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Abstract
Animated image sequences often exhibit a large amount of inter-frame coherence which standard rendering algo-
rithms and pipelines are ill-equipped to exploit, limiting their efficiency. To address this inefficiency we transfer
rendering results across frames using a novel image warping algorithm based on fixed point iteration. We ana-
lyze the behavior of the iteration and describe two alternative algorithms designed to suit different performance
requirements. Further, to demonstrate the versatility of our approach we apply it to a number of spatio-temporal
rendering problems including 30-to-60Hz frame upsampling, stereoscopic 3D conversion, defocus and motion
blur. Finally we compare our approach against existing image warping methods and demonstrate a significant
performance improvement.

Categories and Subject Descriptors (according to ACM CCS): I.3.m [Computer Graphics]: Miscellaneous—Image-
based rendering

1. Introduction

In computer graphics significant coherence is exhibited
across frames of an animation (temporal coherence) and
across nearby views of a scene (spatial coherence). Current
rendering pipelines recompute each frame from scratch, re-
sulting in a large amount of repeated work in processing
the scene geometry and in performing the light simulation
necessary to shade the surfaces. This inefficiency imposes
severe constraints on the visual fidelity of real-time appli-
cations in which rendering budgets are measured in mere
milliseconds. Consequently enormous time and effort are in-
vested in optimization of algorithms and assets which in-
creases rendering pipeline complexity, complicates content
creation workflows and drives up production costs.

Although previous work includes a number of approaches
to re-use information across frames to exploit this redun-
dancy, they are yet to meet the rigorous requirements of
production scenarios and have therefore eluded widespread
adoption. These methods incur a heavy geometry processing
cost or require significant changes to rendering pipelines and
workflows.

In this work we argue for the reuse of shading information
across frames through image warping techniques. To trans-
fer this information efficiently we introduce a novel image
warping algorithm based on fixed point iteration. We de-
scribe a heuristics-based variant of our approach that runs

with minimal performance overhead. Additionally from the
mathematical properties of fixed point iteration we derive a
local convergence criterion which informs a robust adaptive
variant of our approach which requires a little more com-
putation time but still a fraction of the time of comparable
methods. Our approach can be attached to existing render-
ing pipelines with minimal side effects, which we demon-
strate by installing our warping kernel into an existing AAA
console game to post convert it stereoscopic 3D and to up-
sample its frame rate from 30 to 60Hz. Finally we compare
our method to existing work and demonstrate a substantial
performance improvement without loss of quality.

2. Background

In this section we review the available options for exploit-
ing frame to frame coherence. Reverse reprojection caching
(RRC) [NSL∗07,SaLY∗08] rasterizes the scene from the tar-
get viewpoint and computes at each pixel the inverse map-
ping from target to source image frame. Although the au-
thors report reduced fragment shader cost, the scene geom-
etry needs to be reprocessed once or twice per reprojec-
tion which is prohibitively expensive for many production
scenes. Additionally, shader authoring is complicated by the
need to write variants of the vertex and fragment programs
of each shader instrumented with the required reprojection
code.
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For these reasons we focus on methods that are decou-
pled from the scenes geometry such as the render cache in-
troduced by Walter et al. [WDP99, WDG02], which caches
shading points as samples in 3D space and reuses them
across frames. However this system requires substantial
changes to the graphics pipeline (the presented system re-
lies on ray tracing to populate the cache) and it is not clear
how this method could be implemented efficiently on raster-
ization architectures.

Instead of caching data as shading points, image-based
rendering (IBR) methods use images as the cache primitive,
and use image warping techniques to construct the required
viewpoint. Some methods render from a large database of
images that sample a global plenoptic function, i.e. the radi-
ance passing through a scene [LH96,GGSC96]. Others store
image representations of individual elements in the scene
[Max96,SS96,SLS∗96,SGHS98]. The Talisman system was
proposed as a hardware implementation of the latter [TK96].
Due to their modest computational requirements these ap-
proaches are well suited to solving the rendering efficiency
problem. However, these approaches usually assume that the
incoming radiance from surfaces in the scene is static which
may be too restrictive for many scenarios.

