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Abstract
We present a practical, key-frame based scribble propagation framework. Our method builds upon recent advances
in spatiotemporal filtering by adding key-components required for achieving seamless temporal propagation. To
that end, we propose a temporal propagation scheme for eliminating holes in regions where no motion path
reaches reliably. Additionally, to facilitate the practical use of our technique we formulate a pair of image edge
metrics influenced from the body of work on edge-aware filtering, and introduce the "hybrid scribble propagation"
concept where each scribble’s propagation can be controlled by user defined edge stopping criteria. Our method
improves the current state-of-the-art in the quality of propagation results and in terms of memory complexity.
Importantly, our method operates on a limited, user defined temporal window and therefore has a constant memory
complexity (instead of linear) and thus scales to arbitrary length videos. The quality of our propagation results is
demonstrated for various video processing applications such as mixed HDR video tone mapping, artificial depth
of field for video and local video recoloring.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques, I.3.8 [Computer Graphics]: Applications—.

1. Introduction

Region based application of image and video edits is one of
the most common post-processing tasks in practice. How-
ever, the manual creation of masks by identifying regions of
interest (rotoscoping) is very labor intensive, especially for
video. This makes semi-automatic methods highly desirable
for practical use. Such semi-automatic workflows often start
with the user roughly marking a region of interest through
some user interface element (e.g. a scribble) on a number
of key-frames, followed by the system automatically prop-
agating the scribbles (both spatially and temporally) to the
pixels of the marked region throughout the video sequence.
Depending on the application needs, the masks generated
through a semi-automatic workflow can then either be used
directly instead of manually generated masks, or can be used
as a starting point for further refinements while still signifi-
cantly reducing the total amount of labor.

Seamless propagation of user defined scribbles involves
a multitude of technical challenges. The spatial propaga-
tion requires the formulation of one or more edge-stopping
conditions such that the propagation can be stopped at the
region boundaries intended (but not manually marked) by
the user. Moreover, these region boundaries need to be re-

tained as much as possible during the temporal propagation
from key-frames to inter-frames that contain no user input
whatsoever. Another fundamental and significant challenge
is achieving high quality temporal propagation using the of-
ten error-prone optical flow estimates. Finally, in order to
be used with arbitrary length videos at high definition and
beyond, the formulation of the spatiotemporal propagation
should be parallelizeable and have constant memory com-
plexity. In that sense, the utility of techniques that require
the entire video cube to be loaded into memory is limited.

In this work we investigate the practical challenges with
the key-frame based spatiotemporal propagation of user
scribbles and make the following conributions:

• A spatiotemporal scribble propagation framework with
constant memory complexity that improves over the state-
of-the-art propagation quality.

• The hybrid scribble propagation approach, where mul-
tiple scribbles’ propagation can be controlled by user-
defined edge stopping criteria and later combined into a
single map.

• A temporal propagation scheme that effectively avoids
"holes" at the inter-frames where no scribble colors from
the key-frames could reliably be propagated.
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The implementation of our method builds upon the recent
work on spatiotemporal filtering [ASC∗14]. The memory
footprint of our technique is constant as for each processed
frame we only keep a user defined number of future and past
frames in the memory. Thus our technique scales to arbi-
trary length videos, unlike methods that load the entire video
into the memory such as Levin et al. [LLW04] or Lang et
al. [LWA∗12]. We demonstrate the use of our method for ap-
plications such as mixed HDR video tone mapping, artificial
depth of field for video and local video recoloring.

2. Background

In this section we review the previous work in related re-
search areas and give background information to facilitate
the discussion presented in later sections.

