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Figure 1: Real-time streaming of encoded subsets of colour and depth streams belonging to a dynamic set of probes (green) in
the vicinity of the viewer, which are used for intermediate-view reconstruction in a light�eld rendering pipeline. Our method
uses clairvoyant inference to determine the spatial-temporal subsets to upload in time for view-dependent decompression,
intermediate-view reconstruction, and rendering.

ABSTRACT
Light�eld video, as a high-dimensional function, is very demand-
ing in terms of storage. As such, light�eld video data, even in a
compressed form, do not typically �t in GPU or main memory un-
less the capture area, resolution or duration is su�ciently small.
Additionally, latency minimization–critical for viewer comfort in
use-cases such as virtual reality–places further constraints in many
compression schemes. In this paper, we propose a scalable method
for streaming light�eld video, parameterized on viewer location
and time, that e�ciently handles RAM-to-GPU memory transfers
of light�eld video in a compressed form, utilizing the GPU architec-
ture for reduction of latency. We demonstrate the e�ectiveness of
our method in a variety of compressed animated light�eld datasets.
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1 INTRODUCTION
Continuous or frequent movement of data streams between devices
or even memory on the same device is a core feature of many
real-time applications, such as video processing and 3D graphics
rendering. An e�ective streaming method improves the scalability
of an application by operating only on a subset of the data that gets
continuously updated, where the update process incurs minimal
overhead in memory, computations and latency, and is primarily
limited by the bandwidth of the memory bus versus the required
throughput.

�e recent resurgence of Virtual Reality (VR) technologies has
brought forth demand for high �delity and immersive content for
viewers, while still maintaining real-time performance. One such
type of content is light�elds [3, 11]: datasets suitable for image-
based rendering (IBR), that allow photo-realistic image qualitywhile
allowing six degrees of freedom. Such datasets, when animated, can
typically be too large to �t in most storage media, and streaming
becomes a necessity.

A particular framework of interest is IRiDiuM [7, 8], which is an
end-to-end system bridging the gap between high quality rendering
and the immersion factor provided by free head and body motion
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in VR. IRiDiuM transforms o�-line rendered movie content into a
sparse, compressed light�eld representation that can be e�ciently
decoded in real-time, allowing six degrees of freedom exploration of
the rendered content. In this framework, the video is rendered from
a number of 360° viewpoints (probes), generating colour and depths
streams that are compressed separately. �e method trades o�
higher compression ratios for high decoding speed and probe data
independence, so that the probe subset that is used for decoding and
rendering can be dynamically adjusted based on conditions such
as user location and orientation. �e decoded data are then used
for IBR for each eye using ray-casting. Individual probe datasets
can be speci�ed with di�erent lengths, and potentially starting at
di�erent times relative to a common time-frame of reference.

IRiDiuM light�eld video datasets, even when compressed, typi-
cally exceed the storage capacity of GPUs, and therefore have to be
streamed from RAM. Streaming performance for light�eld video for
use with VR is paramount, as latency of view-dependent video leads
to user discomfort and simulator sickness [1]. Due to the indepen-
dence of the per-probe videos and their spatial nature, a streaming
solution would ideally consider the locality of the user in addition
to the current time as the main factors for selecting the streamable
dataset. Due to the asynchronous nature of graphics and rendering
APIs, the streaming solution needs to operate asynchronously to
reduce stalls in order to achieve minimum latency of the PCI-e bus
between the CPU and GPU.

We present a modular solution for streaming large immersive
multiview video content to support an arbitrary number of probes
for reconstructing 3D scenes accurately from any point of view.
Our proposed method takes into consideration viewer locality in
addition to time, as the IRiDiuM system supports an arbitrary num-
ber of probes. So, the streamer should work on streamed probe
data that may not be known in advance. We ensure support for
arbitrary video lengths by e�ectively caching only temporal and
spatial subsets of per-probe datasets ahead of time on the GPU. To
do this, we develop a novel scheme to identify and upload a clair-
voyance window: a span of frames corresponding to a set of probes
that are near a viewer at run-time, similar in concept to potentially
visible sets (PVS) but in the context of animated view dependent
light�elds. In our results, we demonstrate the e�ectiveness of our
method in a variety of compressed animated light�eld datasets,
with each having unique characteristics that a�ect performance
and storage requirements.