This issue is mitigated in post-rendering warping which
is the application of image warping to the reprojection of
rendered images to nearby viewpoints in space and time.
While post-rendering warps also assume that the radiance
function is static, for small reprojection offsets the result-
ing error tends to be small. Existing image warping meth-
ods can be categorized by their data access patterns. For-
ward warps scatter information for the source frame into the
target frame, which can be implemented on graphics hard-
ware in the following ways. Each pixel can be splatted as
individual primitives [Wes90,ZPvBG02] which is conceptu-
ally simple but efficiently and accurately filtering irregularly
scattered samples is challenging on GPU hardware. Another
approach is to connect the pixels with triangles and raster-
ize them into the target view [MMB97], which prevents is-
sues like holes appearing in the warped image. However both
approaches result in a heavy geometry processing workload
(over 1M primitives per warp at standard resolutions). While
this dense warp geometry can be reduced by using a coarse
regular grid [DER∗10] or by adaptively grouping pixels into
coherent blocks [CW93, DRE∗10], such methods are an ap-
proximation of the true warp.

Inverse warps reverse the data access pattern, i.e. they
gather information from the source frame to fill the tar-
get frame. Since a closed-form expression for the inverse
warp is often not available, special heuristics for the warp
type are used to obtain an approximate solution [KTI∗01,
And10, SKS11], or a manual search is conducted through
the source image [McM97, Mar98]. A more efficient way to
perform this search is to employ an iterative method called
fixed point iteration. Such an approach has recently been ap-

plied to the inversion of computed tomography data by Chen
et al. [CLC∗08]. However they address the limited case for
which a global inverse warp function exists (i.e. there are no
overlaps/folds in the warp), and is not applicable to the warps
considered in this work. We previously relaxed this restric-
tion [Bow10] and illustrated the behavior of the iteration in
the presence of disocclusions in the context of stereoscopic
3D post-conversion and temporal upsampling. The temporal
upsampling approach from Yang et al. [YTS∗11] also em-
ploys an iteration equivalent to fixed point iteration but they
do not identify the iteration as such or consider its conver-
gence properties further. In this work we study the behavior
of the iteration in detail and establish a general framework
for image warping using fixed point iteration.

3. Method

We aim to warp a source image Is representing a rendered
view of a scene to a target image Iw that resembles the scene
from a different viewpoint in space or time. In the next sec-
tion we describe the concept of the warp in detail and then
introduce an efficient solution method which employs itera-
tive methods to solve the warp efficiently.

3.1. Image Warp Definition

We define the warp as a vector field V : R2 → R2 that de-
scribes how each point in the source image should be trans-
lated in order to produce Iw. For a particular point xs in the
source image, the warped image coordinates xw are given by

xw = xs +V (xs), (1)

with xs,xw ∈ R2. For a particular pixel at point xw in the
warped image Iw, we wish to find the location(s) xs in the
source image Is that satisfy Equation 1. When multiple solu-
tions xs exist we take the one with the minimum depth z(xs)
to maintain depth order. We now introduce the specific warp
fields studied in this work.

Temporal Reprojection The warp field for temporal re-
projection is given by per-pixel motion vectors, a common
by-product of modern rendering pipelines which indicate the
screen space motion of the rendered surfaces [Ros07]. These
motion vectors can be computed by projecting the position
of the scene geometry at two points in time and computing
the derivative using finite differences. The warp field is then
defined as

Vtemporal(xs, t) = tM(xs) (2)

where M is the motion vector field, and t is the difference in
time to reproject the viewpoint. From second order finite dif-
ferences we can obtain acceleration vectors A and can per-
form nonlinear temporal reprojection using the Taylor ex-
pansion

Vnonlinear(xs, t) = tM(xs)+
t2

2
A(xs). (3)
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We will use temporal reprojection to increase rendering fre-
quency and simulate motion blur.

