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Abstract

Most recent semantic segmentation methods train deep

convolutional neural networks with fully annotated masks

requiring pixel-accuracy for good quality training. Com-

mon weakly-supervised approaches generate full masks

from partial input (e.g. scribbles or seeds) using standard

interactive segmentation methods as preprocessing. But, er-

rors in such masks result in poorer training since standard

loss functions (e.g. cross-entropy) do not distinguish seeds

from potentially mislabeled other pixels. Inspired by the

general ideas in semi-supervised learning, we address these

problems via a new principled loss function evaluating net-

work output with criteria standard in “shallow” segmen-

tation, e.g. normalized cut. Unlike prior work, the cross

entropy part of our loss evaluates only seeds where labels

are known while normalized cut softly evaluates consistency

of all pixels. We focus on normalized cut loss where dense

Gaussian kernel is efficiently implemented in linear time by

fast Bilateral filtering. Our normalized cut loss approach to

segmentation brings the quality of weakly-supervised train-

ing significantly closer to fully supervised methods.

1. Introduction

Since the seminal work [29], deep convolutional neural

networks (CNN) dominate almost all aspects of computer

vision, e.g. recognition [45, 25], detection [20, 41], and

segmentation [33, 13]. It is capable of learning intermedi-

ate representations at different levels given abundant train-

ing data. For semantic segmentation, all leading methods

in PASCAL VOC 2012 train some fully convolutional net-

works (FCN) based on given ground-truth segmentations.

Typically, pixel-wise cross entropy loss is minimized.

Supervised training of FCNs requires a huge number of

fully annotated ground-truth masks that is costly to obtain.

Training with weak annotations, e.g. scribbles [32, 51],

bounding boxes [26, 16, 51, 36], clicks [4], and image-level

tags [51, 36], has caught a lot of interest recently.

∗Work done during internship at Disney Research.
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Figure 1: Unsupervised normalized cut (NC) segmentation

exploits low-level similarities (d). Weak supervision using

partial cross entropy (pCE) on scribbles with our NC loss

trains CNN (f) nearly as good as full mask supervision (c).

Common approaches often use standard shallow1 seg-

mentation techniques (e.g. graph cuts [9, 42, 31]) with seeds

or boxes to generate fake full masks (proposals) to be used

for training, which is often iterated with proposal generation

[32, 26, 36]. However, inaccuracies of such masks (seg-

mentation proposals) mislead training since typical cross

entropy (CE) loss is minimized over mislabled points and

the network over-fits mistakes, see Sec.3.2. According to

semi-supervised learning literature [55, 12], early mistakes

reinforce themselves in self-learning. As we show, better

training can be achieved by minimizing partial cross en-

tropy (pCE) loss on true scribbles only, see Fig.1(e).

Our approach to weakly-supervised CNN training is mo-

tivated both by common ideas in semi-supervised learn-

ing and by standard criteria in shallow image segmenta-

tion. In contrast to existing proposal generating technqiues,

we advocate a principled yet simple and general approach:

regularized semi-supervised loss directly integrating shal-

low segmentation criteria into CNN training, see Fig.1(d,f).

This paper focuses on a popular balanced segmentation cri-

teria - normalized cut [43]. Our main contributions are:

1Here “shallow” refers to techniques unrelated to neural networks.



• We propose and evaluate a novel loss for weakly super-

vised semantic segmentation. It combines partial cross

entropy on labeled pixels and normalized cut for unla-

beled pixels. Losses based on CRF and other shallow

regularizers are studied in our follow-up work [47].

• Even without normalized cut loss, our partial cross en-

tropy loss for scribbles (loss sampling) works surpris-

ingly well compared to cross entropy over “generated”

full masks that make the network over-fit to mistakes.

• We show efficient implementation for normalized cut

loss layer with dense Gaussian kernel in linear time.

• Experiments show that normalized cut loss achieves

the state-of-the-art for training semantic segmentation

with scribbles. We evaluate other losses in [47].