Contributions. �e contributions form a modular streaming so-
lution, from using time and the viewer location to infer the subsets
uploaded, to real-time asynchronous data transfers to minimise the
cost of frequent and regular memory updates:

• A real-time streaming method for high-bandwidth full-
motion light�eld video that supports a wide range of colour
and depth compression formats, organised as modular
streams for a dynamic set of probes that are used for
intermediate-view reconstruction.

• A spatial-temporal scheme to e�ciently determine the sub-
sets of per probe datasets that are to be on the GPU ahead
of time parametrised by viewer locality and a common
time-frame of reference.

• We show that the method is a tractable solution for high-
bandwidth light�eld renderers that bridge the gap between
cinematic quality graphics and real-time interactivity, since
it can accommodate light�eld solutions integrated with
raw or block-compressed data of any spatial pixel format
while still allowing for runtime optimizations such as view-
dependent decompression to exploit precomputed visibil-
ity.

2 RELATEDWORK
Recent advances in video coding standards have lead to a �ourish-
ing of a multitude of video coding technologies that extend upon
conventional HD video. Many of these are 3D video solutions are
categorized by the representation format, such as stereo and multi-
view and those additionally based on depth image based rendering
(DIBR) [13]. �ey are a direct result of the stereo and multi-view
video coding extensions of the H.264/AVC [18], and the high e�-
ciency video coding (HEVC) [15] standards. In multiview video plus
depth (MVD) each frame of a captured view includes an associated
depth map which is used for intermediate view synthesis.

However, the immersive quality improvements have also come at
a cost of larger video datasets. In response, various works have pro-
posed solutions to minimise the associated memory footprint. Of
these, Müller et al. [2013] propose an extension to HEVC for appli-
cation instances that involve video and depth information with a 3D
video coding framework for depth-enhanced multi-view formats to
overcome challenges in network streaming. Similarly, Hirota et al.
[2016] propose an Ultra-HD multi-view video distribution system
in order to realize high quality play-back and rapid view switch.
�e ReMA framework presented by Lee et al. [2017] is another
solution for the challenge of streaming multi-view content. �ey
propose an architecture for transmi�er, receiver, and a distribution
system to broadcast and generate 3D videos for mobile devices.
While these solutions demonstrate the nature of the datasets of
concern, they are aimed towards network distributed streaming.
We propose a solution targeted at a system level by bridging the
inherently heterogeneous execution model to move data between
the CPU and GPU.

Bridging the gap between multi-view video coding extensions
and 3D computer graphics has been another interesting challenge
involving e�cient coding schemes that utilize depth maps or poly-
gon meshes [12]. While there is only a few available end-to-end
systems, notable progress has been made. Collet et al. [2015] pro-
pose transmission of an animated texture mesh as an alternative to
pure image data, encoded as an MPEG video stream, to achieve an
end-to-end pipeline for free-viewpoint video. �e encoding is e�-
cient and delivers good results, but the captured space is limited and
static, and the resulting meshes are pre-lit without view-dependent
information, limiting the type of datasets that can be used. Ko-
niaris et al. [2017] propose the IRiDiuM framework: an end-to-end
solution using a modular light�eld video format with support for
view-dependent decoding for real-time rendering with six degrees
of freedom. �e datasets used are small enough to �t in the GPU,
limiting them in the number of probes that can be used, and video
length for each.
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To date, there is no streaming solution for multi-view video
whereby both time and viewer locality are considered to infer which
datasets must be streamed to the GPU at a given time, allowing
unlimited freedom in either of these axes (time and 3D location).

Most modern GPUs support concurrent inter-device memory
transfers between the CPU and GPU alongside the massively par-
allel execution. As a result, a number of works have researched
the performance enhancements that can bene�t applications by
e�ciently hiding the cost of data transfer with asynchronous copies.
Sunitha et al [2017] investigate this problem from a general pur-
pose GPU (GPGPU) computing perspective and experiment using
the CUDA framework with di�erent levels of concurrency sup-
ported by CUDA streams (GPU work queues). Similarly, Huang
et al. [2012] propose to reduce transmission overhead by sharing
computation between the CPU and GPU. �e scheme tackles the
common scenario wherein the CPU thread explicitly stalls until the
GPU has completed work before it can proceed. Instead of sending
all the data to the GPU, a subset is processed on the CPU, thereby
leading to a more e�cient utilization of all the available processing
resources and a reduction in the data transfer overhead.