Spatial Reprojection Spatial reprojection corresponds to
moving the viewpoints position in the scene. A shift orthog-
onal to the view direction can be achieved by shifting the
surfaces in the image in the opposite direction. We define
the shift in view space which can be projected into screen
space as follows:

Vspatial(xs,u,v) = (
−uλu

z(xs)
,
−vλv

z(xs)
) (4)

where (u,v) are the horizontal and vertical components of
the viewpoint shift, λu and λv are the first two constants
from the projection matrix diagonal and z is the rendered
depth buffer. We use spatial reprojection to efficiently ren-
der stereoscopic 3D content and to simulate defocus blur.

General Warp Fields We emphasize that we have not
placed restrictions or requirements on the form of V (only
that it can be evaluated at run-time). The method we will
present can easily be applied to other warp fields (including
combinations of the presented warp fields) or to more gen-
eral image warping scenarios.

3.2. Fixed Point Iteration

In this work we introduce the application of iterative
methods to this problem, in particular fixed point iteration
(FPI). We will show that for our purposes FPI generally con-
verges quickly and behaves in a well defined and determinis-
tic way. In this section we describe the basic modes of behav-
ior of the iteration before describing its application to image
warping in the following sections.

Fixed Point Iteration Definition For convenience we de-
fine a new function G : R2→ R2 as

G(xs) = xw−V (xs) (5)

and rewrite Equation 1

xs = G(xs). (6)

The value xs = x∗ that satisfies Equation 6 corresponds to a
fixed point of G; the result of G evaluated on x∗ is x∗. FPI
solves equations of this form by generating a set of iteration
points (iterates) xi using the recurrence relation:

xi+1 = G(xi). (7)

Seeded with an initial value x0, the method computes suc-
cessive iterates xi through repeated applications of G. In the
next section we analyze the behavior of FPI and introduce
the conditions necessary to ensure robust and reliable con-
vergence.

Iteration Behavior We decompose the behavior into
three cases using the example scene depicted in Figure 1,
in which a sphere is moving horizontally against a station-
ary background. We reduce our focus to one dimension by

considering a single horizontal slice of the motion vectors
taken across the sphere at y = yw and considering only the
horizontal component of the warp field V (plotted in Figure
1c).

The iteration behavior varies depending on the target pixel
location xw. Figures 1d, 1e and 1f plot G(x) (Equation 5)
at three different locations xw. To help provide orientation
the source image intensities from the slice y = yw are shown
above each chart. The solution points are labeled x∗i and lie
at the intersection between the line y = x and G(x), i.e. at the
fixed points of G. The trajectories of the iteration are shown
using cobweb plots, where the iterates are labeled xi and the
process of evaluating G on the current iterate xi to yield the
next iterate xi+1 (Equation 7) is visually represented by the
iteration arrows moving vertically to touch the curve G (rep-
resenting an evaluation of G(xi)) and then moving horizon-
tally to the line y = x (representing the assignment of G(xi)
to the next iterate xi+1). A useful rule to note is that the iter-
ation will move to the right if G is above y = x at the current
iterate, otherwise it will move to the left. This is indicated on
the background of the charts.

Unique solution In Figure 1d the target pixel at xw lies on
the left hand side of the sphere in the source image on the
stationary background. Since there is only one intersection
between G and the line y = x in Figure 1d, the iteration is
attracted uniformly towards the solution x∗ (as indicated by
the attraction arrows on the background of the chart) and will
converge to x∗ regardless of the starting point x0.

No solutions In Figure 1e xw lies on the sphere in the
source image. The particular choice of iteration start point
x0 places the next iterate x1 in close proximity to the solu-
tion x∗. However the large slope of G around x∗ pushes the
iteration away into a surrounding orbit. This steep slope cor-
responds to interpolation across the discontinuity in motion
at the left-hand edge of the sphere at which a disocclusion
occurs (x∗ is also labeled on the source image intensities
above the chart), and no solution exists to the image warp. In
Figure 1b disoccluded pixels are shaded black. In such cases
this orbital trajectory is always observed, and we will exploit
this behavior in the next section to fill disocclusions.

