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Abstract— Coloring books capture the imagination of children and provide them with one of their earliest opportunities for creative
expression. However, given the proliferation and popularity of digital devices, real-world activities like coloring can seem unexciting, and
children become less engaged in them. Augmented reality holds unique potential to impact this situation by providing a bridge between
real-world activities and digital enhancements. In this paper, we present an augmented reality coloring book App in which children color
characters in a printed coloring book and inspect their work using a mobile device. The drawing is detected and tracked, and the video
stream is augmented with an animated 3-D version of the character that is textured according to the child’s coloring. This is possible
thanks to several novel technical contributions. We present a texturing process that applies the captured texture from a 2-D colored
drawing to both the visible and occluded regions of a 3-D character in real time. We develop a deformable surface tracking method
designed for colored drawings that uses a new outlier rejection algorithm for real-time tracking and surface deformation recovery. We
present a content creation pipeline to efficiently create the 2-D and 3-D content. And, finally, we validate our work with two user studies
that examine the quality of our texturing algorithm and the overall App experience.

Index Terms—Augmented reality, deformable surface tracking, inpainting, interactive books, drawing coloring

1 INTRODUCTION

Coloring books capture the imagination of children and provide them
with one of their earliest opportunities for creative expression. However,
given the proliferation and popularity of television and digital devices,
traditional activities like coloring can seem unexciting in comparison.
As a result, children spend an increasing amount of time passively con-
suming content or absorbed in digital devices and become less engaged
with real-world activities that challenge their creativity. Augmented
reality (AR) holds unique potential to impact this situation by providing
a bridge between real-world activities and digital enhancements. AR

allows us to use the full power and popularity of digital devices in order
to direct renewed emphasis on traditional activities like coloring.

In this paper, we present an AR coloring book App that provides a
bridge between animated cartoon characters and their colored drawings.
Children color characters in a printed coloring book and inspect their
work using a consumer-grade mobile device, such as a tablet or smart
phone. The drawing is detected and tracked, and the video stream is
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augmented with an animated 3-D version of the character that is tex-
tured according to the child’s coloring. Fig. 1 shows two 3-D characters
textured with our method based on the input 2-D colored drawings.

Accomplishing this goal required addressing several challenges.
First, the 2-D colored drawing provides texture information only about
the visible portions of the character. Texture for the occluded regions,
such as the back side of the character, must be generated. Naı̈ve
approaches, such as mirroring, produce poor results since features like
the character’s face may be mirrored to the back of their head. In
addition, without special treatment, texture mapping will exhibit visible
seams where different portions of the parameterization meet. Second,
our method targets live update, so that colored changes are immediately
visible on the 3-D model as the child colors. Thus, the texturing
challenges must be solved with a very limited computation budget.
Third, the pages in an actual printed coloring book are not flat but
exhibit curvature due to the binding of the book. As a result, tracking
algorithms and texture capture must be robust to page deformation in
order to properly track the drawings and lift texture from the appropriate
2-D regions. Finally, the practical consideration of authoring costs
requires an efficient content creation pipeline for AR coloring books.

Our coloring book App addresses each of these technical challenges.
We present a novel texturing process that applies the captured texture
from a 2-D colored drawing to both the visible and occluded regions
of a 3-D character in real time while avoiding mirroring artifacts and
artifacts due to parameterization seams. We develop a deformable
surface tracking method that uses a new outlier rejection algorithm for
real-time tracking and surface deformation recovery. We present a con-
tent creation pipeline to efficiently create the 2-D and 3-D content used
in App. Finally, we validate our work with 2 user studies that examine
the quality of our texturing algorithm and the overall experience.



2 RELATED WORK

2.1 AR creative tools for children

A prominent early example of the combination of virtual content with
a book is the MagicBook [4]. It uses large markers and virtual-reality
glasses to view 3-D content based on which page of the book is open.
The glasses are opaque and hence there is no blending of virtual content
with any real content in the book itself. Scherrer and colleagues [34]
have shown how well-integrated AR content can improve the user
experience of books, but the book itself is still a static element. Recently,
Clark and Dünser [11] explore the use of colored drawings to texture
AR elements. Their work uses a pop-up book metaphor, providing
animated augmented pop-ups that are textured using the drawing’s
colors. Their paper also shows two 3-D models colored according to
the drawings, and a commercial product derived from this work called
colAR1 shows many more. However, the paper does not include details
of the texturing process. In addition to colAR, three other coloring
book products, Crayola Color Alive, Paint My Cat and Disney’s Color
and Play2, use AR in the context of coloring. Although no details of
the texturing process are provided, we suspect that these products use
manually-edited correspondences between triangles in UV space and
drawing space. The use case for these products targets line art printed at
home, which avoids the issue of curved pages due to a book’s binding.
For example, the colAR FAQ urges users to ensure that the printed pages
are “lying flat.” On the contrary, we support augmentation on deformed
surfaces and propose an efficient content creation pipeline that provides
a mostly automatic method to generate appropriate UV mappings. In
addition, we describe quantitative user studies which contribute to the
anecdotal observations offered by Clark and Dünser [11].

2.2 Texture generation for 3-D meshes

In the context of our App, a 2-D colored drawing provides information
about the texture of the portions of the 3-D model that are visible in
the drawing. Determining the texture for the occluded regions involves
filling in the remaining portions of the model’s texture map, which is an
inpainting problem. Inpainting addresses the task of filling a portion of
an image from other parts of the image. Methods can be split into two
categories: diffusion-based and patch-based [18]. The former consist of
propagating local information around the boundary between the known
and the unknown parts of the image, under smoothness constraints.
These methods work well for filling small unknown regions surrounded
by known regions. However, they require many iterations and may
exhibit artifacts when filling larger regions [18]. Methods in the second
category copy patches from the known regions to the unknown ones
until the unknown regions are filled completely. The order of filling
is critical for the visual result [13], but even the best filling order can
lead to discrepancies, especially when an unknown region lies in the
middle of a known region [22]. Indeed, in that case there will likely
be non-matching patches in the center of the unknown region, creating
visual artifacts. Recently, techniques such as graph cuts have been
applied to alleviate this problem. The resulting algorithm produces
good visual results but takes about one minute for a typical image [22].
Recent work on video inpainting [19] achieves real-time performance,
but uses a desktop processor and fills only a small area of the image.
A modern approach exploits the fact that local structures are typically
repeated in the image and therefore structural priors can be captured
and used for reconstruction [21]. These global methods work well for
filling many small holes, but are not designed to fill larger areas.