2. Background and Motivation

Our regularized loss is inspired by the general ideas for

semi-supervised (deep) learning [12, 50, 7] and by the stan-

dard regularization objectives in ‘shallow” image segmen-

tation or clustering, as discussed below.

Regularized semi-supervised losses: Various forms of

regularization are widely used in machine learning and neu-

ral networks in particular, see Sec.3.3 for an overview. This

paper is focused specifically on regularized losses for semi-

supervised learning with partially labeled training data. In

this case regularization is directly applied to the network

output [50, 7] rather than to the network parameters. Typ-

ical regularized semi-supervised loss function over the net-

work output combines two terms

• Fidelity of network output to the labeled data

• Regularization of the entire network output

The purpose of the regularization term is to propagate

the empirical losses (fidelity) over partially labeled input

(mask) to the entire training data including unlabeled points.

In particular, Weston [50] proposed a general idea that a

loss for network’s output can incorporate regularizers from

standard “shallow” semi-supervised methods. Assume that

variables Sp ∈ [0, 1]K describe the network’s output for

p ∈ Ω. Then, one loss function example in [50] based on a

common Laplacian eigenmaps regularizer [6] can be writ-

ten as
∑

p∈ΩL

ℓ(Sp, yp) + λ
∑

p,q∈Ω

Wpq ‖Sp − Sq‖
2 (1)

where l is any standard loss for labeled points p ∈ ΩL

with known ground truth labels yp. The regularization term

above softly enforces output consistency among all points

based on predefined pairwise affinities W = [Wpq].

partially labeled input data
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Figure 2: Interactive segmentation (a) and (transductive)

semi-supervised “shallow” learning (b) are well-known re-

lated problems, e.g. both of them could be formulated via

similar MRF/CRF regularizers like (2) in [9, 55] or normal-

ized cut [43]. The use of shallow learning regularizers in

semi-supervised losses on DNN outputs [50] motivates di-

rect integration of standard image segmentation regularizers

into losses for weakly-supervised CNN segmentation.

Shallow semi-supervised segmentation & clustering:

Motivated by the general ideas above, we propose to incor-

porate regularizers from “shallow” segmentation/clustering

into CNN segmentation loss. Due to importance of low-

level regularizers for segmentation and computer vision in

general, there are many choices available in the literature

[19, 11, 9, 43, 23, 34, 39, 30, 15, 46]. To further motivate

our approach, we discuss one specific basic example of such

regularizer.

Probably the simplest energy for shallow interactive im-

age segmentation in [9] that also works for transductive

semi-supervised learning (clustering) [55] combines hard

constraints over seeds p ∈ ΩL with predefined labels yp
and the Potts regularizer

∑

p∈ΩL

− logSyp

p + λ
∑

p,q∈Ω

Wpq [Sp 6= Sq] (2)

where Sk
p ∈ {0, 1} are now interpreted as class assignment

indicators2 and [·] are Iverson brackets. The first term en-

forces S
yp

p = 1 for p ∈ ΩL. The regularization term pe-

nalizes disagreements between the pairs of points. Figure 2

2This is only a minor conflict with earlier notation Sk
p ∈ [0, 1] for real-

valued network output; in the context of CNN segmentation such relaxed

output variables Sk
p also correspond to (soft-max) class assignments.



illustrates shallow interactive image segmentation (a) and

semi-supervised clustering of general data (b).

Properties of the regularization term in (2) heavily de-

pend on weights [Wpq]. For sparse non-negative matrix W
with non-zero weights concentrated on nearest neighbors

as in classical Ising or Potts models, there is a geometric

interpretation corresponding to the weighted length of the

segmentation boundary [10]. For denser W the regularizer

in (2) reduces to a quadratic function over weighted cardi-

nalities of segments3. For dense Gaussian affinity, the regu-

larizer above corresponds to a dense CRF [28]. Instead of

pairwise regularizer in (2), later Sections 3.4 and 4 focus on

normalized cut objective [43], which is a popular balanced

segmentation and unsupervised clustering criterion.