In general, the speci�c approaches for overlapping data transfer
are dependent on the capability of the hardware because overlap-
ping computation with communication requires �ne-grained con-
trol [17]. �e approach of explicit memory copies is the most com-
mon and can be performed either synchronously or asynchronously
with regards to the CPU. Mapped memory approaches on the other
hand do not rely on explicit copies, but map part of the GPU mem-
ory into CPU address space (or vice versa) using pinned memory.
�e potential limitation is its dependence on the memory access
pa�erns to the mapped region by the GPU since they could e�ec-
tively involve a transfer operation over the PCI-e bus. Finally, GPUs
with support for full-duplex PCI-e transfers allow for a threaded ap-
proach to data transfers, which is based on having two copy engines
on the GPU for concurrent to-and-from communication between
the CPU and GPU. Dual copy engine and CUDA streams by NVidia
are exemplars of this approach, which is also available via modern
graphics APIs [5], and is commonly used in video processing.

3 OVERVIEW
We represent streaming as a two-step process of identifying the
subsets of encoded 360° frames of a set of probes in the vicinity of
the viewer, that will be used for intermediate-view reconstruction
ahead of time, and uploading them to the GPU. During the identi-
�cation step, we use runtime information such as viewer locality
and the current video time-frame of reference to infer the spatio-
temporal subsets of the active probe datasets to upstream to the
GPU.We enqueue streaming operations in batches de�ned at a gran-
ularity of probes to ensure seamless uploading of subsets that lay
within a speci�c frame-span while rendering. Each probe dataset
contains the 360° cubemap frames of colour and depth streams
which are compressed in unique and separate modular formats and
are optimized for pure decoding purposes. Any encoding format for
colour and depth images in a 360° format (either equi-rectangular
or cubemap) can be incorporated since we do not impose any con-
straints. For example, the colour information of a frame can be
uploaded to the GPU as a collection of key-frames that lay in a span

Figure 2: A representation of the hierarchical data storage
scheme inherent in our approach, where we stream and
cache the spatial-temporal subsets of probe datasets on the
GPU.�e streamermoves the data belonging to a PVS, that is
parameterised by time and space, from a lower Tier-3 mem-
ory region to Tier-2 memory that is resident on the GPU.

of frames at the granularity of colour compression blocks. Depth
compression can likewise assume any format including di�erence
rectangles in the form of axis-aligned bounding boxes [8] or intra-
coding using geometric primitives [12]. Our data layout scheme in
memory assumes a 3-tier memory hierarchy where we maintain
three representations of the video data in memory which includes
GPU VRAM, CPU RAM, or even Hard-disk and cloud sources.

4 FRAMEWORK
In this section, we describe our approach to stream high-bandwidth
light�eld video by ensuring that only a spatial-temporal subset
of encoded 360° cubemap frames are on the GPU ahead of time.
subsection 4.1 �rst describes our hierarchical memory abstraction
for temporarily storing data on the GPU based on prioritisation,
which is determined by the light�eld rendering runtime. subsec-
tion 4.2 then describes how we identify the subsets of per-probe
datasets that need to be on the GPU. We then describe the process
of streaming the identi�ed subsets to the GPU in subsection 4.3.

4.1 3-Tier Storage
A hierarchical ordering of memory into three tiers is used for stor-
ing probe datasets based on temporal and spatial prioritization:
compressed data in Tier-3 RAM, compressed data in Tier-2 GPU
bu�er memory and unpacked cubemaps in Tier-1 GPU texture
memory. �e compressed video (colour and depth data) is �rst
copied from RAM to GPU memory at application runtime. Texture
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decompression is then performed by the runtime using separate
GPU-to-GPU operations with very li�le CPU-to-GPU communica-
tion that amounts to scheduling GPU-GPU Tier-2→ Tier-1memory
copies.

Figure 2 provides an illustrative example of this ordering which is
analogous to a three-level cache system for storing datasets based on
temporal and spatial locality with the respect to viewer motion. For
a given scene dataset (or set of datasets), we assume that all encoded
frames reside by default in Tier-3 memory, which represents any
system-accessible memory outside of of the GPU, including hard-
disk or even cloud sources. At any given time, a subset of probe
datasets identi�ed using clairvoyance inference are stored in Tier-2
memory. Tier-1 memory is the set of cubemap textures (two colour
and one depth per probe) that are necessary for reconstruction of a
single frame. �e streaming layer concerns itself with identifying
and transferring the subsets of compressed from Tier-3 to Tier-2
memory in time for view reconstruction.