Although these methods work well for image processing applica-
tions, they are not designed for real-time performance on mobile de-
vices. In the context of texturing meshes from colored drawings, the
critical element is that the generated texture is continuous across sil-
houette boundaries and texture seams. Therefore, we express texture
generation as a static problem whose aim is to create a mapping, for
every point of the texture, to a point in the drawing. Our proposed

1http://colarapp.com/
2http://www.crayola.com/qr/package/2015/coloralive;

http://www.paintmyzoo.com; http://disneystories.com/

app/disney-color-and-play

algorithm is inspired by both diffusion-based and patch-based methods,
as it both extends the known parts of the image to the unknown ones,
and copies pixels know regions to unknown ones.

2.3 Deformable surface tracking

Reconstructing the 3-D shape of a non-rigid surface from monocular
images is an under-constrained problem, even when a reference image
of the surface in its known rest shape is available. This is the problem
we address in the context of live texturing from colored drawings, as
opposed to recovering the shape from sequences as in many recent
monocular Non-Rigid Structure from Motion methods such as [16, 17].

Given correspondences between a reference image and a live input
image, one can compute a 2-D warp between the images and infer a
3-D shape from it, assuming the surface deforms isometrically [2, 10].
The reconstruction has the potential to run in real time because it is
done in closed form and point-wise or by linear least-squares. However,
the accuracy of the recovered shape is affected by the quality of the 2-D
warp, which does not take into account the 3-D deformation properties
of the surface. In our coloring book application, this problem is more
severe because a large part of the surface is homogeneously blank,
making 2-D image warping imprecise.

An alternative is to go directly from correspondences to a 3-D shape
by solving an ill-conditioned linear-system [31], which requires the
introduction of additional constraints to make it well-posed. The most
popular added constraints involve preserving Euclidean or Geodesic
distances as the surface deforms, which is enforced either by solving a
convex optimization problem [8, 27, 32] or by solving sets of quadratic
equations [33, 23] in closed form. The latter method is typically imple-
mented by linearization, which results in very large systems and is no
faster than minimizing a convex objective function, as is done in [32].

The complexity of the problem can be reduced using a dimension-
ality reduction technique such as principal component analysis (PCA)
to create morphable models [12, 5], modal analysis [23], free form
deformations (FFD) [8], or 3-D warps [14]. One drawback of PCA and
modal analysis is that they require either training data or specific sur-
face properties, neither of which may be forthcoming. Another is that
the modal deformations are expressed with respect to a reference shape,
which must be correctly positioned. This requires the introduction of
additional rotation and translation parameters into the computation,
preventing its use in live AR applications.

The FFD approach [8] avoids these difficulties and relies on parame-
terizing the surface in terms of control points. However, its complex
formulation is quite slow to optimize as reported in [7]. The work of
Ostlund et al. [25] takes inspiration from the Laplacian formalism pre-
sented in [35] and the rotation-invariant formulation of [36] to derive
a rotation-invariant regularization term and a linear subspace parame-
terization of mesh vertices with respect to some control vertices. This
technique leads to the first real-time 3-D deformable surface tracking
system as reported in [24], which can run at 8–10 frames per sec-
ond (FPS) on a MacBook Pro 2014 laptop. However, the high memory
consumption and still heavy computation prohibit it from running in
real-time on mobile devices.

To the best of our knowledge, there have been no reports so far
describing a real-time deformable object tracking system on mobile
devices. The presented contribution is an improvement upon previous
work [24]. We propose a new outlier rejection mechanism, reformulate
the reconstruction energy function to gain speed while not sacrificing
accuracy, as well as rely on frame-to-frame tracking to gain frame
rate and only apply the feature detection and matching periodically to
retrieve back lost tracked points and accumulate good correspondences.
These together allow real-time tracking on a tablet.

3 PROBLEM FORMULATION

Our method for live texturing an AR character from a colored drawing
updates the texture of the 3-D character at every frame by copying pixels
from the drawing. To do so, we create a UV lookup map, that, for every
pixel of the texture, indicates a pixel coordinate in the drawing. As the
drawing lies on a deformable surface, the later procedure operates on a
rectified image of the drawing. We split this process into two separate
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Fig. 2: The static content creation and the in-App live surface tracking, texturing, and rendering pipelines.

pipelines, as shown in Fig. 2. A static content creation pipeline creates a
lookup map from the work of artists. This pipeline needs to be run only
once. A live pipeline tracks the drawing and overlays the augmented
character on top of it, with a texture created from the drawing in real
time using the lookup map.

3.1 Content creation pipeline

This process aims at finding suitable lookup coordinates on the drawing
for the parts of the mesh that are not visible in the drawing, given a
UV-mapped mesh and its projection as a drawing. We want to find a
lookup map that generates a texture that is continuous over the boundary
between hidden and visible parts of the mesh in the drawing and over
seams. We also want to fill hidden parts with patterns similar to the
ones on visible parts, with minimal distortions between them.

3.1.1 Production process and variables used

The artist produces (1) a UV-mapped mesh (Fig. 2a); (2) an island map
I in UV space that defines regions that shall receive similar coloring
(Fig. 2b); and (3) a drawing, which is a combination of a view of
the mesh through an edge shader – for printing – and a mapping from
coordinates on this drawing to points in the UV map (Fig. 2c).

Based on these three items, the following objects are created: (1) the
wrapping seams W i for island Ii, mapping some pixels of Ii together;
(2) the orientation map O in the UV space, giving a local orientation
of the projected mesh structure; and (3) the lookup map L, indicating
for every pixel of the character texture which drawing pixel to read.
L = LΦ ∪ LΩ, where LΦ are regions visible in the drawing (source
regions) and LΩ are regions not visible in the drawing (target regions).