Multiple solutions The target pixel xw in Figure 1f lies on
the background on the right hand side of the sphere and there
are three solution points x∗0 to x∗2 , which lie on the sphere,
on the discontinuity at its right hand edge, and on the back-
ground respectively. Applying the general rule regarding the
iteration behavior around the solution at x∗1 reveals interest-
ing behavior. On the left side of x∗1 , G is below the line y = x
and the iteration will move to the left in this region, away
from x∗1 . On the right side of x∗1 the iteration is also repelled
in a similar manner. Thus x∗1 repels the iteration towards sur-
rounding solutions as shown by the two iteration trajectories
on either side of x∗1 . The target pixel lies on an overlapping
region and the solution obtained from the iteration depends

c© 2012 The Author(s)
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(a) Source image Is, sphere moving right (b) Target image Iw (c) The horizontal component of row yw of the
warp field

(d) Iteration at the left of the sphere (e) Iteration behavior at a disocclusion (f) Iteration behavior at an occlusion

Figure 1: An illustration of the behavior modalities of fixed point iteration. These examples are analyzed in Section 3.2.

on the iteration start point x0. In the next section we apply
FPI to image warping.

3.3. Iterative Warping with Heuristics

As discussed in the previous section and illustrated in Fig-
ures 1d-1f, if there is a single solution to the warp the itera-
tion will converge regardless of the start point. If no solution
exists, the iteration will not converge but will orbit the disoc-
clusion. If there are multiple solutions, the outcome depends
on the iteration start point.

If the iteration is simply started from the target pixel loca-
tion (x0 ← xw), it will resemble trajectory #3 on Figure 2a
and converge to the background, failing to resolve the over-
lapping surface (Figure 2b). A simple heuristic for this spe-
cific case is to offset the iteration δx pixels to the left of xw,
past x∗1 and onto the sphere, in which case the overlapping
surface is reconstructed correctly (Figure 2c).

We applied this heuristic to stereoscopic reprojection, in
which the camera is shifted some units horizontally to create
an offset view. Figure 2 closely resembles a spatial repro-
jection of the camera to the left, and the principles are the
same. The size of the offset depends on the maximum width
of the overlap which for this application is a function of the
stereoscopic parameters and the relative depths of objects.
We found a simple fixed offset worked well in practice (see
Figure 6). We also applied this heuristic variant to tempo-
ral reprojection to upsample the racing game from 30Hz to
60Hz (c.f. the video material). In this game the screen space

(a) (b)

(c) (d)

Figure 2: Heuristics-based reprojection. (a) A cobweb plot
of some example trajectories at the right hand side of the
sphere. (b) When the current pixel coordinates are used as
the iteration start point, the behavior resembles trajectory #3
with convergence to solution x∗2 on the background. (c) The
iteration start point is offset δx pixels to the left, starting the
iteration on the sphere and yielding the desired solution x∗0 .
(d) Inpainting using surrounding texture.

c© 2012 The Author(s)
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motion of surfaces is usually relatively uniform, with some
variation in relative speeds due to motion parallax. We there-
fore start the iteration an additional frame up-stream in the
visual flow (determined by the source frame motion vector
at the target pixel location) which correctly locates many of
the overlapping surfaces. Yang et al. [YTS∗11] report addi-
tional heuristics for the case where multiple input frames are
available for reprojection.

In-Painting The tendency of the iteration to orbit disoc-
clusions (Figure 1e) results in rudimentary in-painting be-
havior. The iteration alternates between the foreground and
background surfaces, and the background solution can be se-
lected by depth comparison. The result will be a clone of the
surrounding background texture in the disocclusion. For dif-
ferent target pixel coordinates xw in the warped view G is
translated vertically accordingly, the orbit slides smoothly
along the line y = x.

How well this in-painting strategy works in practice de-
pends on a number of factors including the size of the disoc-
clusion, the visual saliency of the affected region and the
background texture. Figure 2d illustrates a severe case in
which the disocclusion is large and the background texture
contains directional features that are broken at the edge of
the disocclusion. Despite these issues similar hole filling
strategies have already been applied in production scenar-
ios [SKS11, HHE11]. Additionally we emphasize that when
such a strategy is not suitable, other approaches can be used
such as re-rendering disoccluded regions of the scene (we
discuss such strategies in detail in Section 6).

