁

Each face f i corresponds to
one design element, with cor-
ners occupying positions xi

j ,
j ∈ {1, . . . , 4} drawn from the
set of vertex positions. Fur-
thermore, each design element
has two opposing long sides
and two opposing short sides
and we therefore tag each half-
edge as either long or short. Finally, each element may be oriented
as either front- or back-facing relative to the mesh orientation. We

therefore tag each face with this F/B orientation, thereby indicating
which diagonal of the quadrilateral face is long/short.

Each mesh edge represents the interlocking of two adjacent de-
sign elements. By nature of the interlock mechanism, each edge
joins one short side to one long
side. We therefore require that
half-edge pairs have opposite
long/short labels (see incident
figure). This constraint fixes
the long/short labeling of all
mesh faces once the orienta-
tion is selected at any one face.
As a result, once the connec-
tivity among the elements is
known and any one edge in a
face has been tagged as long or
short, the only remaining choice for each element is whether it is
front- or back-facing. If all the faces sharing a common vertex have
the same orientation, the angles incident to this vertex will be either
all small (Fig. 2, left) or all large (Fig. 2, middle). Changing the ori-
entation of selected elements allows for combining small and large
angles while ensuring the short-to-long condition (Fig. 2, right). It
is worth emphasizing that, while the element orientations have to
be set once per base shape, they are automatically adapted during
interactive design such that the user remains untroubled by techni-
cal issues. With a proper representation for our surfaces in hand,
we now turn to the conditions that govern their deformed shapes.

3.2 From Combinatorics to Embedding

Given the discrete structure of the network, we wish to determine
the embedding of the resulting form in 3D-space. Computing this
embedding is a critical step that has to be performed whenever the
user changes the design. We therefore seek a solution that is fast
yet accurate enough to faithfully represent the deformed surface.

The shape of the deformed surface results from a complex inter-
play of large bending deformations and frictional contact between
the curved elements. While nonlinear thin shell solvers can pre-
dict elemental and global deformations with high accuracy, they are
computationally too demanding for interactive applications. How-
ever, if the local shape of individual elements is not important, the
global shape can be captured in a simple and efficient way: since the
medium is quasi-inextensible, the distance between any two corner
vertices of a deformed element can never exceed their distance in
the initial (flat) configuration. These observations translate into six
kinematic constraints per element (four edges, two diagonals) that
can be modeled with a minimal representation, i.e., the corner posi-
tions of the elements and their orientation—which is precisely the
information furnished by our tagged half-edge data structure.

Energetic formulation In order to model the kinematic con-
straints described above, we follow a penalty approach and formu-
late energy terms that strongly penalize stretching of edges and di-
agonals. Compressions of edges and diagonals correspond to bend-
ing of the element and should be penalized as well, but at much
lower intensity. We model this behavior with a biphasic energy

El =
kl(lij)

Lij
(lij − Lij)

2 , kl =

{
1 lij ≤ Lij ,

100 lij > Lij ,

where lij = ||xi − xj || and Lij are the distances in the de-
formed and undeformed (flat) configurations, respectively. The
deformation-dependent stiffness coefficient kl models the differ-
ence in the material’s resistance to stretching and compression.

𝐧2𝐧1

𝐧3 𝐧4

𝛾12

𝛾34
While these per-edge energies
capture all in-plane deformation,
they do not penalize out-of-plane
motion. More concretely, for any
one-ring of elements incident to
a vertex with nonzero angular de-
fect, both the convex and concave
configurations store equal energy.
In practice, however, the connect-
ing tabs and hooks of the elements
lead to a strong preference for lo-
cally convex regions. We therefore enrich our energy with a term
that penalizes concavity,

Eb = kb12γ
2
12 + kb34γ

2
34 , kbij =

{
0 edge is convex,
1 edge is concave.

In order to compute the embedding for a network with given dis-
crete structure, we minimize the penalty energies summed over all
edges and diagonals. Since both energies admit closed-form ex-
pressions for first and second derivatives, we use Newton’s method
to quickly converge to a minimum. It is worth mentioning that, al-
though both energies have discontinuous second derivatives at the
transition between their two regimes, their gradients are continuous
and we observe good convergence in practice.