Connecting shallow and deep segmentation: Following

the general idea of integrating (shallow) regularizers into

semi-supervised loss for (deep) learning [12, 50, 7], we ad-

vocate this principled approach in the context of weakly-

supervised CNN segmentation. That is, we propose semi-

supervised training loss on CNN output to combine empiri-

cal risk (e.g. cross entropy) over labeled pixels and a regu-

larizer on all pixels common in “shallow” segmentation.

In order to integrate common segmentation energies like

(2) into CNN loss functions, they should have a “relaxed”

formulation extendable to real-valued segmentation vari-

ables Sp ∈ [0, 1]K (on probability simplex) typically pro-

duced by soft-max output of the network. For example, the

Potts or dense CRF term in (2) can be written as a quadratic

form based on linear algebraic notation giving an equivalent

formulation of shallow segmentation energy (2)

∑

p∈ΩL

− logSyp

p + λ
∑

k

Sk′W (1− Sk) (3)

where Sk ∈ [0, 1]|Ω| is a (soft) support vectors for class k
combining k-th components Sk

p of vectors Sp ∈ [0, 1]K for

all points p ∈ Ω. Interestingly, the first term in (2) rep-

resenting hard constraints over seeds for binary indicators

Sp ∈ {0, 1}K becomes a partial cross entropy term in case

of relaxed variables Sp ∈ [0, 1]K .

Equation (3) is a basic example of segmentation energy

that could be used as regularized semi-supervised loss di-

rectly over real-valued CNN output. This fits previously

discussed ideas for regularized semi-supervised losses for

learning in general. For example, loss (3) is very closely

related to (1) where the second term is also a quadratic re-

laxation of the Potts model in (2) different from (3).

In general, regularized semi-supervised loss functions

for CNN segmentation can use differentiable relaxed ver-

sions of many standard shallow segmentation regularizers

such as Potts [9], dense CRF [28], or their combinations

3Extreme Wpq = const gives a negative sum of squared cardinalities.

with balanced clustering criteria [46]. We will study these

losses in the future. This paper focuses on normalized cut

objective [43]. As discussed in Section 3.4, it differs from

the Potts and denseCRF models by normalization that en-

courages segment balancing and addresses shrinking bias.

This objective also allows a continuous relaxation [46].

While our future work plans include an empirical com-

parison for all these models in the context of regularized

weakly-supervised losses for CNN segmentation, this paper

focuses specifically on the normalized cut loss thoroughly

discussed in Sec. 3.4 and 4.2.

3. Related Work

3.1. Semi­supervised Learning

Semi-supervised learning is about learning from both la-

beled and unlabeled data [55, 12]. Graph based algorithms

[8, 54, 53, 6] are the most relevant to our work. It assumes

that two nodes with larger graph affinity are more likely to

have the same label. Graph Cut [8] solves a combinato-

rial problem in polynomial time. Harmonic Functions [54]

relaxes discrete labeling to real values and admits a closed-

form solution. Manifold regularization [6] prevents over-

fitting to training examples by including extra regulariza-

tion on the whole feature space. As such, it gives better

generalization and a natural extension to test data.

Semi-supervised learning ideas with “shallow” models

are adjusted into deep learning in the general framework by

Weston et al. [50]. Extra losses based on semi-supervised

embedding are minimized by standard back propagation.

Indeed, our regularized loss is similar to the scheme in

[50] regularizing network output. However, we are the first

to utilize ideas in such principled framework for weakly-

supervised CNN segmentation.

3.2. Weakly­supervised Semantic Segmentation

Semantic segmentation has been addressed with scrib-

bles [32, 51, 48], bounding boxes [26, 16, 51, 36], clicks

[4] or even image-level tags [51, 36, 27].

Xu et al. [51] formulated all types of weak supervision

as linear constraints in max-margin clustering. This frame-

work is rather flexible and principled. However, we take

advantage of deep CNN rather than SVM used in [51].