3.1.2 Lookup map initialization and relaxation

The most-challenging part of the content creation pipeline is the cre-
ation of L, based on the mesh, the projected drawing, and the island
map I. To do so, W , O (Fig. 2d), and LΦ (Fig. 2e) are first created. Then,
for every island Ii, a first approximation of Li

Ω is generated by copying

coordinates from Li
Φ. This approximation is very rough and violates

the continuity desideratum, in particular across seams. Therefore, the
next step is to enforce this continuity (Fig. 2f).

We can frame this problem in a similar way as the one of energy
minimization in a spring system. Assuming that every pair of neigh-
boring points of L – including across seams – are connected by a virtual
spring, relaxing all springs will lead to fulfill the continuity constraints.

To do so, we have to minimize the total energy of the system:

∑
(p,q)∈NL

kp,q(||L[q]−L[p]||−1)2 (1)

for all pairs p,q which are either direct neighbors or seam neighbors
in L; kp,q being a constant specific to the pair (p,q) that compensates
the texel density in the UV map, which is not constant compared to
the density in the model space. This correction is necessary for the
generated texture motifs to be unstretched.

3.2 Live pipeline

Given a set of colored drawing templates (Fig. 2c), the App takes the
live camera stream as the input (Fig. 2g), detects (Fig. 2i) and tracks
(Fig. 2j) in 3D one of the templates appearing in the camera image. In
this work, we explicitly account for the fact that the drawing paper may
not be flat and may change its shape during the coloring, which is a
common situation for books. Once the drawing shape is tracked in 3D,
accurate color information from the colored drawing can be retrieved
for our texturing algorithm, unlike other existing works [11] that can
only deal with planar book pages. The augmented character is then
overlaid on the input image by using the retrieved colors and the 3-D
pose of the drawing (Fig. 2m).

3.2.1 Image processing

Given the camera image stream of the colored drawing, we want to pro-
cess the input image so that the colored drawing appearance is as close
to the original template as possible (Fig. 2h). Our approach achieves
this by exploiting the fact that it is a line art drawing. This step is
necessary because the appearance of the drawing changes significantly
due to the coloring.

3.2.2 Template selection

After the input image is processed to be close to the original line art
drawing templates, the system automatically detects which template is
appearing in the camera stream (Fig. 2i). The selected drawing template
is used as the template image in our template-based deformable surface
tracking algorithm and later for drawing the augmented character.

3.2.3 Deformable surface tracking

Allowing the page to deform creates many challenges for the tracking
algorithm since the number of degrees of freedom in deformable sur-
face tracking is much higher than that in rigid object tracking. Our
deformable surface tracking (Fig. 2j) builds upon previous work [24]



and makes it fast enough to run in real time on mobile devices and
robust enough to handle colored line art drawings. We will formulate
the shape reconstruction problem as shown in [24].

We represent the drawing page by a pre-defined 3-D triangular mesh
with vertex coordinates stacked in a vector of variables x= [v1; . . . ;vNv

].
The drawing page in its rest shape corresponds to the triangular mesh
in the flat rectangular configuration with the paper size as dimensions.
To make the template appear similar to the one captured by the camera,
we synthetically render a reference image in the camera view in which
the template image occupies 2/3 of the camera view.

To reduce the problem dimension, instead of solving for all mesh
vertex coordinates, we use a linear subspace parameterization that
expresses all vertex coordinates as a linear combinations of a small
number Nc of control vertices, whose coordinates are c = [vi1 ; . . . ;viNc

],
as demonstrated in a previous work [25]. There exists a linear relation
x = Pc, where P is a constant parameterization matrix.

Given point correspondences between the reference image generated
above and an input image, recovering the colored drawing shape in this
image amounts to solving a very compact linear system

min
c

‖MPc‖2 +w2
r‖APc‖2, s.t. ‖c‖= 1 , (2)

in which the first term enforces the re-projection of the 3-D recon-
structed mesh to match the input image data encoded by matrix M, the
second term regularizes the mesh to encourage physically plausible de-
formations encoded by matrix A, and wr is a scalar coefficient defining
how much we regularize the solution. This linear system can be solved
in the least-square sense up to a scale factor by finding the eigenvector
corresponding to the smallest eigenvalue of the matrix MT

wr
Mwr

, in

which Mwr
= [MP;wrAP]. Its solution is a mesh whose projection is

very accurate but whose 3-D shape may not because the regularization
term does not penalize affine deformations away from the reference
shape. The initial shape is further refined in a constrained optimization
that enforces the surface to be inextensible

min
c
‖MPc‖2 +w2

r‖APc‖2, s.t. C (Pc)≤ 0 , (3)

giving the final 3-D pose of the drawing in the camera view. C(Pc)
are inextensibility constraints that prevent Euclidean distances between
neighboring vertices from growing beyond their geodesic distance in
the reference shape.

3.2.4 Texture creation and mesh rendering

Once the 3-D shape of the colored drawing has been recovered in
the view of camera, the mesh is re-projected onto the image plane.
This re-projection defines a direct mapping between the pixels on the
original drawing template and the pixels on the image of the colored
drawing. We then can generate the texture for the character mesh using
the lookup map L (Fig. 2k). Using the live view as the background
image for the 3-D scene, and using proper parameters for the virtual
camera, we can render the augmented character in the 3-D pose of the
page using the generated texture from the drawing (Fig. 2l).

In Sec. 4.2, we will present in detail how we tackle the steps de-
scribed above and compare to [24] our improved method to achieve a
robust, accurate, and real-time tracking system for colored drawings.

4 IMPLEMENTATION

4.1 Generation of the UV lookup map L

4.1.1 Initialization of visible parts of the UV lookup map

To create the visible part LΦ of the UV lookup map:
1. An artist prepares the texture-mapped mesh and the island map

I. Each island has a unique color, unused boundary pixels are
marked as well.

2. An optional mask can be used to exclude some pixels of LΦ. This
allows, for example, ignoring the printed black outlines in the
coloring book. The artist is responsible for deciding which pixels
to exclude.

3. A unique color UV texture is generated, in which every pixel has
a color that encodes its position.

4. The mesh is rendered using the unique color texture, producing
an image where each pixel encodes the UV position that was used
to create it.

5. LΦ is computed by traversing each pixel in the rendered image,
computing its position in the UV space, and recording its destina-
tion at that location.