3.4. Robust Iterative Warping

Instead of selecting the iteration start point using heuristics,
we introduce results that guarantee FPI convergence under
certain conditions, and lead to our robust iterative image
warping algorithm.

Fixed Point Theorem The fixed point theorem states that,
provided that the magnitude of the slope of G is less than
unity in some convex region R around a solution x∗, and
provided that the iteration starting point is chosen within R,
then FPI is guaranteed to converge to x∗.

This restriction on the slope of G ensures that it does not
cross the line y = x from below as for x∗1 in Figure 1f, and
that where it does cross y = x from above it does so in a well
behaved way unlike the sharp drop in Figure 1e. Note that
this is not a necessary condition for convergence, for exam-
ple in Figure 1d there is only a single intersection between
G and y = x at x∗ and the iteration is uniformly attracted
towards x∗, regardless of the slope of G in the surrounding
area.

We denote the slope of G as the convergence term ρ. In
Appendix A we provide a formal definition for the slope and

generalize it to two dimensions, obtaining the following:

ρ = max
i
|λi|< 1, (8)

where λi are the eigenvalues of the Jacobian of G (the 2×2
matrix of its partial derivatives). In the remaining sections
we will refer to ρ < 1 as the convergence condition.

Figure 3 illustrates the practical implications of the con-
vergence condition for a scene in which two spheres are
moving against a stationary background from separate lo-
cations in the source image Figure 3a to an overlapping con-
figuration in the warped image Figure 3b. Due to the overlap
there are multiple solution points x∗0 , x∗1 and x∗2 labeled on
Figures 3c-3f. The pixels in Figures 3c-3f are shaded green
if the convergence condition is satisfied and red otherwise.
The discontinuities in the warp field (red) divide the source
image into a number of smooth regions (green). By the fixed
point theorem, if there is a solution x∗ in such a smooth re-
gion, and the first iterate x0 is placed inside the region, con-
vergence to x∗ is guaranteed. Figures 3c-3f provide exam-
ples of this behavior.

Sampling Strategy Although an advanced sampling
strategy such as cubic spline interpolation may produce
more accurate results for some warp types [CLC∗08] we
restrict our focus in this work to bilinear interpolation for
simplicity.

Interpolation across discontinuities such as geometry
edges in the scene may introduce artificial solutions (c.f.
solutions x∗ and x∗1 in Figures 1e and 1f respectively). Al-
though identifying such discontinuities in a discretely sam-
pled signal is inherently ambiguous, Mark et al. [MMB97]
discuss a practical approach that uses geometric information
such as depths and normals. We opt for a general measure
that does not depend on such geometric information, namely
the convergence condition (Equation 8). If this condition is
not satisfied between 4 pixels, FPI will not converge to a so-
lution there, and we sample the texture using nearest neigh-
bor filtering. Figure 4 illustrates the resulting reconstruction
in one dimension.

Robust Warp Refer to Figure 5 for an overview of the
robust warp, which is conceptually similar to the adaptive
quad tree compressed warp of Chen and Williams [CW93],
augmented with FPI to compute an accurate solution. The
convergence condition provided by the fixed point theorem
(Equation 8) is used as the split criteria for the quad regions.
Ensuring that the convergence condition is satisfied over
source image pixels represented by each leaf node avoids the
situation in Figure 1f in which the solution depends on the
iteration start point. We then rasterize the leaf nodes at their
warped locations, interpolating the starting point x0 from the
source image locations of the quad vertices, and then iterate
to compute the solution. If the iteration does not converge,
the fragment is discarded. Otherwise the source image and
depth are sampled at the converged location and both are

c© 2012 The Author(s)
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(a) Source viewpoint (b) Target viewpoint

(c) Starting point on background
1

(d) Starting point on background
2

(e) Starting point on left sphere (f) Starting point on right sphere

Figure 3: Iteration trajectories (red arrows) for a selection of
start points x0 in an example scene in which (a) is warped
forward in time to (b). Each solution x∗i indicates a point
on a surface in the source view (a) which warps to the tar-
get pixel at xw in (b). The divergent pixels (shaded red)
form boundaries around convergent regions (shaded green),
within which convergence to any solution is guaranteed.