Discrete Gaussian Curvature While the energetic formulation
allows us to compute the embedding of a given tagged mesh, our
interactive design tools also require a faster, local predictor of shape
and feasibility. Indeed, the mesh combinatorics (including tags) can
be used to rapidly determine certain intrinsic shape characteristics
of local mesh neighborhoods (see Fig. 2). Consider the elements
incident to vertex i. The discrete surface around node i is charac-
terized by the number of incident elements, and by their orientation,
which determines whether their incident angle is large or small. The
angular defect at vertex i is

δ = 2π −
v(i)∑
j

θj , (1)

where v(i) denotes the valence of vertex i and θj ∈ {α, β} is the
incident angle of element j. As established by the Gauss-Bonet
theorem, the angular defect at a given node is equal to its integrated
Gaussian curvature at that point, thus defining the intrinsic shape of
the surface. More concretely, the angular defect determines whether
the surface is locally flat (δ = 0), convex or concave (δ > 0), or
hyperbolic (δ < 0). Since the incident angles θj can only assume
two values, α and β, the angular defect is quantized to a discrete
set of values. The largest value is determined as δmax = 2π − 2α,
since the minimum valence is two. The smallest value δmin is de-
termined by the physical limit on how many elements can be in-
serted at a given vertex. For our elements and their particular in-
terior angles, the minimum angular defect we could achieve was
δmin = 2π − 4β − α. Since smaller (more negative) angular
deficits correspond to packing more elements around one vertex, we
have found in practice that designs with angular defects approach-
ing δmin are increasingly difficult to fabricate; therefore, one of the
objectives in our design tool is to avoid such cases.

4 Design

One of the most intriguing aspects of interlocking elements is that
geometry is entirely determined by topology. However, having to
think in terms of element connectivity and orientation in order to
achieve a desired shape is very unintuitive for novices and arguably
human users in general. We therefore take modularity to a higher
level of abstraction and leverage a library of base shapes that can be
instantiated, combined, and extended. In particular, we found that
a wide range of designs could be easily and intuitively produced
using two fundamental operations: merging of base shapes enables
rapid drafting of a rough form; extrusion then plays the role of a
more refined sculpting operation. Both operations can be framed as
the problem of finding interfaces on two input shapes that can be
matched and merged into a discrete structure with desired, realiz-
able embedding.

4.1 Interface Matching and Merging

𝛼1,𝑖

𝛼2,𝑗

𝑣1

𝑣2

When searching for candidate interfaces on two
shapes with given position and orientation, a key
requirement is that they be compatible, i.e., can be
merged into a discrete structure with realizable em-
bedding. An interface I = {x1, . . . ,xn} is a set of
|I| = n vertices defining an edge loop that divides
a given shape into two separate pieces. As shown
in the inset figure, interfaces typically have a saw-
tooth profile with alternating valley and mountain
vertices, indicated in red and blue color, respec-
tively.

To connect two shapes along their interfaces I1 and I2, we require
a compatible correspondence (bijection) between the vertices of I1
and I2. Assuming |I1| = |I2|, we seed the correspondence with
the most proximate inter-interface vertex pair. Subsequent corre-
spondences follow since the matching must be monotonic and one-
on-one.

The correspondence is compatible if each vertex pair, when merged,
would have an angular defect in the permissible range [δmin, δmax].
If the correspondence is incompatible, we reseed the correspon-
dence process, shifting the seed pair by one step and trying again. If
these new attempts fail, we continue the shifting process until a cor-
respondence is found. In the case no correspondence can be found,
we return control to the user. It is worth noting that this process is
very fast such that the user can interactively drag and/or rotate one
of the shapes until a solution is found.

When |I1| 6= |I2|, we precede
the correspondence process by
merging vertices. Two moun-
tain vertices can be merged
into one, thus consuming the
sandwiched valley vertex and
reducing the number of ver-
tices by two. To determine which of the vertices to merge, we
choose the triple that results in the largest angular defect, thus max-
imizing the likelihood of finding a compatible correspondence.

With the matching and merging of two given interfaces established,
we can now turn to the question of how to find interfaces in the
context of the two editing operations.

Figure 3: After selecting a brush (1), the designer picks (2) and drags (3)
a target vertex to extrude a shape.

4.2 Merge Tool

Merging is a simple way of creating new geometry by combining
existing base shapes. To this end, the designer first positions and
orients two input shapes in such a way that they intersect. We then
seek a pair of interfaces—one on each shape—that, once merged,
lead to a realizable embedding that is geometrically as close as
possible to the individual shapes. In order to maintain their rela-
tive position and orientation, we would like to merge the shapes
along interfaces that are close to the actual curve of intersection.
As a first step, we therefore compute the set
of intersecting and/or overlapping elements
on both shapes (see inset figure), retaining
only those adjacent to non-intersecting ele-
ments. We then restrict considerations to in-
terfaces formed from elements that are inter-
secting or directly adjacent to intersecting el-
ements. However, even in this reduced set-
ting, the number of potential interfaces is still
too large to explore all of them at interactive
rates. We therefore focus on four candidate
interface pairs, corresponding to two binary
decisions: to retain or discard the intersecting faces on the first
shape; likewise, for the second shape. The (up to four) valid re-
sults are presented to the designer for consideration. Although this
selection is not exhaustive, the process is very fast such that the
user can adjust the relative position and orientation of the shapes
interactively until an acceptable solution is found.