4.1.2 Creation of the seam map

The seam map W is created from the input mesh and the island map I.
The resulting seams describe which points in the UV space correspond
to the same points on the mesh. Only seams within a UV island are
considered.

1. The mesh is transformed into a graph in UV space; each vertex is
mapped to one or more nodes having exactly one UV coordinate
and an island index.

2. All sets of nodes that correspond to the same vertex are added
to a candidate set. Edges connecting nodes that are part of the
candidate set are added to the graph.

3. A set of pairs of seams is extracted by traversing these edges
starting at the candidate points, while ensuring that a seam pair
consists of corresponding nodes and has the same topology.

4. Seam edges are rasterized so that not only vertices, but all points
on seams are linked together in W .

4.1.3 Creation of the orientation map

The orientation map O encodes a locally-consistent orientation derived
from the edges of the input mesh in UV space.

1. The mesh is transformed into a graph in UV space, where each
vertex is mapped to one or more nodes.

2. For each node, we normalize the directions of connecting edges
and cluster them into direction groups. If there are two clusters,
we store the average directions, otherwise we ignore the node.

3. The orientation is made consistent by traversing the graph and by
rotating the directions of nodes.

4. The projected mesh in UV space is rasterized to assign to each
pixel the orientation of the nodes of the corresponding face.

4.1.4 Creation of an initial complete UV lookup map

The algorithm for creating an initial lookup map is shown in Algo-
rithm 1. It takes a two-step approach. First, it creates an initial mapping
by copying coordinates from the known region (source) into the un-
known one (target) in a way that maintains continuity constraints at
the border between these regions. Second, it removes discontinuities at
seams by expressing neighboring constraints as a spring system, whose
total energy must be minimized.

The creation of the initial mapping works by copying coordinates
from one side of the border to the other side. The algorithm first prop-
agates a gradient from the border of the source region into the target
region. The generation of that gradient uses the E* algorithm [28],
which is a variation of A* on a grid with interpolation. Then, starting
from points close to the source, for every point in the target the algo-
rithm counts the distance to the source, by tracing a path following
the gradient. Once in the source, the algorithm continues to trace the
path in the already-mapped area until it has run for the same distance
as it did in the target. If the tracing procedure encounters the end of
the already-mapped area, it reverses the orientation of the path. This
procedure leads to rough copies of the source area being written into
the target area.

Algorithm 1 shows the most common execution path. In addition to
this normal path, the island I and the mesh can be arbitrarily pathologi-
cal: some areas in Ω might be unconnected to Φ or there can be saddle
points in the gradient. Therefore, the algorithm needs a procedure
to recover from exception cases; this is represented by FIXBROKEN-
POINTS(). While iterating over points in Ω, the algorithm collects
all points that fail to reach a valid point in Φ, and stores by island i
them for further processing. Then, for every of them it checks whether
one of its neighbor is valid, and if so, it copies its mapping. For the
remaining points, which typically belong to unconnected regions in
Ωi, it groups them in connected blobs and tries to copy a consistent



Algorithm 1 The initial creation of the lookup map

1: procedure GENERATELOOKUP(I,LΦ,W ,O)
2: ⊲ First approximation
3: L← /0
4: for i in enumerate(I) do
5: G← generate gradient for island i
6: Li← Li

Φ ⊲ initialize with source

7: for p in sorted(Ωi,G) do ⊲ for points in target
8: d, p′← 0, p
9: while p′ /∈ Li

Φ do ⊲ until source reached

10: p′← descend G from p′

11: d← d +1 ⊲ count distance in target
12: end while
13: v← incoming direction ⊲ enter source
14: while d > 0 do ⊲ trace same dist. as in target
15: if p′ /∈ Li then ⊲ unknown mapping
16: v←−v ⊲ reverse direction
17: else
18: Li[p]← Li[p′] ⊲ copy mapping
19: end if
20: rotate v using O[p′] ⊲ follow source orientation
21: p′,d← p′+ v,d−1
22: end while
23: end for
24: L← L∪Li ⊲ merge lookup for this island
25: end for
26: FIXBROKENPOINTS()
27: ⊲ Relaxation
28: e← ∞ ⊲ iterative relaxation
29: for c in range(cmax) do
30: L,e′← RELAXLOOKUP(L,W )
31: if e′ > e then ⊲ if error increases. . .
32: break ⊲ . . . stop early
33: end if
34: e← e′

35: end for
36: return L
37: end procedure

mapping based on the center of the largest region in Φi. If some pixels
cannot be copied, the algorithm assigns a point from Φi.

The algorithm then solves Eq. 1 by performing iterative relaxation.
For each point, it attaches a spring to its neighbors (4-connectivity)
and, if this point is on a seam, to the point on the other side of the
seam (using the seam map W ). The spring constant is adjusted to
account for the distortion in the UV map. The algorithm iteratively
relaxes all springs, using a simple iterative gradient descent method.
The relaxation stops if the error does not diminish for a continuous
number of steps. In our experiments, we set this number to 8; we set
the maximum number of iterations cmax to 100,000 but the algorithm
typically stops early after 4,000–20,000 steps.

4.2 Deformable surface tracking

In this section, we describe our algorithm to detect and track in 3D
a possibly non-flat deformable colored line drawing paper. We rely
on wide-baseline feature point correspondences between the reference
image and the input image. For this, we propose to use BRISK [20] in
place of the memory-intensive Ferns [26] used in [24]. Since many of
the correspondences are erroneous, we propose a new outlier rejection
algorithm, which is faster and more robust than the one used in [24].
We reformulate the reconstruction energy function to gain speed while
not sacrificing accuracy. We rely more on frame-to-frame tracking to
gain frame rate and only apply the feature detection and matching once
every N frames to retrieve back lost tracked points and accumulate good
correspondences. A mask indicating the region of interest in which to
look for feature points is also constructed to speed up the feature point
detection and limit gross outliers.

(a) (b) (c)

Fig. 3: Image processing: (a) Input image of the colored drawing. (b)
Luminance channel in HSV color space. (c) Resulting line draw image.

4.2.1 Image processing

In this step, we apply image processing techniques to the input image
so that the appearance of the colored drawing becomes as close to
the original template as possible. Because in the next step of the
pipeline we describe feature points by binary descriptors using intensity
comparisons, this step is especially important to be able to better detect
which drawing template is selected and to provide more inlier wide-
baseline feature point correspondences between the input image and
the reference image.