(a) (b)

Figure 4: Adaptive sampling in the presence of a steep gra-
dient/discontinuity (shaded red). Using naive interpolation
results in the reconstruction in (a). The convergence term
(equivalent to |G′(x)| in 1D) is greater than 1 between x1
and x2, violating the convergence condition (Equation 8),
and FPI will not converge to any solution in this region.
Switching to point sampling (b) extrapolates the signal into
the discontinuity.

(a) (b)

Figure 5: Robust iterative warp. The source image is recur-
sively subdivided until no quad straddles a discontiuity in
the warp field (a). To perform the reprojection, the quads are
rasterized at their warped locations (b). The iteration starting
point x0 is then interpolated from the quad and used as the
starting point of the iteration.The iteration (red arrow in (b))
is guaranteed to converge to the solution x∗.

written to the render target. Writing depth allows the hard-
ware depth buffer to efficiently maintain correct visibility in
the presence of overlaps.

Adaptive Subdivision The source image is tiled with a
set of initially coarse quads, which are then recursively sub-
divided based on the convergence condition ρ < 1 until no
quad straddles a discontinuity in the warp field. We imple-
ment this process as a geometry shader in a similar man-
ner to Didyk et al. [DRE∗10]. To support fast queries of the
convergence term ρ over areas of pixels, a number of max-
reductions are performed over ρ as a pre-process. Although
ideally the convergence condition is computed only across
the pixels interior to a region, it is non-trivial to perform the
max-reductions of ρ in this irregular way and we settle for
at the occasional over-subdivision that may result if discon-
tinuities (i.e. large values of ρ) lie along borders between
regions.

Quad Warping To avoid thin cracks appearing along
quad boundaries in the warped view, the warped quads need
to be large enough to completely bound the warped positions
of the pixels. One way to compute such a bound would be
to, in addition to performing a max-reduction on the conver-
gence terms ρ in the pre-processing stage, compute a hier-
archy of bounding boxes for the warped positions of the un-
derlying pixels, and use these bounding boxes as the proxy
geometry primitive. However, we found that computing the
warped position of each vertex of the quad and using the
bounding box of these positions (expanded by half a pixel to
account for the pixel coverage) as the warped quad worked
well in practice. The sampling strategy discussed in Section
3.4 and illustrated in Figure 4 is used to avoid interpolation
across discontinuities, which would otherwise result in large
stretched quads in screen space.

c© 2012 The Author(s)
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4. Implementation

The heuristic variant of our approach, used to render the rac-
ing game results, consists of a single fixed point iteration
pixel shader executed over a full screen quad. The stereo-
scopic reprojection result (Figure 6) applies a simple fixed
offset as described in Section 2. The temporal reprojection
result (accompanying video material) reprojects each 30Hz
frame 16.67ms forward in time to generate an intermediate
60Hz frame. In both cases we fix the number of iterations to
3, remove the convergence thresholding and unroll the iter-
ation loop, yielding a minimal and high performance repro-
jection kernel.

For the robust variant, the generality of our algorithm al-
lows us to implement a single image warping kernel, decou-
pled from the definition of the warp field. The warp field
we use is a linear combination of the warps introduced in
Section 3.1, including the nonlinear motion vectors. No ad-
vanced techniques such as optimizing the shader code by
hand have been employed, and we therefore expect there is
room for further performance improvements.

Although we have presented the quad subdivision and
warping stages paired together, for multiple reprojections
the quad subdivision stage can be factored out as a pre-
process to generate the geometry used for all reprojections.
To demonstrate this we accumulate many jittered views to
simulate motion and defocus blur [HA90]. We sample the
parameter values t, u and v from a Poisson-ball distribution,
and use a simple box filter when accumulating the views. To
ensure the quads are subdivided to a sufficiently fine level
for all reprojections, we take the maximum convergent term
over the ranges of the reprojection parameters:

ρmax = max
t,u,v

ρ. (9)

Pseudocode for our accumulation buffer implementation is
provided in Algorithm 1. The reprojection is computed in
to a temporary render target and accumulated in a separate
pass due to incompatible GPU states (accumulation requires
blending to be enabled, while the reprojection requires that
blending is disabled in order for overlaps to be handled cor-
rectly).