Recent work [16, 32, 26, 36, 27, 38, 48] train CNNs

from segmentation “proposals”, which can be crude box

labelings or the outputs of shallow interactive segmenta-

tion. Typically, such methods make (expensive) inference

steps generating (fake) ground truth masks/proposals and

then minimize cross-entropy w.r.t. such masks, potentially

over-fitting to their errors. For example, ScribbleSup [16]

iteratively generate proposals/masks via graph cuts, while

[27] use additional CRF inference layers to produce them.

Instead of MRF/CRF regularization, [38] uses cardinality



constraints to generate explicit full proposals/masks.

With our joint loss, it suffices to train in one pass and

we don’t need iterative training and heuristic segmentation

proposals. It is true that many off-line interactive segmen-

tation algorithms exist [42, 31, 40]. However, segmentation

proposals have major limitations discussed bellow.

Why not train with segmentation proposal? Mistakes re-

inforce themselves in self-learning scheme [12, 55]. Indeed,

as also briefly mentioned in Sec. 3.1, self-learning is one of

the earliest ideas for semi-supervised learning [12], which

doesn’t have any convergence guarantee.

In practice, “shallow” segmentation proposals are likely

to be erroneous, see examples in Fig. 7. Most inter-

active segmentation methods don’t consider semantic cue.

As such the proposals are misleading for training. In-

stead of generating unreliable proposals and train models

to fit errors, our method is more direct, incorporating stan-

dard segmentation regularizer as a loss. Also heuristic pre-

processing is not favored in semi-supervised learning. Most

modern semi-supervised learning approaches minimize a

regularized loss with e.g. SVM or neural networks [6, 50].

3.3. Regularization for Neural Networks

Regularizations have also been widely used in neural

networks to avoid over-fitting or encourage sparsity, e.g.

Norm regularization [22], Dropout [44] and ReLU [21].

Our normalized cut loss differs from these regulariza-

tion. Ours is a semi-supervised loss for regularizing net-

work output for unlabeled data. Such regularization is well

coupled with partial fidelity loss, allowing implicit label

propagation during training.

Regularization techniques for CNN segmentation in-

clude post-processing (e.g. dense CRF [28, 13]), and ap-

pended trainable layers (e.g. CRF-RNN [52], Bilateral

Solver [3]). Our regularized loss for weakly-supervised seg-

mentation is very different. It’s beyond the scope of this

work to compare all schemes for regularization in fully- or

weakly-supervised CNN segmentation.

3.4. Normalized Cut and Image Segmentation

Normalized Cut is a popular graph clustering algorithm

originally proposed for image segmentation [43]. It is the

sum of ratios between the cuts and the volumes.

∑

k

cut(Ωk,Ω/Ωk)

assoc(Ωk,Ω)
≡

∑

k

Sk′

W (1− Sk)

d′Sk
, (4)

where Ωk is the set of pixels labeled k and Sk is binary

indicator vector. The cut or assoc for two sets A and B is

defined as
∑

p∈A,q∈B Wpq , see [43].

Normalized Cut is a variant of a family of spectral clus-

tering and embedding algorithms [35, 5, 49] that typically

depend on the eigenvectors of unnormalized or normalized

Laplacian matrix. As a segmentation regularizer, normal-

ized cut differs from Potts [9] and dense CRF [28] by hav-

ing extra normalization. As such, it encourages balanced

clustering and voids shrinking bias. So in this work, we fo-

cus on normalized cut for these appealing properties [43]

and its popularity in segmentation.

4. Our Method

We propose a joint loss of (partial) cross entropy and nor-

malized cut for weakly-supervised CNN segmentation. The

partial cross entropy is briefly discussed in Sec. 4.1. Our

main contribution, using normalized cut loss as a regular-

izer, is presented in Sec. 4.2. A fast implementation of our

normalized cut loss layer with a dense Gaussian kernel is

introduced in Sec. 4.3.