Scribble Propagation methods aim at propagating the
user input delivered in the form of sparse scribbles, such
that the resulting propagation covers entire region and ob-
jects. Early work by Levin et al. [LLW04] on re-coloring
formulizes a quadratic cost function which can be solved
using standard optimization techniques. Scribble propaga-
tion by minimizing a cost function has been further inves-
tigated in many follow-up works, Grady [Gra06] and Levin
et al. [LLW08] are some examples. In the latter work, the
cost function is modified to better suit the problem of im-
age matting. Another scribble based interface for interac-
tive matting was proposed by Wang et al. [WC05] which
employs an expensive iterative nonlinear optimization pro-
cess. Yatziv et al. [YS06] proposes a color blending scheme
which was followed up by Bai et al. [BS07] that proposes a
technique based on the optimal, linear time computation of
weighted geodesic distances to the user-provided scribbles.
Adelson et al. [LAA08] pperforms edge aware interpolation
by adding a classification step for the scribble pixels. Chen et
al. [CZZT12] proposed a manifold preserving edit propaga-
tion method that aims to preserve the structure formed by all
pixels of an image in the feature space. A more efficient for-
mulation of their method has been later proposed by Ma et
al. [Ma114]. In other works, scribbles have been propagated
with probabilistic distance transform [LS08], using cellular
automation [KV06] and by random walks [KLL09].

Optical Flow based Temporal Propagation methods
utilize optical flow for estimating correspondences among
consecutive video frames. The accurate estimation of op-
tical flow is one of the most well studied and funda-
mental problems in video processing. Some of the mod-
ern methods [ZBW11, SRB10] still use a variation of the
original formulation [HS81], whereas others such as Rhe-
mann et al. [RHB∗11] are based on the construction of
a cost-volume. Optical flow has been utilized in temporal
video filtering for enabling various editing tasks. Lang et
al. [LWA∗12] proposed a framework that uses edge-aware
filtering and propagation in the temporal domain for various
video processing applications. Their temporal filtering and

propagation utilize the estimated motion path for each pixel
throughout a video volume. Since the entire video volume
needs to be kept in memory, this method does not scale well
to long video sequences at high resolutions. More recently,
Aydin et al. [ASC∗14] proposed a temporal filtering frame-
work for high dynamic range video, that instead operates on
a limited temporal window and was shown to scale well to
long video sequences at high definition and beyond.

Edge-Aware Filtering has been an active research area
which is directly related to scribble propagation, since de-
tecting visually important edges is a key challenge for both
problems. Also, Lang et al. [LWA∗12] showed that an edge-
aware filtering method can be trivially modified to perform
propagation through a simple normalization step, which we
utilize and extend in this work. Early work in edge-aware fil-
tering by Perona and Malik [PM90] introduced anisotropic
diffusion which was followed by the bilateral filter [TM98]
as an alternative. In Black et al. [BSMH98], anisotropic
diffusion is modified in the framework of robust statistics
which then inspired a different analysis of bilateral filter-
ing [DD02]. The trilateral filter [CT05] is built from the
modified forms of the bilateral filter [TM98], which smooths
the image towards piecewise constant solutions. Farbman
et al. [FFLS08] presented an alternative edge-preserving
operator that is based on a weighted least squares frame-
work [LBB88]. At the cost of long computational times due
to sparse linear system solutions, this edge-preserving op-
erator provides more robust and versatile results in the ap-
plications that have been so far based on the bilateral filter.
A more efficient filtering framework based on edge avoid-
ing wavelets has been presented by Fattal [Fat09]. Crimin-
isi et al. [CSRP10] proposed a generalized geodesic trans-
form for general edge-aware image and video editing. Gastal
and Oliveira [GO11] presented a new approach for edge pre-
serving filtering of images and videos based on a novel do-
main transform. More recent work on edge-aware filtering
focused on finding more sophisticated metrics for localiz-
ing edges and estimating their visual significance. Karacan
et al. [KEE13] utilizes region covariances for distinguishing
texture from image edges, however their method is slow due
to the increased computational complexity.

3. Scribble Propagation Framework

Key Frame 
Selection

Spatial 
Filtering 

Temporal 
Filtering

Hole Filling 

Automatic Propagation

Figure 1: The data flow diagram of the framework. User in-
put is required for key frame selection and scribble drawing,
whereas the remaining spatiotemporal propagation steps are
performed automatically by our system.
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The main processing steps of our framework are illus-
trated in Figure 1. Given an input video, we require the user
to select a number of key-frames and to manually draw scrib-
bles on those key-frames. The resulting scribbles, as well as
the input video is then processed by our automatic propa-
gation method, which yields the resulting spatiotemporally
propagated scribble colors. In order to facilitate the practi-
cal use of our method, we created a GUI where the user can
interactively load key-frames of a video, draw scribbles and
conveniently run our propagation method (see the supple-
mentary material for the illustration). In the reminder of this
section we discuss the main building blocks of our automatic
propagation method.