In the coloring book context, we want to remove colors and keep
the black lines in the image of the colored drawing. Therefore, we
transform the input image from RGB to HSV color space, in which only
the luminance channel is used because it captures most information
about the original black line draws. Line draws are more visible in the
HSV luminance channel than in the gray scale image. We then apply
adaptive thresholding to the luminance image to get a binary line draw
image. Small noisy connected components are removed and Gaussian
smoothing with standard deviation σ = 1 pixel is used to remove the
staircase effect of binarization. This process is demonstrated in Fig. 3.

Our color removal procedure is completely automatic without having
to adjust parameters for different capturing scenarios, in contrast to [11],
where the thresholds must be adjusted for different lighting conditions
and for different cameras.

4.2.2 Template selection

To detect which template appears in the camera, we compare the pro-
cessed input image with a set of given templates. We detect a sparse set
of feature points and use a voting scheme to determine which template
is currently visible and should be selected for further steps.

Later in the shape reconstruction phase, we also need to establish
feature point correspondences between the selected template and the
input image. In our problem context, it is necessary to choose a suitable
feature point detection, description, and matching method that has
reasonable memory and CPU consumption, and provides good quality
matches. We have tested a number of methods including Ferns [26],
BRIEF [9], ORB [30], FREAK [1], BRISK [20], SURF [3], and found
BRISK to be the most suitable choice for our application. BRISK detects
scale and rotation invariant feature points, the descriptors are binary
vectors, which can be compared very quickly using NEON instructions
widely available in mobile processors nowadays, and the matching
quality is good enough for our purpose. Clark et al. [11] uses SURF in
their coloring book application, which we found too computationally
intensive. Differently, in the context of deformable surface tracking,
[24] extracts scale and rotation invariant interest points as maxima of
the Laplacian and then uses the Ferns classifier [26] to do the matching.
However, Ferns is so memory intensive that it is not suitable for our
real-time tracking on mobile devices.

We detect about 500 feature points on each generated reference im-
age, and extract their binary descriptors. Doing so allows all templates
to have an equal chance of being selected in the voting scheme. We
automatically adjust parameters to extract between 300–2000 features
points on the processed input image. The idea of our voting scheme is
that each feature descriptor in the input image will vote for one template
which has the closest descriptor according to the Hamming metric.

Although comparing two binary descriptors can be done very quickly
using NEON instructions, performing brute-force search for the nearest



neighbour in the template descriptor database is prohibitive. We instead
project all binary descriptors to a low d-dimension space (d = 7 in our
settings) using a pre-generated random projection matrix. K nearest
neighbours (K = 100 in our settings) in this low dimension space can
be searched very quickly using k-d trees. It also scales well with respect
to the number of templates. We use the libnabo library [15] to perform
K-nearest-neighbour search. We then go back to the original binary
space and select the nearest descriptors among these K candidates. A
Hamming threshold is used to filter truly good matches. The template
with highest votes is selected.

4.2.3 Outlier rejection

Once the template has been selected, wide-baseline correspondences
are established between the template and the processed input image.
This matching step for only two images is done very quickly using
brute-force search in the Hamming metric. We obtain a set of putative
correspondences, and outliers must then be removed.

Outlier rejection in 3D: The method in [24] eliminates erroneous
correspondences by iteratively solving Eq. 2, starting with a relatively
high regularization weight wr and reducing it by half at each iteration.
The current shape estimate is projected on the input image and the
correspondences with higher re-projection error than a pre-set radius
are removed. This radius is then reduced by half for the next iteration.
Repeating this procedure a fixed number of times results in a set of
inlier correspondences.

This outlier rejection procedure can reject up to about 60 percent of
outliers as reported in [24]. One of its main limitations is that it solves
for a 3-D mesh, which involves depth ambiguity and a larger number
of variables compared to a 2-D mesh. We propose to perform outlier
rejection in 2D similarly to [29] but our algorithm can work with both
regular and irregular meshes and is much faster thanks to the linear
subspace parameterization.

Outlier rejection in 2D: We represent the 2-D deformable surface
by a 2-D triangular mesh and use the regularization matrix A mentioned
in Sec. 3.2.3 on the x and y components to regularize the mesh.

Unlike [29], which requires a regular 2-D mesh and uses the squared
directional curvature of the surface as the smoothing term, our regular-
ization term can work on both regular and irregular meshes. We solve
for a 2-D mesh, which is smooth and matches the input image. The
linear subspace parameterization x = Pc still works on a 2-D triangular
mesh and is used to reduce the complexity of the problem. We solve
the following optimization problem:

min
c

ρ(BPc−U,r)+λ 2
s ‖APc‖2 , (4)

where c represents 2-D control vertices, A is the regularization matrix,
B represents the barycentric coordinates of the feature points in matrix
form, and U encodes the feature point locations in the input image.
Further, ρ is a robust estimator whose radius of confidence is r and is
defined as

ρ(δ ,r) =

{

3(r2−δ 2)
4r3 − r < δ < r

0 otherwise
(5)

Instead of introducing a viscosity parameter α and iteratively solving
two coupled equations with a random initial solution as in [29], we
solve Eq. 4 directly using a linear least squares approach with a big
starting radius of confidence and reduce it by half at each iteration.
The result of this iterative process is a both robust and very fast outlier
rejection algorithm.

Note that our 2-D outlier rejection does not prevent us from tracking
the surface in 3D. We use the obtained set of inlier correspondences to
track and reconstruct the surface fully in 3D.