4.3 Extrusion Tool

The extrusion tool allows for a shape to be swept along a user-
specified path, thus enabling the designer to quickly and easily go
beyond the scope of a single merge operation. In our interface, the
user first selects an extrusion brush from the library of base shapes,
then drags on a target mesh vertex (the extrusion apex) to extrude
a form in the drag direction with the profile of the selected brush
(see Fig. 3). Similar to the merging operation, we again seek pairs
of interfaces to merge the target shape and the selected brush shape.
However, since we do not know the relative position and orientation
of the shapes in advance, we have to determine candidate interfaces
in a different way.

Layers In order to implement the
extrusion metaphor, we decompose
both the brush and target shape into
element layers, each of which de-
fine candidate interfaces for matching
and merging. We define layers in-
ductively per vertex: for a given ver-
tex, the first layer (base case) consists
of its one-ring of incident elements;
layer n + 1 (inductive case) consists
of all elements edge-adjacent to layer
n. The inset figure shows a schematic view of the three layers
(A,B,C) of the brush shape and the four layers (A,B,C,D) around
a selected vertex on the target shape. A computational preprocess
decomposes all library shapes into layers, starting the peeling pro-
cess from a designer-prescribed seed vertex. The layer structure
surrounding the extrusion apex is computed online.

The edges between two lay-
ers on a given shape define
candidate interfaces that seg-
ment the corresponding mesh
into two disconnected parts.
Furthermore, to provide addi-
tional possibilities for connec-
tions, we also consider opening the extrusion apex by removing the
vertex and its incident edges to reveal another candidate interface.

With the brush and target shapes decomposed into layers, we have
a number of candidate interfaces to connect to each other, and we
seek to find the best pair. Since the goal of the extrusion operation is
to add geometry, we first discard combinations that would decrease
the number of layers of the target mesh. We then sort candidate
interface pairs into groups according to the difference between the
number of interface vertices. We start by testing the interfaces from
the first group, i.e., with the same number of vertices. For each
candidate pair, we store the minimum angular defect and return the
result with the highest value, if it is larger than δmin. Otherwise, we
proceed to the next group.

4.4 Bootstrapping: Designing Base Shapes

Our method builds on a library of base shapes that the designer
can instantiate, rigidly transform, and combine through merge
and extrusion operations as described above. In order to fa-
cilitate the creation of base shapes, we provide a simple click-
and-drag interface that allows designers to quickly create pla-
nar mesh layouts. The designer clicks to instantiate elements,
drags them to the desired posi-
tion, and rotates or flips them
as desired. Each element has
four ports for connections to
other elements. Connections
are established by dragging a
free port of a long/short edge
of one element onto a free port
for a short/long edge of an-
other element. Once a feasible
design is created, the user can preview the geometry. This interface
makes it easy to recreate existing layouts that are available online.

5 Assembly Instructions

Our forward design tool allows users to quickly create complex as-
semblies of interlocking elements. Without further assistance, how-
ever, constructing these models is challenging as the order in which
elements are inserted has a significant impact on the difficulty of

Figure 4: Assembly instructions for the bunny at different stages
of the construction process. The instructions provide information
regarding back-facing elements (dotted elements), element to be in-
serted next (red) and shape being assembled (transparent mesh).

the assembly process. In order to simplify this task, we propose an
automatic method that generates assembly instructions based on a
set of key observations and experiences.

Construction History We generally follow a first-modeled-first-
built approach and assemble the components of a model in the order
in which they were created by the user. In order to determine the as-
sembly order within individual components, we leverage the layer
structure of the base shapes and number the elements by spiraling
upwards through the layers. It is worth noting that this approach
directly applies to merged shapes and also extends to extruded ge-
ometry, which exhibit a layer structure by construction.

Sequential vs. Parallel Assembly Most shapes designed with
our method exhibit a modular structure, typically with convex com-
ponents and hyperbolic junctions between them. It is tempting to
first build the individual components, then combine them into a sin-
gle shape. However, vertices in junction regions often have negative
angular defects and are thus more challenging to assemble—and fit-
ting these junctions in between two assembled components can be
virtually impossible. We therefore adopt a sequential rather than
parallel element order: we start by building a given component,
followed by its junctions, and only afterwards proceed to the next
components.