Algorithm 1 Complete Reprojection Pipeline

1: Obtain input data (colors, depths, motion vectors, ...)
2: Compute per-pixel converge terms ρ

3: Perform max-reductions to build convergence term hier-
archy

4: Subdivide quad geometry
5: for each reprojected view parameters (t,u,v) do
6: Clear temporary render target and depth buffer
7: Bind FPI fragment program to GPU
8: Warp and rasterize quad geometry
9: Accumulate result onto final render target

10: end for

Figure 6: Stereoscopic reprojection with offset heuristics
(Section 3.3) fitted as a post process to an existing rac-
ing game. The overhead per view is only 0.85ms on Sony
PlayStation 3 hardware. For anaglyph both views can be
computed in a single pass in under 1ms.

5. Results and Analysis

Performance All of the racing game examples (e.g. Fig-
ure 6) use the heuristic variant as mentioned. On the PlaySta-
tion 3 NVIDIA RSX GPU a single reprojection pass takes
0.85ms on average at 720p (1280×720) pixel resolution.
This is a strong result for this hardware.

The other results were rendered on an NVIDIA GeForce
GTX580 GPU, also at 720p resolution. On this hardware the
heuristic reprojection takes under 0.2ms on average. Refer
to Table 1 for timing results averaged over 64 reprojection
passes. To apply load to the hardware we subdivided the
scene to increase the polygon count to around 5 million and
added Perlin noise evaluations to the fragment shaders, re-
sulting in a forward render time of 15.29ms, approximately
the frame budget of a 60Hz application. For RRC (Nehab
et al.) we timed the cache lookup pass only which produces
a result with disocclusions equivalent to the IBR methods.
This pass takes around 6.64ms which is significantly less
than the forward render but still relatively expensive due to
the geometry processing cost, which highlights the disadvan-
tage of the coupling to the scene’s geometry. The warping
method from Mark et al. is decoupled from the scene de-
scription and executes in around 2.5ms. This method is also
bound by geometry processing due to the per-pixel primi-
tives (approximately 1.8 million triangles at 720p), in con-
trast to our adaptive subdivision which usually generates
around 60k triangles. For our method a single reprojection
pass takes just 0.7ms, a 3.5× speedup over the warp from
Mark et al.

Error Analysis In Figure 8 we quantify the error in the
result from each approach for a scene in which the cam-
era is reprojected both spatially (horizontally and vertically
by 0.5m) and temporally (forward by 32ms). CIE94 error is
computed under the standard illuminant D65. The first set
of error comparisons compare the methods for a non-planar

c© 2012 The Author(s)
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Figure 7: A dynamic gorilla scene with accumulation buffer-
ing.

Nehab Mark
Ref. 2007 1997 Ours

Quad Subdiv. – – – 0.48
Reprojection 15.29 6.64 2.49 0.70

Table 1: Performance in milliseconds of different reprojec-
tion strategies for the Sponza scene.

surface (the lion head protrudes from the wall). The methods
produce nearly identical results, with the same mean error to
two significant digits. The second set examines the sphere
which is shifted from its location in the source image. The
sharp contrasts in the checkered texture highlight the blur-
ring caused from the bilinear filtering used to sample the in-
tensities from the source image. As Mark et al. note, their
method tends to omit pixels at object boundaries as triangles
that straddle discontinuities in the warp are discarded. For
RRC the same problem occurs if the depths from the cache
are linearly interpolated, which leads to incorrect depth read-
ings near boundaries. As Nehab et al. note this issue can be
addressed for smooth surfaces by point sampling the cached
depths which leads to the relatively complete reconstruction
shown. Using our adaptive sampling strategy (Figure 4) our
method recovers most of the edge pixels. In general we ex-
pect small inconsistencies at edges because the exact loca-
tions of geometry edges are lost when the source image is
rendered, whereas RRC rasterizes the scene during repro-
jection, obtaining the true geometry edges.