4.2.4 Surface reconstruction by detection

Once outlier correspondences are eliminated, we solve Eq. 2 only
once and scale the solution to give initialization for the constrained
optimization in Eq. 3. The works in [25, 24] formulate the inequality
constraints C (Pc) ≤ 0 as equality constraints with additional slack

variables whose norm is penalized to prevent lengths from becoming
too small and the solution from shrinking to the origin. They solve
a complex optimization problem involving extra variables and hard
constraints:

min
c,s

‖MPc‖2 +w2
r‖APc‖2 +µ2‖s‖2,

s.t. C (Pc)+ s2 = 0 .
(6)

In contrast, we use soft constraints that allow the edge lengths to
slightly vary around their reference lengths. We obtain a simpler op-
timization problem with fewer variables and still arrive at sufficiently
accurate reconstructions for AR purposes. We further use a motion
model to temporally regularize the solution. Since the tracking frame
rate is high, a linear motion model is enough. We solve

min
c
‖MPc‖2 +w2

r‖APc‖2 +λ 2‖C (Pc)‖2

+ γ2‖ct−2−2ct−1 + c‖2 ,
(7)

in which ct−1 and ct−2 are solutions to previous two frames.
Using the linear motion model, we can predict the 3-D pose of the

drawing in the next frame and create an occlusion mask where the
surface projection should be in the next input image. This technique
helps to speed up the feature point detection and matching. It also
improves the robustness of the system because gross outliers are limited.

4.2.5 Surface reconstruction by tracking

In the tracking mode, we make use of the fact that both the surface shape
and the camera pose change only slightly between two consecutive
frames. We use the motion model to predict the shape for the current
frame and use the result to initialize the reconstruction.

Similar to [24], we track inlier correspondences from frame to frame
on grayscale images using the standard Lukas-Kanade algorithm [6].
This step brings a great help that allows the system to track under
extreme tilts and large deformations, successfully.

We rely on frame-to-frame tracking to gain frame rate and only
apply the feature detection and matching once every N = 10 frames to
retrieve back lost tracked points and accumulate good correspondences.
This simple technique turns out to be efficient for our problem.

4.3 Interactive coloring book

The interactive coloring book App is built using the Unity game engine3

and runs on Android and iOS. It uses Unity to access the camera
through the WebCamTexture object, and fetches the pixels into the
main memory. These are then passed to a C++ library implementing the
deformable surface tracking algorithm. This library tells Unity whether
a drawing template is detected and if so returns the 3-D shape of the
possibly non-flat colored drawing in the camera coordinates. The App
then rectifies the image of the colored drawing in the canonical fronto-
parallel pose. It does so by projecting the vertices of the triangular
mesh representing the drawing 3-D shape into the image plane, and
using these projected points as texture coordinate to draw a rectified
grid with the camera image as texture, in an offscreen render target.
Finally, the App renders the camera image using a screen-aligned quad,
and overlays the corresponding animated 3-D character. The virtual
camera for the 3-D scene is positioned in function of the location of
the tracked surface in the real world. The character is rendered with
a texture filled by getting colors from the the rectified camera image
through the lookup map L.

5 EVALUATION

5.1 Texture synthesis

5.1.1 Performance

Our artist required less than one hour per drawing to create the inputs
for the algorithm. Then, the computational cost is about half an hour
on a MacBook Pro 2014 2.5 GHz. The implementation currently uses
Cython, and could be accelerated massively, should it use the GPU.

3http://unity3d.com

http://unity3d.com


Template Drawing (A) Artist Completion (P) Naive Projection (C) Content-Aware Filling (L) Lookup-Based (ours)

M1

M2

M3

Fig. 4: Completion of the texturing of 3-D models from a drawing, for different models (M1–M3) and methods (A, P, C, L).

5.1.2 Method

We conducted a web-based quantitative user study to evaluate the
subjective performance of our lookup-based texture generation method
(L), in comparison to three other methods: completion of the texture
by a professional artist (A); projection of the drawing to the model
from the point of view of the drawing (P); and completion using the
Photoshop CS6 content-aware filling tool, by applying it to each island
separately (C). Methods L and P share the same run-time component:
copying pixels from the drawing to the texture using a lookup map, but
they differ in how this map is generated. Method C synthesizes pixels
in function of the existing patterns, and is thus considerably slower.
Finally, method A is a manual operation that takes about 20 minutes
when applied by a professional artist.

The participants were presented with 36 screens, each showing an
image of a 2-D drawing along with two images of a 3-D model, each
textured with 2 different methods. A short text explained that the
coloring of the 3-D models were automatically generated from the 2-D
drawing and the participant was asked to choose the image that looked
aesthetically more pleasant. This was repeated for 3 different models,
2 colorings and 4 methods; all combinations were presented in random
order. Fig. 4 shows a selection of these combinations. We collected
the number of total votes for each method nA, nP, nC, and nL for
each participant, interpreted as dependent variables (DV). Additionally,
we collected the age, gender, and we asked the question whether the
participant plays video games at least once a month in average (to
measure the participant’s general expertise with animated content), as
independent variables (IV). The user study was disseminated through
professional and personal contacts and by announcement on reddit’s
gamedev, augmentedreality, computervision, and SampleSize channels.
We collected the results over a duration of two days.

5.1.3 Results

A total of 314 persons completed the study: 84% male and 16% female,
74% with expertise and 26% without expertise. The median age was
28 (min: 18, max: 78); we use the median statistics as the number of
votes is a discrete space. A Friedman test was run to determine if there
were differences in nA, nP, nC, and nL. Pairwise comparisons were
performed with a Bonferroni correction for multiple comparisons. The
number of votes for the methods were statistically significantly different
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Fig. 5: Results from the user study to evaluate our texture synthesis
method. The median and the 95% confidence interval are shown for
the number of votes for the compared methods (A, P, C, L).

(X2(3) = 816.07, p < 0.001). Post hoc analysis revealed statistically
significant differences (p < 0.001) among all pairwise combinations of
methods. Fig. 5 plots the median and the 95% confidence interval of
nA, nP, nC, and nL, ordered by gender and expertise.

The preferred completion method is the drawing by a professional
artist (A). The second preferred method is the content-aware filling of
Photoshop CS6 (C), probably because it tends to generate more smooth
textures than ours (Fig. 4, M1-C vs M1-L). However, it does not handle
seams, which can lead to dramatic results in some cases (Fig. 4, M2-C).
On the contrary, our method has more graceful degradations (Fig. 4,
M2-L). The naive method P is consistently disliked by everyone. A Chi-
Square test revealed that no significant association between all pairwise
combinations of IV and DV could be observed (p > 0.05), that is, no
influence of age, gender, or expertise on the number of votes could be
confirmed. This is consistent with the strong agreement of participants
and shows that our method, albeit a bit worst than Photoshop’s content-
aware filling (which is not real-time), is far better appreciated than a
naive approach.