4.2 Clairvoyance Inference
We now describe our scheme to identify the subsets of our datasets
that need to be in Tier-2 memory ahead of time for dependent
rendering operations.

Seamless streaming of per-probe temporal datasets requires that
the next frames are on the GPU in time for dependent rendering
operations. �is avoids potential stalls in the rendering pipeline due
to un�nished memory transfers which can lead to video stu�er and
an overall degraded experience. To determine our temporal subsets
needed for future rendering operations, we compute a clairvoyance
window, C, representing a temporal span of frames, F , for the set
probes that are used for view reconstruction, P. �e clairvoyance
window de�nes the subset of encoded probe frames that will reside
on the GPU for a given time-range and dataset.

We compute the clairvoyance window of each probe, Cρi , to
ensure that its correct subset is in GPU bu�er memory ahead of
time for rendering operations (see Figure 1): Given a probe ρi ∈ P
of a particular dataset, we compute Cρi using the common time-
frame of reference ϕ, 1 ≤ ϕ ≤ Φ, where Φ denotes the time-frames
of the video sequence of the respective scene dataset. �e variable
ϕ is analogous the frame-reference for the next reconstructed view-
frame that is displayed to the viewer. We estimate the start of Cρi
over the course of Φ given ϕ as cϕ = ϕ − (ϕ mod F ) + 1. �e last
frame in the span of Cρi is computed as c∆ = cϕ +min

(
F , Φ − cϕ

)
which we compute if the frames spanning Cρi have elapsed. From
this, the collective subset of frames in C for the set of probes whose
data is streamed to the GPU at a given instance is de�ned by

C = Cρ1 + Cρ2 + · · · + CρN

where N is the number of streamed probes that are potentially used
for reconstruction, and Cρi ≡

∫ c∆
cϕ

Φ. �is representation for C
is essential for supporting animated light�eld video features such
as dynamic branching, as it permits us to decouple the process
of streaming multiple datasets of a given collection whereby each
dataset has its own list of probes.

It follows that the frequency of streaming for a given dataset is
directly dependent on

λ =



F Φ > F

Φ Φ ≤ F

since the frames spanning Cρi elapse speci�cally when cϕ = ϕ.
�is ability to control the frequency of data transfers via λ has an ad-
ditional bene�t with regard to performance tuning, as it ensures our
ability to control the sizes of data transfer by tuning for the optimal
value of F subject to storage constraints. An example use-case is in
scenarios where a con�guration optimized for high-end desktop
platforms may not be suitable for lower-powered mobile platforms.
Furthermore, λ can be chosen based on the compression rates of a
given dataset to control the sizes of subsets being streamed to the
GPU. �is follows the fact that datasets with li�le animation will
have higher compression ratios than those with more animation.

4.3 Streaming
We provide seamless integration of the process of identifying the
subsets that lay within the span of C (as described in subsection 4.2)
and performing asynchronous memory transfer operations to the
GPU. A multi-bu�ered approach is used to prevent stalls in the
pipeline that are caused by enforced waits for copy operations to
complete before subsequent rendering operations can proceed. Our
Tier-2 data storage scheme encompasses the use of cyclic bu�ering
to ensure that we have asynchronous Tier-3 → Tier-2 transfers.
When the frames spanning C have elapsed, we switch between
multiple GPU memory instances using round-robin scheduling
while ensuring that any previous operations that are dependent on
a new write-to instance have �nished.

An important constraint we must satisfy is probe data depen-
dency in order to permit changes to P to give P ′ i.e. the updated set
of probes that are used for reconstruction. �ese dependencies are
determined by runtime probe selection heuristics of the rendering
system. Such data dependencies must be resolved due to changes
in probe-to-viewer locality, which could depend on viewer position
and orientation in the virtual space and time. Since this may happen
at any frame, we immediately transfer the complete new subsets
of C if P ′ , P. (Note that in the case that the changing of probes
occurs when cϕ = ϕ, streaming occurs normally for all ρi ∈ P ′).