3.1. Spatial Propagation

Our method uses the permeability-guided filtering (PGF)
technique of Aydin et al. [ASC∗14] as a starting point.
The PGF approach involves iterative application of a 1-
dimensional filter along image rows and image columns in a
separable way (see supplementary material).

We consider a scribble image as an image with two colors,
black and scribble color. Associated with a scribble image is
always a binary image, which has ones at the scribble pix-
els and zero at the remaining pixels. To propagate a scribble
image S based on a natural image I by the PGF approach,
first permeability values are computed from I. Permeabili-
ties computed from natural images are mostly smaller than
1. Consequently, a naive application of the PGF method on
S based on these permeability values leads to a decrease of
the diffused scribble color value as the scribble color is prop-
agated to other pixels. To prevent the fading of propagated
scribble colors, we employ a normalization term similar to
Lang et al. [LWA∗12] (See the supplementary material to vi-
sualize the effect of the normalization term). It is employed
as follows in the filtering equation

S(k+1)
p =


∑

N
q=1 πpqS(k)q

∑
N
q=1 πpqB(k)

q
: ∑

N
q=1 πpqB(k)

q > ε

0 : else
, (1)

where k indicates the iteration, S(k)p is the scribble intensity
value of the pixel p, πpq is the permeability coefficient in
the PGF technique in [ASC∗14], and ε is a threshold which
controls the sensitivity of the propagation to edges. B(k)

q is
the binary value of the pixel q on the scribble image and
B(k+1)

q is calculated by treating the values of B(0)
q as decimal

with the range [0,1], so that the values of B(k+1)
p are decimal.

By applying the aforementioned normalization scheme
to the PGF approach, we convert the filtering method to a
scribble propagation method, while also retaining the edge-
awareness property of the original formulation given by the
use of permeability weights. Figure 2 shows a typical re-
sult from our permeability based propagation framework,
where the permeability weights are computed by utilizing

(a) (b)

(c) (d)

Figure 2: Our method propagates the input scribbles (a) us-
ing the permeability map of the current frame (b). The scrib-
ble colors are propagated without generating holes (c) while
also respecting the image edges (d).

color gradients. The limitations of the color gradient based
edge metric have been discussed in several works in the field
of edge-aware filtering (e.g. [SSD09, KEE13] among oth-
ers). Their findings revealed that such a simple metric fails
to deal with edges in strongly textured regions. This limita-
tion also carries over to our propagation framework and has
a negative impact on the overall accuracy of its results. In
the next section we address this limitation by revisiting the
color gradient based edge metric.

3.2. Hybrid Scribble Propagation

Our experiments with various edge metrics revealed that no
single metric works universally. This observation led us to
revisit the standard scribble that is only associated with a
unique color value and propose an extension where the scrib-
ble is also associated with an edge metric that will be used
for the scribble’s propagation. In our implementation, the as-
sociation of a scribble with a particular edge metric is given
as user input similar to the scribble color. Equipped with
this information, our method performs hybrid scribble prop-
agation where the propagation of each scribble is controlled
by its designated edge metric. In the reminder of this sec-
tion we introduce two new edge metrics that can be utilized
for hybrid propagation, namely local entropy and local L-
moments.

In image processing, we can associate the term entropy,
from information theory, with the randomness of the color
values. The neighboring pixels whose neighborhood are in
the same texture should result in similar entropy values.
Thus we can use the difference between the local entropies
of the neighboring pixels as our permeability measure. Our
method’s color permeability measure can be modified to use
entropy as follows:

π̃ =

(
1+
∣∣∣∣Elocal,p−Elocal,p′

σ

∣∣∣∣α)−1

(2)

where Elocal,p and Elocal,p′ denote the local entropy of
neighboring pixels p and p′.

Figure 3-middle column shows two examples where the
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Figure 3: Examples of entropy scribbles on the foreground
mixed with color gradient scribbles on the background. Note
that the use of color gradient scribbles uniformly over whole
images result in small errors in the zebra image (top center)
and significant leaks for the skyscraper image (bottom cen-
ter). The hybrid entropy-color gradient scribbles result in
improved results in both cases (right column).

traditional scribble propagation using color gradients fails.
In the zebra image the background scribbles slightly leak
into the zebra’s head and back, where in the skyscraper im-
age, the leak from the background is more pronunced. In
both cases we can improve the propagation result by apply-
ing a hybrid propagation where we the utilize entropy metric
in the foreground and the color gradient metric in the back-
ground (Figure 3-right column) using the same set of scrib-
bles (Figure 3-left column).