As further analysis we illustrate the convergence of the it-
eration in Figure 9 and compare linear and nonlinear motion
blur in Figure 10.

6. Discussion and Future Work

In this paper, we have introduced a novel robust image
warp based on iterative methods. We implemented our
method into a high performance console game that renders
frames in approximately 32ms to synthesize convincing new
frames in less than 1ms, which demonstrates the remarkable

Figure 9: The result and residual error after each iteration for
a curved patch on the sphere.

Figure 10: Our method is able to handle non-linear warps,
such as the non-linear motion blur rendered here by accu-
mulating 100 reprojected images.

speed gains achievable by exploiting coherency in rendering
pipelines.

In such high performance rendering scenarios the scene
layers are flattened onto a single opaque visible surface
layer, which can lead to error in reprojections. Although
such error is reduced in practice when small reprojection
offsets are used [NSL∗07, SKS11], with improved algo-
rithms and hardware it may become feasible to render the
scene into layers composited in post (as in off-line render-
ing) which retains translucent layers and eliminates disoc-
clusions [YHGT10], or to perform the reprojection from
multiple input images such as in two frame interpolation to
reduce the number of disoccluded pixels. This could be per-
formed in a single pass using the heuristics variant of our
approach as demonstrated in the context of temporal repro-
jection by Yang et al. [YTS∗11], or by using our robust al-
gorithm to reproject multiple input views onto a single target
view (allowing the depth buffer to enforce depth order).

Although our warping algorithm could produce anti-
aliased images by further subdividing the warp quads to
the level of sub-pixel samples, in high definition real-time
applications it is usually not an option to use the render
output at this stage because it is subsequently resolved to
display pixel resolution and post-processed with expensive

c© 2012 The Author(s)
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Figure 8: Our reprojection along with the source image and reference solution are shown on the left hand side. The right hand
side compares our result with existing methods for a non-planar background region and for a highly discontinuous region.

shaders, which would have to be repeated for each reprojec-
tion. This is the case for the racing game example. While we
did not observe objectionable aliasing, another direction for
future work would be to integrate our reprojection with one
of the image-based anti-aliasing approaches (popularized by
Reshetov [Res09]) which could be efficiently applied to the
image after the reprojection.

Other iterative methods such as Newton Raphson Itera-
tion (NRI) may also be applicable to image warping. Al-
though NRI generally has a faster convergence rate, it may
not always converge and generally requires supervision. Fu-
ture work use NRI to augment or completely replace FPI.

Our method may be applicable to other contexts such as
latency compensation, i.e. to synthesize new frames based
on user input to provide immediate feedback. This may be
useful for head-mounted displays where low latency is crit-
ical or for cloud gaming services such as OnLive. Another
potential application is the synthesis of input views to feed
next generation multiscopic displays which require many in-
put views, making transmission impractical.
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Appendix A: Convergence Condition

The formal definition of the convergence condition is based on Lip-
schitz continuity which requires that the slope of all secant lines to
G be bounded by a Lipschitz constant K, i.e.

d(G(x1),G(x2))

d(x1,x2)
≤ K, ∀x1,x2 ∈ R⊆ Rn, (10)

where R is some region and d is a distance metric. If G is Lipschitz
continuous with K < 1 the fixed point theorem guarantees that if
there is a solution x∗ in R then the iteration will converge monotoni-
cally to x∗ provided that the iteration start point x0 lies in R. A prac-
tical way to check that the convergence condition Equation 10 is sat-
isfied over some region R is to check whether ||G′(x)|| < 1,∀x ∈ R
where G′ is the Jacobian of G (which we compute using finite differ-
ences). This is true for all induced norms || · ||. The infimum (min-
imum possible value) of all such norms is given by the spectral ra-
dius ρ defined as

ρ(G′) = max
i
(|λi|), (11)

where λi are the eigenvalues of G′. This provides an optimal norm-
independent measure of convergence. The final convergence condi-
tion is

ρ(G′(x)) < 1,∀x ∈ R. (12)
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