Closing and Reopening Closed shapes are generally more sta-
ble than partly assembled structures. The reason for this is that
elements tend to detach from open boundaries while the shape is
being manipulated. In practice, we found it advantageous to first
build a completely closed shape and reopen at the corresponding
locations only when adding the next component (created through
merge or extrusion operations). We therefore generate correspond-
ing instructions to implement these closing and reopening opera-
tions. The information which of the elements to remove in what
order is directly available from the construction history.

Following these principles, we generate a global insertion order
for each element. We use this order to incrementally construct the
model, allowing the user to follow the operations in a step-by-step
manner. See Fig. 4 for an illustration as well as the accompanying
video for a comprehensive example.

Figure 5: An overview of additional results: Chandelier (440 ele-
ments), Dancer (215), Elephant (588), and Snake (117).

6 Results

In order to investigate the expressive range of our design tool, we
created a number of example shapes that are shown in Figs. 1 and 5.
We were able to easily and quickly design very different and com-
plex shapes, demonstrating that two simple operations—merging
and extrusion—form a powerful and expressive pair of tools, able
to reach diverse points in this difficult design space.

We furthermore fabricated four of these designs and found them to
be in a good agreement with the shapes predicted by our interactive
tool, indicating that the underlying physical model and feasibility
conditions closely agree with the physics of the actual interlock-
ing structures. In all cases, the design time was between 10 and
25 minutes and thus an order of magnitude faster than the actual
fabrication time (see Table 1). This informs the claim that a trial-
and-error approach to design with interlocking elements is indeed
an exhausting alternative. By contrast, our interactive modeling tool
allows for quick exploration of various design options, allowing the
user to convergence on a virtual design before devoting time to the
assembly process.

We found that the choice of which tool to use when is typically
answered naturally from the context. As an example, for the bunny
model (Fig. 1, left) we started from a spherical base shape of 30
elements. In order to fit the body’s proportions, we extended the
sphere along the vertical dimension using the extrusion tool with
the same base shape as brush. The head was instantiated using a
another spherical base shape and merged to the main body in order
to create a succinct delineation between the two components. The
legs, arms, and ears are again conveniently created with extrusion
operations.

Turtle Pig Flower Bunny
elements 123 187 288 188
assembly time 155 145 240 160

Table 1: Statistics for our fabricated models. Assembly times (in
minutes) are approximate.

7 Limitations & Future Work

We have presented an interactive method for designing assemblies
made from interlocking elements of a single shape. Using two ba-
sic operations, merging and extrusion, we were able to create a di-
verse set of shapes, each designed in a matter of minutes. The most
immediate benefit of our system is that it enables an interactive,
virtual exploration of the design space; to be contrasted with a trial-
and-error approach in physical reality. The assembly instructions
generated by our method further simplify the task of creating phys-
ical surfaces, reducing the total turnaround time to a few hours at
most. Nevertheless, there are various possible improvements to our
system and a number of interesting directions for future work.

In order to compute equilibrium shapes for our surfaces, we intro-
duce simplifying kinematic assumptions that allow for computa-
tions at interactive rates. While this approach captures their main
characteristics, the physical surfaces are subject to more complex
conditions. A treatment in terms of nonlinear thin-shell and contact
mechanics would likely yield better accuracy, albeit at the cost of a
significant increase in computation times.

As an alternative to the forward design methodology that we pur-
sued in this work, it would be interesting to explore an inverse ap-
proach in which the user specifies a target geometry to be approxi-
mated with interlocking elements. One possibility would be to build
on quad remeshing algorithms such as [Tarini et al. 2010], adapted
and extended to handle the unique constraints introduced by inter-
locking quadrilateral elements. However, since the design space is
very restrictive, a major challenge would be to find adequate ways
of approximating, or rather abstracting, input geometry.

Acknowledgments

We thank Bernd Bickel for initial discussions as well as Alessia
Marra and Maurizio Nitti for artistic feedback.

References

CIGNONI, P., PIETRONI, N., MALOMO, L., AND SCOPIGNO, R.
2014. Field-aligned mesh joinery. ACM Trans. Graph. 33, 1.

CUTLER, B., AND WHITING, E. 2007. Constrained planar
remeshing for architecture. In Proceedings of Graphics Inter-
face 2007, 11–18.

DE GOES, F., ALLIEZ, P., OWHADI, H., AND DESBRUN, M.
2013. On the equilibrium of simplicial masonry structures. ACM
Trans. Graph. 32, 4.

DENG, B., BOUAZIZ, S., DEUSS, M., KASPAR, A.,
SCHWARTZBURG, Y., AND PAULY, M. 2015. Interactive design
exploration for constrained meshes. Computer-Aided Design 61.