Our proposed texture generation algorithm was necessary to meet
the real-time requirements of our application. However, being lookup-
based, it has some limitations, as being unaware of the users’ coloring at
run-time. Nonetheless, it provides superior results to a naı̈ve approach,
comparable to much slower offline methods. We conclude that it is
good enough for real-time application in a coloring book.



30 60 90 120 150 180 210 240
0.94

0.96

0.98

1

Number of templates

R
e
c
a
ll

30 60 90 120 150 180 210 240
60

80

100

120

140

160

180

Number of templates

D
e

te
c
ti
o

n
 t

im
e

 (
m

s
)

Fig. 6: Scalability of the template detection algorithm. Left: recall
measure. Right: average detection time.

5.2 Deformable surface tracking

In this section, we experimentally validate the robustness, accuracy,
and computational efficiency of our methods and show that they are
suitable to our coloring book application on mobile devices.

5.2.1 Template selection

We captured an image sequence of colored drawings in normal settings
of book coloring and input it into the template selection module to test
how accurately we can detect a template if it appears in the camera. To
study the scalability of our detection algorithm, we vary the number of
templates from 2 to 250, which is much more than the number of pages
a coloring book usually has. We define the recall measure as the ratio
of correct detection among the total number of test input images. In
our case, false positives are not very severe because these false alarms
will be rejected in the outlier rejection step. As shown in Fig. 6, our
template selection algorithm can detect the template accurately and its
computational performance scales well with the number of templates.
Since we detect the template only once before passing the result to the
tracking module, this detection can be run across several frames.

5.2.2 Robustness

We demonstrate the robustness of our outlier rejection scheme described
in Sec. 4.2.3 for planar surfaces and compare it to [24, 29]. To evaluate
our approach, we used the same image from the standard paper dataset
as in [24], in which the surface undergoes large deformations. We used
both the corresponding Kinect point cloud and SIFT correspondences
to reconstruct a mesh that we treated as the ground truth. Similar to
[24, 29], we then produced approximately one million sets of correspon-
dences by synthetically generating 10 to 180 inlier correspondences
spread uniformly across the surface, adding a zero mean Gaussian noise
(σ = 1 pixel) to the corresponding pixel coordinates to simulate feature
point localization errors, and introducing proportions varying from 0 to
100 % of the randomly spread outlier correspondences.

We ran our proposed outlier rejection algorithm with 20 regularly
sampled control vertices on each one of these sets of correspondences
and defined a criteria to assess the effectiveness of our outlier rejection
scheme. The criterion for success is that at least 90 % of the recon-
structed 3-D mesh vertices project within 2 pixels of where they should.
Fig. 7 depicts the success rates according to this criteria as a function
of the total number of inliers and the proportion of outliers. The results
reported in Ngo et al. [24] and Pilet et al. [29], which have similar
experiment settings as ours, are included for comparisons. Note that
unlike us and Ngo et al. [24], Pilet et al. [29] does not add Gaussian
noise to the input correspondences. Nevertheless, it takes our method
approximately only 80 inlier correspondences to guarantee that the
algorithm will tolerate up to 0.95 ratio of outliers with 0.9 probability.
The algorithm decays nicely with respect to the number of inlier input
matches. It is still 50 % successful given only 50 inlier matches and
a 0.95 outlier ratio. Compared to [24, 29], our rejection algorithm
requires fewer inlier correspondences to detect the surface and can
handle a larger portion of outliers.

Fig. 8 demonstrates the robustness of our outlier rejection algorithm
on real images. The algorithm can filter 37 inlier matches out of 422
putative ones. As a result, accurate color information can be retrieved
for the texture generation algorithm (see the virtual characters in Fig. 8).

Pilet et al. [29] reports the total execution time of 100 ms per frame
in a 2.8 GHz PC including feature point detection and matching time.
Our outlier rejection algorithm is similar except that we solve a much

Fig. 8: Screenshot from the App showing the robustness of our outlier
rejection algorithm.

Image processing Feature point detection Feature point description

Feature point matching Nearest neighbor search & vote Inlier tracking

Outlier rejection Shape reconstruction
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Fig. 9: Timing measurements of major steps of the deformable-surface
tracking algorithm and the coloring book App. (a) Template selection.
(b) Surface reconstruction in the detection plus tracking mode. (c)
Surface reconstruction in the tracking mode. (d) Coloring book App.

smaller least squares problem. For the outlier rejection algorithm alone,
on a MacBook Pro 2014 2.6 GHz laptop, it takes Ngo et al. [24] about
25 ms per frame while it only takes our method about 2 ms per frame
on the same input correspondences.

5.2.3 Reconstruction accuracy

We compared the reconstruction accuracy of our method described
in Sec. 4.2.4 against [24] which is representative of the current state-
of-the-art in template-based deformable surface reconstruction. We
used the same dataset as for the Robustness evaluation (see preced-
ing section). This dataset provides 193 consecutive images acquired
using a Kinect camera [37]. The template is constructed from the
first frame, and 3-D reconstruction is performed for the rest of the
sequence using the image information alone. Both methods use 20
regularly-placed control vertices. We used the Kinect point cloud and
SIFT correspondences to build ground truth meshes, and compute the
average vertex-to-vertex distance from the reconstructed mesh to the
ground truth mesh as the measure of reconstruction accuracy. The
average reconstruction accuracy of [24] is 2.83 mm while our average
reconstruction accuracy is 2.74 mm, which is comparable. However,
on a MacBook Pro 2014 2.6 GHz laptop, it takes [24] about 70 ms per
frame to solve the optimization problem in Eq. 6, while it takes our
method only 3.8 ms to solve the optimization problem in Eq. 7.

5.2.4 Timing

In this section, we look in detail at the timing of the major steps (see
Sec. 4.2) of our deformable surface detection and tracking algorithm
on an iPad Air on which we prototyped our App. We used a sample
coloring book with 3 drawing templates and measured the average time
spent on each step. The results are shown in Fig. 9.