5 ARCHITECTURE & IMPLEMENTATION
Our model for streaming is fundamentally based on the method of
asynchronous bu�er transfers [5], which is widely applied in cases
for frequently uploading data to the GPU. �is approach readily
uni�es the compression formats of full motion light�eld video
(FMLV) with the readily available Direct Memory Access (DMA)
capabilities of modern GPU architectures to allow asynchronous
transfer operations between the CPU and GPU.

Since the streaming framework interacts with a FMLV runtime
solution via a dynamic set of probes and a common time-frame of
reference, we further extend the concept of asynchronous bu�er
transfers. For instance, encoded frames are uploaded at a frequency
de�ned by the clairvoyance window as well as probe changes.
�erefore, the key elements of our streaming framework address
the performance and scalability impact of identifying and upload-
ing the encoded subset to GPU bu�er space for decompression and
rendering.
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Figure 3: Schematic outline of streaming integration: �e
streamer is incorporated as a modular component into the
light�eld rendering pipeline (IRiDiuM Deep Media proces-
sor), which then uses time, such as the current frame, and
the current set of probe to ensure that the subset of encoded
frames of each probe are on the GPU prior to any dependent
rendering operations.

5.1 Schematic Outline
Streaming is represented as a modular runtime component that
ensures the correct data subsets are in GPU bu�er memory ahead
of time. �e main input is a set of probes which are determined by
the FMLV runtime, and their state with respect to the clairvoyance
window time span in order to infer the subsets to the streamed. In
practice, we represent each probe as a simple lightweight a�ribute
structure that de�nes the locations of data storage in Tier-3 and Tier-
2 memory. �ese a�ributes also include synchronisation primitives
e.g. GLsync objects, that the FMLV runtime may use to enqueue
dependencies for subsequent decompression and rendering tasks.

Figure 3 provides an example outline of the streaming frame-
work and how it integrates with the IRiDiuM pipeline. Given a
target frame that is to be displayed next, the streaming module
�rst ensures that the corresponding encoded subsets (colour and
depth frames) are in GPU bu�er space by loading the clairvoyance
window of each probe in the active set if they are not loaded. �e
IRiDiuM runtime proceeds to perform decoding and view recon-
struction, while ensuring that all necessary data for the next frame
to be displayed is on the GPU by enqueueing necessary dependen-
cies for data availability on the GPU. �e result of the pipeline is
the fully reconstructed frame that is seen by the viewer.

5.2 Uploading Datasets
Encoded subsets are transferred at periodic frame intervals de-
termined by the size of the clairvoyance window, or when probe
changes have occurred. First, we infer the range of frames spanning
the current clairvoyance window span by computing cϕ and c∆. We
then determine and copy the encoded frames Cρi by scanning iter-
atively through the encoded colour and depth data of each frame of
each probe. �e streaming processor is agnostic to the organisation
of the compressed data, and only requires an interface to access
all data necessary to decode a given range of frames. We simulta-
neously copy data to the GPU while iterating through colour and
depth data by using pinned-memory transfers and provide syn-
chronisation primitives that the FMLV runtime can use to enqueue
dependencies for the uploaded subsets of a particular probe.

5.3 Dependency Management of Probe
Datasets

�e active set of probes whose subsets are streamed to the GPU is
directly dependent on the probe selection heuristics of the FMLV
runtime, as they determine when new probes are required to recon-
struct a novel viewer perspective subject to viewer location. We
represent probe eviction and replacement for streaming as a process
of identifying the probes which are are no longer part of the run-
time set and the new subset to replace them. At each frame, we
check for any discrepancies between the active set determined by
the selection heuristics in the FMLV runtime and the representation
held by the streamer.

�e selection heuristics of the FMLV runtime can likewise be
extended to the case of multiple datasets in order to support non-
linear video playback which can be triggered on an arbitrary basis.
In this case, streaming is performed at normal regular frame in-
tervals for a given active dataset of the collection. We ensure to
upload the �rst clairvoyance windows of a subset of probes from
the inactive datasets to minimise the overhead that can be caused
by switching between datasets. �e set of ‘default’ probes that
are preloaded for the inactive datasets is determined by the FMLV
runtime.