DEUSS, M., PANOZZO, D., WHITING, E., LIU, Y., BLOCK, P.,
SORKINE-HORNUNG, O., AND PAULY, M. 2014. Assem-
bling self-supporting structures. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia) 33, 6.

EIGENSATZ, M., KILIAN, M., SCHIFTNER, A., MITRA, N. J.,
POTTMANN, H., AND PAULY, M. 2010. Paneling architectural
freeform surfaces. ACM Trans. Graph. 29, 4.

GARG, A., SAGEMAN-FURNAS, A. O., DENG, B., YUE, Y.,
GRINSPUN, E., PAULY, M., AND WARDETZKY, M. 2014. Wire
mesh design. ACM Trans. Graph. 33, 4.

HILDEBRAND, K., BICKEL, B., AND ALEXA, M. 2012. Crdbrd:
Shape fabrication by sliding planar slices. Comp. Graph. Forum
31, 2pt3 (May), 583–592.

IGARASHI, Y., IGARASHI, T., AND MITANI, J. 2012. Beady: In-
teractive beadwork design and construction. ACM Trans. Graph.
31, 4.

KILIAN, M., FLÖRY, S., CHEN, Z., MITRA, N. J., SHEFFER, A.,
AND POTTMANN, H. 2008. Curved folding. ACM Trans. Graph.
27, 3.

LI, X.-Y., SHEN, C.-H., HUANG, S.-S., JU, T., AND HU, S.-M.
2010. Popup: Automatic paper architectures from 3d models.
ACM Trans. Graph. (Proc. SIGGRAPH) 29, 4.

LI, X.-Y., JU, T., GU, Y., AND HU, S.-M. 2011. A geometric
study of v-style pop-ups: Theories and algorithms. ACM Trans.
Graph. (Proc. SIGGRAPH) 30, 4.

MCCRAE, J., SINGH, K., AND MITRA, N. J. 2011. Slices:
A shape-proxy based on planar sections. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 30, 6.

MITANI, J., AND SUZUKI, H. 2004. Making papercraft toys from
meshes using strip-based approximate unfolding. ACM Trans.
Graph. 23, 3.

MORI, Y., AND IGARASHI, T. 2007. Plushie: An interactive design
system for plush toys. ACM Trans. Graph..

SCHWARTZBURG, Y., AND PAULY, M. 2013. Fabrication-aware
design with intersecting planar pieces. Comput. Graphics Forum
(Proc. Eurographics) 32, 2.

SKOURAS, M., THOMASZEWSKI, B., BICKEL, B., AND GROSS,
M. 2012. Computational design of rubber balloons. Comput.
Graphics Forum (Proc. Eurographics) 31, 2.

SKOURAS, M., THOMASZEWSKI, B., KAUFMANN, P., GARG,
A., BICKEL, B., GRINSPUN, E., AND GROSS, M. 2014. De-
signing inflatable structures. ACM Trans. Graph. 33, 4.

SONG, P., FU, C.-W., AND COHEN-OR, D. 2012. Recursive
interlocking puzzles. ACM Trans. Graph. (Proc. SIGGRAPH
Asia) 31, 6.

SONG, P., FU, C.-W., GOSWAMI, P., ZHENG, J., MITRA, N. J.,
AND COHEN-OR, D. 2013. Reciprocal frame structures made
easy. ACM Trans. Graph. 32, 4.

TARINI, M., PIETRONI, N., CIGNONI, P., PANOZZO, D., AND
PUPPO, E. 2010. Practical quad mesh simplification. In Proc.
of Eurographics ’10.

VOUGA, E., HÖBINGER, M., WALLNER, J., AND POTTMANN, H.
2012. Design of self-supporting surfaces. ACM Trans. Graph.
31, 4.

WHITING, E., OCHSENDORF, J., AND DURAND, F. 2009. Proce-
dural modeling of structurally-sound masonry buildings. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 28, 5.

XIN, S., LAI, C.-F., FU, C.-W., WONG, T.-T., HE, Y., AND
COHEN-OR, D. 2011. Making burr puzzles from 3d models.
ACM Trans. Graph. 30, 4.

YANG, Y.-L., YANG, Y.-J., POTTMANN, H., AND MITRA, N. J.
2011. Shape space exploration of constrained meshes. ACM
Trans. Graph. (Proc. SIGGRAPH Asia) 30, 6.

ZIMMER, H., AND KOBBELT, L. 2014. Zometool rationalization
of freeform surfaces. IEEE Trans. on Visualization and Com-
puter Graphics 20, 10.