In the template selection mode, the total time spent per frame is
122 ms (Fig. 9a). These measurements were averaged over 480 frames.
In the surface reconstruction by detection plus tracking mode, both
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Fig. 7: Probability of having at least 90 % of mesh vertices re-projected within 2 pixels of the solution as a function of the number of inlier
matches and proportion of outliers, on the x-axis and y-axis respectively. The lines are level lines of the probability.

surface reconstruction by detection and frame-to-frame surface tracking
are performed. The reconstruction time per frame is 96 ms, averaged
over 50 frames (Fig. 9b). Once the colored drawing is properly tracked,
using a mask indicating the region of interest to look for feature points
decreases the time spent on feature point detection and description be-
cause only a small region of the input image is processed and disturbing
feature points are filtered out. In the surface reconstruction by tracking
mode, image processing, feature detection, description, and matching
are not required. The average total reconstruction time per frame is
36 ms (Fig. 9c). These measurements were averaged over 250 frames.

Most of the time of our algorithm is spent on feature point detec-
tion, description, and matching. We perform surface reconstruction by
detection once every 10 frames, and perform surface reconstruction
by tracking on the rest of the frames. On average, it takes the recon-
struction 41 ms per frame. Our approach has some limitations: the
computational cost varies for different frames and we have not fully
exploited the tracking context yet. To avoid feature point detection,
description and matching, a future work is to incorporate active search
to locally look for correspondences in tracking mode. Doing so, we be-
lieve our deformable surface tracking method will have a performance
closer to its planar rigid object tracking counterpart.

5.3 Interactive coloring book

5.3.1 App performance

The App runs at about 12 FPS on an iPad Air (first generation). Fig. 9(d)
shows the breakdown of the time for one frame, averaged over 600
measurements. Most of the time, 41 ms, is spent on tracking the de-
formable surface. Rectifying the texture to match the drawing template
takes 17 ms, while creating the texture using the lookup map L takes
15 ms. The latter step could be strongly optimized by doing it through
a shader. Finally, acquiring the image from the camera and rendering
the scene takes 9 ms.

Since, in the context of a coloring book, the deformation of the
drawing paper is relatively small, we experimentally observed that 20
control vertices out of total 110 vertices are enough. The corresponding
App frame rate is 12 FPS. The frame rate decreases to 9, 6, 5, 3 FPS

with 40, 60, 80, 110 control vertices, respectively.
Our approach relies on feature points, whose discriminativeness in

line art drawings is not as high as in natural textures. It thus requires the
drawing to have sufficient detail. To reliably track the whole page, we
also rely on feature points detected around the character, for instance in
decorations printed in margins. Occlusions due to the hand of the user
are handled well because besides tracking feature points from frame to
frame, which causes drifts and point losses, we also periodically per-
form feature points detection and matching to retrieve back lost tracked
points, correct drifts, and accumulate good correspondences. The frame
rate of 12 FPS, however, is not enough to handle sudden motions. In
future work, optimisation of implementation would improve the frame
rate and provide better user experience.

5.3.2 End-user evaluation, method

We conducted a user study to assess the subjective performance of our
App. Each participant was asked to choose one out of three templates

(see Fig. 4) and color it with a set of colored crayons. There was no time
limit and multiple subjects were allowed to sit together, chat, and color
their chosen template. An iPad Air running our App was available
and the participants were asked to occasionally inspect their color-
ing through the App. Upon finishing coloring, the participants were
asked to answer the following questions: Tablet Usage: How often do
you use a tablet in average?, Drawing Skill: Does this augmented
reality App app affect your drawing skills?, Drawing Motivation:
Does this augmented reality App affect your motivation to draw?,
Connection to Character: Does this augmented reality App affect your
feeling of connection with the cartoon character?, and Would Use App:
If this App was available for free, would you use it to draw charac-
ters?. Additionally, we recorded their age, gender, and their com-
ments. In the analysis we treated Tablet Usage, age, and gender as
IV and Drawing Skill, Drawing Motivation, Connection to Character,
and Would Use App as DV.

5.3.3 End-user evaluation, results

We recorded answers from a total of 40 participants, 38 % male and
62 % female. The median age was 23 (min: 18, max: 36). While
our App is designed to be used by children, due to delays with ethical
approval for the experiment, we did not quantitatively test it with this
age group. Despite this limitation of our study, informal tests showed
a strong appreciation and engagement. In a further work, additional
testing with children is desirable to quantify these. Fig. 10 shows a
histogram of the answers, for the different questions. Chi-Square tests
revealed that no statistically significant association could be observed
between any pairwise combination of IV and DV (p > 0.05).

The majority of participants (60 %) felt that the App would increase
their motivation to draw coloring books, while a large minority (40 %)
said that their motivation was not affected. This shows that while the
App should be made more engaging, it already has a positive effect on
motivation. The App is perceived as having a minor pedagogical value,
as 20 % of the participants said that it affected their drawing skills
positively. Almost all participants (80 %) felt that the App increased
their feeling of connection to the character, except for 2 people who
actually felt the contrary. This may be due to imperfect tracking for
their actual drawings, ruining the experience. A majority (75 %) of the
participants would use this App, if it was available for free. About a
third of the participants gave additional comments, mostly a short sen-
tence of appreciation. Two participants noted that the texture synthesis
was not perfect, but found it impressive nevertheless. One suggested
to add the possibility to control the virtual character. These results
show that the proposed solution is mature and well appreciated, and
contributes to enrich the coloring experience.

6 CONCLUSION

In this paper we have demonstrated an augmented reality App that
allows children to color cartoon characters in a coloring book and
examine an animated 3-D model of their drawing. We concluded from
a user study that this App strongly improves the sense of connection
with the character, and motivates people to draw more. This App is
built upon two novel technical contributions in the field of (1) real-time
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Fig. 10: Histograms of the answers to the questionnaire evaluating the end-user appreciation of the AR coloring book App.

texture synthesis and (2) deformable surface tracking. For the first,
we formulated the problem of generating a texture in real time and
proposed a solution by creating a lookup map to copy existing pixels
from the drawing. We proposed a novel algorithm for artists to generate
this map automatically. For deformable surface tracking, we provided
a new template selection and a new outlier rejection mechanism, as
well as a lighter problem formulation, which together allow real-time
tracking on a mobile device. While we have used these contributions
to enable our AR coloring book, we believe they have the potential to
impact many more applications in the field of visual computing.
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