6 EVALUATION
Our results are obtained on a system with an Intel® CoreTM i7-
5930K CPU @ 3.50GHz with 32GB RAM and an NVIDIA GeForce
GTX 970 GPU with 4GB of VRAM. We test our solution using
the IRiDiuM system [8] implemented using the OpenGL API. We
use the Robot, Sponza, and Swamp datasets for evaluation which
are created using Pixar RenderMan (see Figure 4). We use three
datasets to show the �exibility of our method, each of which have
characteristics that uniquely a�ect performance. �e Robot and
Sponza datasets demonstrate environments that are focused on a
particular area. Viewer motion is generally constrained to a small
volume. �e Robot dataset has a set of 16 densely-placed probes per-
unit areawith 78 frames each. Consequently, the changing of probes
due to runtime prioritization is likely to induce a lot of streaming
operations subject to user motion. �e Sponza dataset, while having
just 9 probes, is the longest video sequence of all datasets with each
probe having 600 frames. �e dataset represents a large explorable
space with a sparse set of probes with larger storage requirements
as a result of having more animations than the Robot dataset. In
addition, the captured frames are highly dynamic, therefore colour
and depth frame compression schemes are less e�ective. �e third
dataset we use for demonstration is the Swamp which encodes
dynamic video branching to support non-linear video playback [9].
�e non-linearity of the video is represented as a collection of a
number of sub-datasets of (potentially) related video sequences that
may be switched arbitrary based on runtime conditions using a
state machine. Each sub-dataset may contain a single or a range of
encoded 360° frames. �e Swamp is also the largest dataset with a
size that readily exceeds the capacity of many conventional GPUs
(21.8GB).

In each evaluated dataset, the encoded frames are primarily
optimized for pure decoding performance due to the large number
of pixels that must be decoded in runtime. Each 360° cubemap frame
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Figure 4: Dataset snapshots: Robot (le�), Swamp (middle), and Sponza (right).

Dataset Col’ Format Dep’ Format Probes Frames Size
Robot BC1 W16UI 16 78 519MB
Sponza BC1 BC5 9 600 3.2GB
Swamp BC1 R16UI 40 555 21.8GB

Table 1: Dataset characteristics: Colour data compression
for all datasets is based on the BC1 (block compression) for-
mat, with depth compression formats using either 1- or 2-
bytes per depth pixel.

(consisting of a colour and depth frame representation) has faces
of dimensions 1024 × 1024 pixels. �e colour frames have been
compressed using the BC1 block-compression scheme with 256 cell
blocks per face (64 × 64 pixels per cell block). �e compression
scheme for depths is not very aggressive since the quality and
resolution of depth maps are critical for reconstruction (moreso
than colour data). A pre-calculated stream of axis-aligned bounding
boxes (AABB) is used for each depth-frame (see Koniaris et al.
[2017] for more information). Table 1 provides further details on
each of the evaluated datasets.

We evaluate the changing probes at runtime by emulating viewer
motion using cubic-bezier interpolation through a set of probe
positions. Motion occurs over a �xed period of elapsed frames,
which is determined by the number of frames in a dataset multiplied
by a number of video sequence repetitions. For each test, we repeat
the video sequence at least 4 times to minimise variance in the
observed measurements of execution time.

6.1 Streaming Performance
�e average streaming performance in all our tests is real-time mak-
ing it a suitable solution for light�eld rendering pipelines involving
large datasets. �e bo�leneck of our streaming algorithm is the
scanning, where individual colour and depth key-frames required
to reconstruct each frame in a clairvoyance window must be up-
dated with new references to regions in GPU bu�er space. �is
is a necessary step during view-dependent reconstruction since
texture update calls require a source address of respective data
in GPU memory. �ese source addresses are organised at the a
granularity of colour compression blocks and di�erence-rectangles

for depth data, as per IRiDiuM design. As such, we reduce the cost
of this overhead by controlling the size of clairvoyance window
size. Even with this option however, choosing the right clairvoy-
ance window size remains dependent on the dataset used since it is
the compression scheme that determines the amount of iterations
through the data required to update the necessary memory refer-
ences. When compression is less e�ective for frames with a lot of
animations, we reduce the clairvoyance window size, which has
a side e�ect of increasing the frequency of CPU-to-GPU transfers
(see subsection 4.2). �e bene�t however is that generally a smaller
clairvoyance window size decreases the amount of data transferred
per frame interval, and is likely to reduce the cost of changing
probes at runtime.