To enable the hybrid propagation, we compute the non-
normalized scribble colors and the binary normalization
masks (S and B from Equation 1) separately for both the
color gradient scribbles and the entropy scribbles. We can
formally express the hybrid propagation by extending Equa-
tion 1 as follows:

S(k+1)
p =

 ∑m∈M

[
∑q∈Ω π

m
pqS(k)q

]
m

Q : Q > ε

0 : else
, (3)

Q := ∑
m∈M

[
∑

q∈Ω

π
m
pqB(k)

q

]
m

, (4)

where M is the set of edge metrics (in this case M =
{ColorGradient,Entropy}), and π

m
pq is a permeability com-

puted with edge metrics m.

In addition to the entropy metric, we also investigated the
use of local L-moments for hybrid propagation. In our im-
plementation we consider the first four L-moments and com-
pute them on a 5× 5 neighborhood around each pixel. The
L-moment metric can be integrated into our method by mod-

ifying the permeability formulation as follows:

π̃ =

1+

∣∣∣∣∣∣
√

∑
4
i=1 (Lip −Lip′ )

2

σ

∣∣∣∣∣∣
α

−1

(5)

where Lip is the ith L-moment for the neighborhood of pixel
p and Lip′ is the ith L-moment for the neighborhood of pixel
p′ which is the right neighbor of pixel p.

Figure 4: Examples of L-moment scribbles on the back-
ground mixed with color gradient scribbles on the fore-
ground. Note that in both examples, the hybrid scribbles (left
column) yield significantly better results compared to uni-
formly used color gradient scribbles (middle column).

As with the entropy metric, we can perform hybrid prop-
agation using local L-moments as described in Equation 3
by defining M accordingly. Such a hybrid propagation result
that involves the L-moment metric for the background and
the color gradient metric for the foreground is shown in Fig-
ure 4. Notice how the L-moment metric improves the propa-
gation of the background scribbles (right column) compared
to the color gradient metric (center column) using the same
set of scribbles (left column).

3.3. Temporal Propagation

Once the spatial propagation scheme from Section 3.1 is ap-
plied to the user selected key-frames, the next step in our
pipeline (Figure 1) is the automatic temporal propagation
of the dense scribble colors from the key-frames to the in-
ter-frames. To that end, we build upon the temporal filtering
from [ASC∗14] where they simply utilize the same perme-
ability concepts (that were previously utilized in the spatial
dimension) in the temporal dimension. Formally, this can be
expressed by defining pixels p and p′ as temporal neighbors,
instead of spatial neighbors. We utilize the resulting tempo-
ral filtering framework for propagating scribble colors to the
inter-frames applying the normalization procedure described
in Equation 1 along a single dimension on the temporal axis.

While in temporal filtering, the temporal neighborhood
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can simply be defined as the corresponding pixels between
consecutive frames, in the case of key-frame based propaga-
tion the temporal neighborhood of a pixel in an inter-frame
is instead defined by the corresponding pixels in the near-
est two key-frames. Therefore, in our application we follow
motion paths to find the corresponding pixels in the nearest
key-frames, and propagate the scribble colors as follows:

St,p =


πpst Spst−key,p +π f tr S f tr−key,p

πpst +π f tr
: πpst +π f tr 6= 0

0 : otherwise
(6)

where St,p is the scribble value for the pixel p in frame t,
Spst−key,p is the scribble value for the corresponding pixel
in the past key frame, S f tr−key,p is the scribble value for the
corresponding pixel in the future key frame. The coefficients
πpast and π f uture are temporal permeabilities computed us-
ing the permeability formulation in [ASC∗14] in the tempo-
ral dimension.

Figure 5: A successful temporal propagation example.
Black borders indicate the key-frames.

Figure 6: An example where temporal propagation fails
due to incorrect optical flow. Black borders indicate the
key-frames. Notice the regions of the inter-frames where no
scribble color could be propagated (indicated with black).