4.1. Partial Cross Entropy as Loss Sampling

The simple idea behind the partial cross entropy loss is to

only consider the cross entropy loss for labeled pixels p ∈
ΩL which effectively ignores other regions. We are not the

first to ignore regions in weakly-supervised segmentation in

general, as there are examples for boxes [26] and for clicks

[4]. However, this partial loss can be seen as a sampling of

the loss with full masks by rewriting it in the following way:

∑

p∈ΩL

− logSyp

p =
∑

p∈Ω

−up · logS
yp

p . (5)

Here, up = 1 for p ∈ ΩL and 0 otherwise. We interpret up

as sampling on Ω for randomly drawn scribbles.

In practice, we found that training only with this simple

loss works surprisingly well, achieving more than 85% of

the accuracy compared to using the full labeling. In fact,

using this loss is even better than training from GrabCut

proposals as we show in our experiments in Sec. 5.2.1 but

this trick has been overlooked in previous work [32]. This

supports our argument in Sec. 3.2 that segmentation pro-

posals may be very misleading.

4.2. Normalized Cut Loss

Given any affinity matrix W = [Wij ] and degree vector

d = W1, we define our joint loss for one image as

∑

p∈ΩL

− logSyp

p

︸ ︷︷ ︸

(partial) Cross Entropy

+λ
∑

k

Sk′

W (1− Sk)

d′Sk

︸ ︷︷ ︸

(continuous) Normalized Cut

. (6)

The first term penalizes the partial cross entropy while

the second term represents a (relaxed) normalized cut for

relaxed segmentation Sk ∈ [0, 1]|Ω|. We use standard Gaus-

sian kernel Wij over RGBXY space. Below we further jus-

tify why normalized cut offers a proper regularization for

semantic segmentation.
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Figure 3: Statistics of val. set when training with masks.

Cross entropy decreases as expected. Evaluated normalized

cut decreases as mIOU increases. For the horse example,

from iteration 2000 to 20000, mIOU improves from 86.2%

to 92.4% while normalized cut decreases from 0.60 to 0.54.

Good semantic segmentation gives low normalized cut.

With a simple Gaussian kernel on RGBXY, normalized

cut produces clustering/segmentation that may not be se-

mantically meaningful. However, in practice we observed

that better semantic segmentations typically correspond to

lower normalized cut energies, see Fig. 3. This suggests

that normalized cut is a reasonable loss encouraging bal-

anced non-linear partitioning of unlabeled pixels. Our nor-

malized cut loss is motivated by popularity of normalized

cut as an unsupervised segmentation criteria with many at-

tractive properties [43, 49].

An important detail is that in our implementation of the

normalized cut loss, Sp for scribbles p ∈ ΩL is clamped to

be their ground truth labeling. As such, the scribbles serve

as seeds from which the ground truth labels are implicitly

propagated to unknown pixels during training.

4.3. Gradient Computation

This section shows how to compute the gradient of the

normalized cut loss regularizer with a dense Gaussian ker-

nel in linear time. First, we rewrite the normalized cut using

the equivalent normalized association:

ENC(S) =
∑

k

Sk′

W (1− Sk)

d′Sk

c
=

∑

k

−
Sk′

WSk

d′Sk
. (7)

Its gradient w.r.t. Sk is,

∂ENC(S)

∂Sk
=

Sk′

WSkd

(d′Sk)2
−

2WSk

d′Sk
. (8)

Since we are assuming a dense Gaussian kernel, a naive im-

plementation of forward and backward passes for the nor-

malized cut loss is prohibitively slow (O(|Ω|2)). The bottle-

neck is to compute d = W1 and ASk. With a fixed width

Figure 4: Network output (middle) and corresponding gra-

dient (right) of normalized cut loss w.r.t. soft-max input.

Training with such gradients gives better color clustering.