Figures 5a and 5b show the timings for the cost of streaming
per-frame as a function of the clairvoyance window size on the
three datasets. We measure the cost on the CPU ( 5a) as well as the
time taken to transfer the subsets to the GPU ( 5b). Clearly, stream-
ing on a per-frame basis does not bene�t performance since the
rate of memory upload requests is higher that rate of DMA trans-
fers combined with rendering. �erefore, implicit dependencies
between GPU memory instances and rendering tasks leads to stalls
in the execution pipeline. Moreover, the choice of clairvoyance
window size must allow for su�cient time between GPU execution
and CPU requests for write-access to potentially-in-use GPU bu�er
memory. �e results shown in Figures 5a and 5b, also reveal
that the cost of moving data is generally low compared to the task
of scanning the subsets of colour and depth streams to be copied
from the CPU to GPU. In general, the CPU cost is dependent on
the nature of a given dataset because inherent characteristics such
as, the e�ectiveness of compression due to the level of animation,
determines the amount of scanning and data copied for a range
of frames. We found that streaming performance is not directly
dependent on the number of probes but more so on the amount of
data, in terms of colour and depth streams, each probes has.

6.2 Runtime Performance
�e potential overhead that can be induced by the logic to stream
subsets to the GPU from CPU RAM is largely dependent on the
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(a) CPU-side scanning.
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(b) RAM-to-GPU memory transfer.

Figure 5: Performance cost of streaming subsets of a one
probe relative to the clairvoyance window size.

number of probes used for reconstruction and the rate of anima-
tion in a dataset. A challenging case therefore is one of �nding
the optimal combination between the number of probes used for
reconstruction and the clairvoyance window size. To evaluate the
e�ect of the number of streamed probes on performance, we test the
change in rendering time as a function of the number of probes on
each dataset. We likewise, replicate this tests using a pre-existing
implementation that a�empts to cache all probe datasets on the
GPU i.e. without any streaming. We analyse our results by using
this as our baseline implementation to understand the potential
overhead of streaming and how it a�ects performance.

Our method is real-time and maintains comparable average
frame-rates against the baseline implementation, including for the
typical-use-case of 8 probes. Figure 6 shows our performance re-
sults on the three datasets, which are compared to the baseline
implementation that stores a whole dataset in GPU bu�er memory
for the duration of the application. On the Robot dataset however
( 6a), the performance at 8 probes falls below the 16.6ms threshold
and achieves 22.03ms per frame, compared to the baseline imple-
mentation at approximately 12.7ms. Given that the Robot dataset is
only 519MB, it is likely that this performance slow-down is caused
by the changing of probes at runtime which incurs the overhead
of replacing regions in GPU memory required to decompress and
render immediate frames that follow. In contrast, the results of
Figure 6b for the Sponza dataset reveals average frame-rates which
are actually greater than the baseline performance with a lower
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(b) Sponza dataset.
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(c) Swamp dataset.

Figure 6: Summary plots of the achieved rendering times (in
milliseconds) on the three evaluation datasets

dispersion in recorded frame times. On average, Streaming incurs a
minor slow-down of approximately 3.2% compared to the baseline
implementation. A possible explanation could be that storing a
smaller amount of data of the GPU may lead to the advantage of
reduced access latencies during view-decompression since only a
(smaller) subset of encoded colour and depth streams reside on the
GPU at a given time, unlike the case of storing a whole dataset
in GPU VRAM. �e results of Figure 6c for the Swamp dataset
demonstrate the capability of our approach to handle scenarios
in which a dataset exceeds the capacity of a GPU and where the
dataset is highly dynamic with animations. �e high levels of ani-
mation in the dataset combined with frequent changes in probes
results a real-time average that just manages close to 33.3ms per
frame at 8 probes and just lower than 16.6ms at 4 probes. �e trans-
mission latency combined with the changing of probes at runtime
dominates performance. �ese results show the sensitivity of our
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approach to datasets that are large due to the level of depth and
colour compression. �e swamp scene dataset has many animations
with a relatively long video sequence. Given the results of Figures
6a and 6b, we expect the performance of a theoretical baseline
implementation to have similar trends but with some di�erences
in performance.

We brie�y note that the quality of image reconstruction is also
dependent on the number of cameras in the animated scene. How-
ever, our streaming solution primarily a�ects rendering perfor-
mance more so than quality as measured via objective quality mea-
sures. Koniaris et al. [2017] have previously evaluated the e�ects
of the number of probes on quality using peak-signal-to-noise ratio
(PSNR) as well as the structural similarity index measure (SSIM)
(see Figure 7 in referenced work). �ey have evaluated quality
using a variable number of active cameras, selected via the angle-
based prioritisation heuristic to conclude that it is the number and
placement of cameras that a�ect rendering quality. Although their
evaluations have used a di�erent dataset, the reached conclusions
would likely be the same on the datasets we use in our evaluations.