Since so far our method relies solely on the accuracy of
the motion paths for temporal propagation, propagation er-
rors such as holes in the inter-frames are inevitable. These
holes appear when no reliable path exists between a pixel
in an inter-frame and the corresponding pixels in the near-
est key-frames. Using a sophisticated optical flow estimate

(we utilize Zimmer et al. [ZBW11]) can alleviate this prob-
lem to a certain degree. An example where relying on op-
tical flow for propagation yields satisfactory results is pre-
sented in Figure 5. However, our experience suggests that
such cases are rare and additional means of dealing with
propagation errors are necessary for facilitating the use of
our method in practice. An example where the optical flow
inaccuracy affects the propagation results is shown in Fig-
ure 6.

For removing the holes in the inter-frames pixels (where
no motion path from either key-frames reaches) we propose
a simple hole filling scheme that is applied after the initial
propagation. Since we know that the optical flow estimate
is inaccurate at such holes, instead of relying to the opti-
cal flow estimate we simply assume that these pixels have
straight temporal paths. In other words, we are assuming
that these pixels’ colors do not change over time, and there-
fore the corresponding pixels in the consecutive frames are
located in the same spatial location. Accordingly for each
frame we update the scribble colors at the holes relying on a
photo-constancy measure:

St,p =


St+1,p : ∆Ipt,t+1 < ∆Ipt,t−1 and ∆Ipt,t+1 < c
St−1,p : ∆Ipt,t+1 > ∆Ipt,t−1 and ∆Ipt,t−1 < c
0 : otherwise

(7)
where ∆Ipm,n = |Ip,m− Ip,n| is the color difference between
the pixel p of frame n and m, and c is the photo-constancy
threshold.

Obviously the assumption that the pixel colors remain
static over time is often violated. However, as the example
in Figure 7-a shows that by relying to the spatial color simi-
larity of objects, we can transfer a notable amount of scrib-
ble colors from consecutive frames (Figure 7-b) using Equa-
tion 7.

While the photo-constancy based scribble color transfer
method from consecutive frames is effective, it does still
leave holes at the pixels where the photo-constancy assump-
tion is violated. Therefore, after the temporal color trans-
fer, we perform an additional edge-aware spatial propaga-
tion step (as described in Section 3.1) for performing a sim-
ilar color transfer from the spatial neighbors. This final step
removes any remaining holes in our final propagation results
(Figure 7-c).

To summarize, our final temporal propagation method
starts initially by performing an optical flow based propaga-
tion of scribble colors from key-frames to the inter-frames.
Then for each frame starting from the first, we first apply the
temporal color transfer relying on photo-constancy, and next
apply a spatial color transfer using edge-aware propagation.
After the completion of both color transfer steps, we move
to the next frame until completion.
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(a) (b) (c)

Figure 7: Final propagation result. The initial propagation’s (a) holes due to incorrect optical flow are partially filled by
propagating through straight motion paths (b). Next, any remaining holes are filled with a final spatial propagation pass (c).

4. Results

In this section we present example results of our method,
compare these results with the state-of-the-art and provide
insights on the effect of optical flow to the quality of propa-
gation results

The results of a highly challenging sequence is presented
in Figure 8 where the actors move fast and unpredictably. A
comparison of our method with Lang et al. [LWA∗12] (using
the same scribbles every 10th frame) shows leaked scribble
colors in their results. Our method, while not perfect (notice
the right leg of the magenta colored actor), yields a notably
better result. A comparison of our method with and without
utilizing optical flow can be also seen. The version of our
method that does not use optical flow simply assumes that
the scene is static (i.e. all motion paths are straight in time)
and relies on the hole filling step from Section 3.3. As such,
its results are similar to our full method that uses optical flow
except the regions with rapid motion. In such regions the
propagation fails since there is very little overlap between
the pixels on an object at consecutive frames.

Ours

[Lang et al. 2012] Ours without optical flow

Figure 8: A comparison of our result with Lang et al.
[2012]. Note the leakage near the boundaries of the per-
formers.