Gaussian kernel for 5-d RGBXY, this comes down to solv-

ing a bilateral filtering with many available fast computation

techniques [37, 2, 1]. We use the permutohedral lattice [1]

with linear time complexity in |Ω| and dimensions. Thus,

each forward evaluation and back-propagation through the

normalized cut loss is efficient.

Unlike a pixel-wise loss, our normalized cut loss is high-

order and its gradients (8) are not intuitive. We show a visu-

alization of the gradients in Sec. 5, see Fig. 4. The gradients

indeed encourage better color clustering.

Interestingly, the same gradients appear as the slopes of

linear upper bound [46] for normalized cut, which is proved

to be concave with a PSD affinity matrix. This helps us

to see that gradient descent for neural networks is likely to

decrease the concave normalized cut loss.

5. Experiments

Our joint loss (6) combines partial cross entropy and nor-

malized cut regularization. To see how capable are neural

networks to minimize normalized cut, we train networks for

normalized cut loss only in Sec. 5.1. The main results using

our joint loss for weakly-supervised semantic segmentation

with scribbles are shown in Sec. 5.2.

5.1. Normalized Cut and K­means Network

We pick a segmentation network and train with normal-

ized cut loss only. Simpler K-means clustering loss is also

experimented. We call these networks K-means Network

and Normalized Cut Network.

For simplicity, we consider binary segmentation for

MSRA10K saliency dataset [14], which contain simple im-

ages with good color clustering. Note that here our goal

is NOT saliency segmentation, but color clustering using

neural networks. We set σrgb = 15 and σxy = 40 for

normalized cut and choose DeepLab-VGG-16 [13] as our

network. K-means is for RGB only. We fine-tune from pre-

trained saliency networks. After initialization, we train the

networks with clustering loss without any supervision.
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(a) Training with K-means (left) or NC (right) loss only.

(b) K-means Network example. Left and middle: network out-

put before and after training. Right: K-means algorithm output.

Energies are 3406, 1234 and 1020 respectively.

(c) Normalized Cut Network example. Left and middle: network

output before and after training. Right: Using the algorithm [17]

for NC. Energies are 0.18, 0.11 and 0.002 respectively.

Figure 5: Train networks to minimize K-means or Normal-

ized Cut loss only. (a) loss decreases during training. In

(b) and (c), color clustering improves after training, see left

and middle columns. Right shows solution of standard al-

gorithms (e.g. [17] for NC) for such clustering objectives.

Fig. 4 shows visualization of normalized cut gradi-

ents (w.r.t. softmax input) during training. It can be seen

that such gradients drives segmentation towards better color

clustering, particularly along object boundaries, which are

more likely to be misclassified.

Indeed, we found neural networks can minimize K-

means clustering or normalized cut loss by a large margin,

see training loss decrease in Fig. 5a. Sample outputs of our

K-means Network and Normalized Cut Network are shown

in the middle column of Fig. 5b 5c. After training, the

networks give segmentations of better color clustering. We

also compare our parametric network to standard algorithm

for such objectives, e.g. iterative K-means algorithm for K-

means objective and [17] for Normalized Cut.

5.2. Weakly­supervised Semantic Segmentation

In this section, we first describe experiment setup, base-

line and implementation details. Results with our partial

cross entropy loss and joint loss are given in Sec. 5.2.1.

We compare to segmentation proposals based approaches

in Sec. 5.2.2. Training with our joint loss gives the best se-

loss
MSC CRF mIOU (%)

pCE NEL NC

X 55.8

X X 56.1

X X X 59.7

X X X X 60.5

X X X X X 65.1

Table 1: Effect of different losses, including partial cross

entropy (pCE), normalized cut (NC) and non-exist la-

bel (NEL) penalty. With our joint loss, deeplab-MSc-

largeFOV-CRF gives 65.1% on PASCAL VOC 2012 val set.

mantic segmentation by scribble supervision. Training with

partial cross entropy loss only works surprisingly well, even

better than training from GrabCut proposals. Lastly in Sec.

5.2.3, we train other networks, e.g. DeepLab-ResNet-101

[13], to show general applicability of our framework.