6.3 Implementation Analysis
Asynchronous Streaming. Single bu�ered pinned-memory trans-

fers are now a common use case in modern applications. While
this is convenient for having persistently mapped memory between
CPU and GPU, such a solution alone for streaming has a major dis-
advantage: �e overhead of synchronising bu�er write operations
by the CPU is inherently dependent on the rate at which the GPU
can �nish using the subsets currently contained in the bu�er. In our
particular case, such an approach would result in potential stalls in
the rendering pipeline as an explicit wait operation has to occur be-
fore, for example, the contents of a previous clairvoyance window
are used to reconstruct a preceeding number of frames submi�ed
for rendering by the CPU. GPUs generally operate asynchronously
to the CPU unless explicit synchronisation is enforced, which is not
ideal for streamlined performance. It remains a limitation however,
that the subsets of new probes as a result of changes due to selection
heuristics must be uploaded to the GPU immediately which limits
the scalability. �e results of Figure 6c demonstrate this, as the
rendering time increases above the minimum ideal threshold of
33.3ms, which is due to the increased size of the data streams and
the number of probes in the dataset.

Compression Schemes. It has been discussed that the performance
of streaming is inherently dependent on the data layout of the in-
dividual probe key-frames of a dataset. �ere is no globally ideal
approach to traversing the representative data structures; this is
dependent on the adopted compression scheme and runtime imple-
mentation. Since our implementation was based on the IRiDiuM
system, we assume that a given runtime provides a standard repre-
sentation for the encoded frames which we then traverse in order to
update necessary memory references for the encoded data streamed
to GPU bu�er memory. As such, further optimizations like optimiz-
ing for cache misses when iterating through the encoded colour and
depth frames etc. remain dependent on the host FMLV system’s
implementation choices.

7 CONCLUSION
Wehave presented amethod for enabling e�cient streaming of high-
bandwidth light�eld video in compressed form to overcome mem-
ory capacity constraints faced byGPUs. �emethod is parametrised
by viewer location in addition to time in order to handle RAM-to-
GPU memory transfers ahead of time for dependent operations
using our clairvoyant inference scheme. Our three-tier memory rep-
resentation based on asynchronous CPU-to-GPU memory transfers
provides a light-weight model to minimise the potential overhead
of synchronisation. It is based on cyclic bu�er storage on the GPU
to enable asynchronous uploads for minimum transfer overheads
thereby minimising stalls that may otherwise incur a signi�cant
cost on the rendering time budget. �e method is general and can
accommodate encoded light�eld video data layouts of any type
since we do not constrain the approach to a particular compression
scheme. It is simple and interacts well with probe-selection heuris-
tics that may be used by a given FMLV system. �e end result is
a modular component for FMLV rendering pipelines that ensures
that encoded frames of a dynamic set of probes are on the GPU in
time for view-dependent decoding, reconstruction, and rendering
operations.

7.1 Limitation and Future Work
While our method can minimise runtime overhead to achieve real-
time frame rates, it remains susceptible to incurring performance
cost due to a number of factors, such as the amount of data trans-
ferred at a given instance or the frequency of data transfer subject to
the amount transferred. In our current solution, we upload several
probe datasets at �xed time intervals de�ned by the clairvoyance
window, which has the disadvantage that the load of copying a
range of encoded frames is experienced in one frame rather than
being distributed in time across di�erent frames. With highly an-
imated datasets, or a large clairvoyance window, we sometimes
observe artefacts in the form of stu�ering frames which can lead
to simulator sickness. In future work, we plan to incorporate sup-
port for distributed time spans, where the clairvoyance window
may be speci�ed per probe to minimise the transmission latency
and the cost of CPU-side scanning that is associated with large
datasets. We would also like to extend our method to consider the
case for view-dependent streaming since we currently makes no
assumption about viewer direction, which could be bene�cial for
prioritizing streaming based on viewer orientation and direction.
Another direction for further work is CPU and GPU bandwidth
pre-computation which can be used to infer a predetermined timing
of uploads according to temporal data since it is known beforehand.
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