5. Applications

Using our scribble propagation framework one can gener-
ate dense masks from a small number of scribbles with little
manual effort. Even though the quality of these masks is not
at the same level with hand drawn rotomasks, we found that
their precision is sufficient for achieving high quality result

for numerous video editing tasks. In this section we demon-
strate three such examples Note that, our method can also be
easily applied to other applications such as meta-data prop-
agation where small deviations form object boundaries can
be tolerated.

5.1. Mixed HDR Video Tone Mapping

Multiple new HDR video tone mapping methods have been
proposed recently [ASC∗14, BCTB14] (also see Eilertsen et
al. [EWMU13] for a comprehensive review). One aspect of
HDR video tone mapping that has been missing so far is the
ability of applying different tone mapping operators (TMOs)
to different regions of a video. This is a very relevant prob-
lem in practice: one commonly faced problem is that the lo-
cal TMOs, which enhance small scale details, work nicely
for background regions (Figure 9-a). But when applied to
human skin they are known to generate a "dirty face" ef-
fect. Thus, for such regions the more natural look provided
by global TMOs is preferred (Figure 9-b), which in turn
does not work as good for the background regions. Utilizing
our method (Figure 9-c), one can run both types of TMOs,
and blend the results of both TMOs to combine locally tone
mapped backgrounds with natural looking skin regions (Fig-
ure 9-d).

5.2. Artificial Depth of Field for Video

A significant challenge of artificial depth of field is the es-
timation of the scene depth which is often an error prone
process. Instead, our method provides an easier alternative
where one can draw focus layers conveniently using scrib-
bles at the key frames of a video. These focus scribbles are
then spatiotemporally propagated to the whole video and can
be used by a generic lens blur algorithm (Figure 10-right).
Note that our method allows changing focus from an object
to another during the course of the video as demonstrated in
Figure 10 where the focus switches from the blue car to the
yellow car.

5.3. Local Video Color Editing

Local color editing has been a classical application show-
cased by prior scribble propagation methods. As the final ap-
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(a) (d)(c)(b)

Figure 9: Examples of mixed HDR video tone mapping (d). The result of a local TMO [MMS06] (a) is mixed with the result of
a global TMO [RSSF02] (b) using the map generated using our method (c).

Figure 10: Artificial depth of field example. Given an in-
put video (left column), our method can be used to generate
maps that indicate camera focus, which in turn can be used
to create an artificial depth of field effect (right column).

plication of our method, we demonstrate how the spatiotem-
porally propagated scribbles can be used to edit the color of
selected objects in a video sequence (Figure 11).

6. Discussion

We built a prototype of our method in Matlab, where the
users can draw scribbles and view the propagation results
conveniently through a GUI. In our research prototype the
computation of a spatial propagation step takes on average
1.03 seconds for a color video frame at HD resolution on
a standard PC. Note that the runtime of our method is ag-
nostic to the number of input scribbles. The temporal prop-
agation for the same video frame takes on average 5.29 sec-

Figure 11: Local color editing example. The maps gener-
ated efficiently by our method can also be used for editing
the colors of selected objects.

onds.†. Our method operates on a limited temporal window
and therefore is highly parallelizeable, and we believe an im-
plementation that exploits this parallelism can significantly
lower our current run-times. Also, a notable advantage of
our method is its constant memory complexity due to the
window based formulation.

Our method is not without limitations. Although in prac-
tice the proposed temporal and spatial scribble color transfer
methods eliminate holes in the inter-frames accurately up to
a certain size, larger holes due to low quality optical flow
estimates can result in the propagation of erroneous scribble
colors to the holes. In this work, we also did not discuss the
use of edge metrics beyond color gradients in the temporal

† All reported run-times also include time spent at I/O.
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domain. Investigating new metrics for temporal edges would
be an interesting future direction for our research.

7. Conclusion

We presented a semi-automatic spatiotemporal scribble
propagation framework, where we examined the use of the
recent advances in spatiotemporal filtering, identified their
shortcomings for the scribble propagation problem, and pro-
posed novel solutions to these shortcomings. We introduced
the concept of hybrid scribble propagation to facilitate the
propagation of scribble colors in textured regions, and pre-
sented a temporal propagation scheme that avoids holes
through temporal and spatial color transfer from neighboring
regions. Finally, through our research prototype we demon-
strated the practical use of our method by presenting ex-
ample results of mixed HDR video tone mapping, artificial
depth of field for video andm local video color editing.
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