Dataset and Evaluations. We test all methods on PAS-

CAL VOC 2012 segmentation benchmark [18], which has

10,582 images in its augmented training set [24] and 1,449

images for validation. As convention, mIOU (intersection

over union) on the validation set is reported. The training

data are fully annotated masks for full supervision, or scrib-

bles from [32] for weak supervision.

Implementation Details. We choose DeepLab-MSc-

LargeFOV as our network architecture for direct compar-

ison to [32]. For all networks, results before and after

CRF are reported. We use the same for CRF parameters all

method according to public DeepLab v2 code. Our reimple-

mentation for the baseline with full supervision gives mIOU

of 64.1% before CRF and 68.7% after post-processing.

We first train a network with partial cross entropy loss

only. Then we fine-tune using extra normalized cut loss.

We find such strategy to work better than directly min-

imizing the joint loss (6). When reporting our best re-

sults, we choose hyper-parameter λ = 1.6 and σrgb = 15,

σxy = 100. For the deeper DeepLab-ResNet-101, we

decrease Gaussian kernel bandwidth and use σrgb = 12,

σxy = 60.

5.2.1 Results Using Our Loss

Partial Cross Entropy (pCE) loss only. With pCE only

trained on scribbles, our approach with DeepLab-largeFOV

gives mIOU of 55.8% (Tab. 1). Such trivial approach is

overlooked in previous work. As discussed in Sec. 4.1,

it can be seen as sampling of the full cross entropy loss

based on scribbles. Indeed, training with pCE is even bet-

ter than with segmentation proposals from GrabCut, which

gives mIOU of 54.7%, see more comparison to segmenta-

tion proposal approach in Sec. 5.2.2.

For box supervision, Khoreva et al. [26] also used ignore
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Figure 6: Effect of the weight λ for our normalized cut loss.

region in training. With ignore region is shown to be better

than with full segmentation proposal. This resonates with

our argument that full proposals are misleading for training.

Effect of Extra Normalized Cut Loss. After training with

pCE only, we fine-tune the network with extra normalized

cut loss introduced in Sec. 4.2, see Fig. 6 and Tab. 1.

For Tab. 1, MSC means with multi scaling branches and

CRF means with post-processing. In Fig. 6, we tried differ-

ent weight λ for the extra normalized cut loss. Having this

extra loss significantly boosts segmentation accuracy. We

also used a loss penalizing labels not present by scribbles.

The non-exist label (NEL) loss is defined as < Sk, 1 > for

non-existing label k, penalizing its cardinality. In fact, this

has similar effect as the cardinality constraints in [38]. As

shown in Tab. 1, NEL loss slightly improves results. With

the joint loss, we achieved mIOU of 65.1%, which is very

close to full supervision (68.7%).

Running Time for Joint Loss. We report running time on a

NVIDIA TESLA P100. For DeepLab-largeFOV with cross

entropy only, it takes 0.05 sec/image for training. With ex-

tra high-order normalized cut loss, it takes 0.15 sec/image.

However, we used CPU-based implementation of fast Bilat-

eral filtering, as a subroutine for forward/backward in our

normalized cut loss layer. Using existing GPU-based Bilat-

eral filtering, e.g. for [1], will further speed up training.

5.2.2 Comparison to Segmentation Proposal Approach

Our framework allows direct one-pass training with scrib-

bles, eliminating redundant iterative segmentation propos-

als in previous approach [32]. Here we compare to variants

of segmentation proposals for training with scribbles.

There are many interactive segmentation algorithms [42,

40, 31, 46], but here we run some representative and re-

cent ones to generate proposals, including standard GrabCut

[42] and recent KernelCut [46]. Since our method includes

normalized cut as a loss, we are interested in comparison

to having normalized as as pre-processing (proposals). In

particular, we tried a variant of [46] that only minimizes

normalized cut subject to hard constraints. We denote this

4Our implementation of GrabCut is better than that reported in [32].

method before CRF after CRF

with Masks 64.1 68.7

GrabCut [42] 55.5 59.74

NormalizedCutours 58.7 61.3

KernelCut [46] 59.8 62.8

ScribbleSup [32] n/a 63.1

Ours,w/o NC loss 56.0 62.0

Ours, w/ NC loss 60.5 65.1

Table 2: Our joint loss with extra normalized cut regular-

izer achieved the best mIOU of 65.1% with weak supervi-

sion. Training with partial cross entropy loss only is already

better than through GrabCut proposals.

seeded version as NormalizedCutours to differentiate from

original Normalized Cut [43]. We didn’t try other normal-

ized cut approaches with scribbles, e.g. [15], since they typ-

ically rely on eigen-decomposition, which is not scalable to

dense Gaussian kernel. We also compare to [32] which iter-

ates between graph cut and training with proposals.

We train with segmentation proposals, see Fig.7 for

GrabCut, KernelCut and NormalizedCutours. Some pro-

posals are close to the ground truth, but most are erroneous.

As shown in Tab. 2, training with our joint loss is better

than through segmentation proposals. The second compet-

ing method, ScribbleSup [32] gives mIOU that is 5.6% less

than that with full supervision, which we reduce the gap

to 3.6%. Note that with partial cross entropy loss only is

better than training with GrabCut proposals. This confirms

that networks are trained to over-fit erroneous segmentation

proposals. Rather than generating unreliable proposals, we

might as well train with partial cross entropy loss which is

reliable. Having extra normalized loss facilitate training and

significantly boost accuracy. Fig. 8 shows examples com-

paring joint loss and segmentation proposal approaches.

5.2.3 Using Different Networks

We apply our general training framework to state-of-the-

art network architectures, including DeepLab-VGG16 and

DeepLab-ResNet-101. For all networks, minimizing partial

Full
Weak

w/o NC w/ NC

DeepLab-MSc-largeFOV 64.1 56.0 60.5

DeepLab-MSc-largeFOV+CRF 68.7 62.0 65.1

DeepLab-VGG16 68.8 60.4 62.4

DeepLab-VGG16+CRF 71.5 64.3 65.2

DeepLab-ResNet101 75.6 69.5 72.8

DeepLab-ResNet101+CRF 76.8 72.8 74.5

Table 3: Training different networks with our joint loss.



(a) scribbles (b) ground truth (c) GrabCut [42] (d) Normalized Cutours (e) Kernel Cut [46]

Figure 7: Proposals from interactive segmentation algorithms with seeds.

image ground truth GrabCut+FCN NCours+FCN KernelCut+FCN with our joint loss full supervision

Figure 8: Testing on PASCAL VOC val set. Our results with scribbles are visually the closest to that with full supervision.

cross entropy loss gives descent results. Extra normalized

cut regularizer consistently improves performance.

Training DeepLab-ResNet101 [25, 13] minimizing our

joint loss gives mIOU of 74.5%, which is almost as good as

that with full supervision (76.8%).

6. Conclusion and Future Work

We propose a novel loss for weakly-supervised seg-

mentation with scribbles combining partial cross entropy

with normalized cut. It is motivated by general ideas in

semi-supervised learning and “shallow” segmentation tech-

niques. Training with the joint loss is simpler and more

principled than prior work based on iterative segmentation

proposals. We show that proposal’s mistakes mislead train-

ing. Even without normalized cut, our partial cross entropy

loss for scribbles works surprisingly well and can be seen

as loss sampling. We achieve the state-of-the-art in weakly-

supervised segmentation with scribbles.

As future work, it is interesting to adjust our principled

framework to other types of weak and semi supervision,

e.g. with tags or boxes, and to domain adaptation. An-

other interesting direction is to explore MRF/CRF regular-

izer based losses and their different relaxations [28, 3, 46]

discussed in our follow-up work [47]. Also inspired by [50],

we can incorporate regularization for intermediate represen-

tation rather than for network output.
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