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Figure 1: (a) Example sequence of a falling heart-shaped foam object. (b) Acquired omni-directional aerodynamic property for force and
torque generated by air. (c) Real-time simulation of many hearts. (d) Flyable design of a kite carrying the heart inside.

Abstract

This paper introduces “OmniAD,” a novel data-driven pipeline to
model and acquire the aerodynamics of three-dimensional rigid
objects. Traditionally, aerodynamics are examined through elab-
orate wind tunnel experiments or expensive fluid dynamics com-
putations, and are only measured for a small number of discrete
wind directions. OmniAD allows the evaluation of aerodynamic
forces, such as drag and lift, for any incoming wind direction us-
ing a novel representation based on spherical harmonics. Our data-
driven technique acquires the aerodynamic properties of an object
simply by capturing its falling motion using a single camera. Once
model parameters are estimated, OmniAD enables realistic real-
time simulation of rigid bodies, such as the tumbling and gliding
of leaves, without simulating the surrounding air. In addition, we
propose an intuitive user interface based on OmniAD to interac-
tively design three-dimensional kites that actually fly. Various non-
traditional kites were designed to demonstrate the physical validity
of our model.
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1 Introduction

The interaction between lightweight objects and air results in in-
tricate motions and stunning aerodynamic effects. For example,
leaves falling to the ground, while flipping, tumbling, and gliding
through the air, are a fascinating natural phenomenon. Ingenious in-
ventions, such as kites, sailboats, windmills, and airplanes, harness
the power of aerodynamics and have brought tremendous benefits
to mankind. The resulting motion of these objects is determined
partially by the interplay between the object’s surface geometry and
the dynamics of the surrounding air. There are numerous applica-
tions in science and engineering that rely on simulating this effect,
from animating a simple autumn scene in a computer game to the
computational design of complex aircraft.

Traditionally, wind tunnels and computational fluid dynamics
(CFD) simulations have been used to measure and predict aerody-
namic forces. Such elaborate machinery, however, usually requires
time-consuming set-up, is computationally expensive, and is only
accessible to small numbers of domain experts. This limits the po-
tential applications in animation and in computational design tools
for a more general audience.

In this paper, we present Omni-directional AeroDynamics (Om-
niAD), a novel data-driven representation and modeling technique
for simulating the aerodynamic effects of lightweight objects. Our
method is tailored to allow the simple acquisition of aerodynamic
properties, requiring only a single camera, and is targeted for inter-
active application scenarios, carefully balancing simulation speed
and accuracy. Our model operates in real-time, adds only a negligi-
ble overhead to the computational cost, and can be integrated into
existing rigid-body simulators. For example, the complex motion
of falling objects, such as hundreds of leaves, can be animated with
our model in real-time. Moreover, the quantitative accuracy of our
model allows the interactive design of real-world aerodynamically
functional objects.

OmniAD is data-driven and all required model data are acquired by
recording videos of falling objects with a single camera. From these
input videos, the three-dimensional (3D) motion trajectory is recon-



structed and used to estimate the parameters of the model to fit the
force and torque reaction with respect to the motion. Through this
simple set-up, ordinary users can obtain the aerodynamic properties
of 3D objects, without access to wind tunnels or the computational
power needed for CFD simulations.

Earlier work in computer graphics proposed data-driven modeling
of aerodynamic effects. Umetani et al. [2014] presented an inter-
active glider design system. Their model was based on wing the-
ory [Abbott 1959], a widely used model in engineering, to estimate
drag and lift forces acting on airfoils. However, wing theory is typ-
ically limited to flat and symmetrical two-dimensional (2D) shapes,
where the airflow direction is included in the plane of symmetry. In
contrast, our aerodynamics model targets general 3D objects, which
is necessary for 3D free-form designs. Such a model is significantly
more challenging than a 2D symmetrical model, because establish-
ing the parameterization of the 3D aerodynamic forces and torques
that vary with the object’s 3D orientation is much more complex.

To validate our method, we demonstrate the capabilities of Om-
niAD in the context of interactive hobby-grade flyable 3D kite de-
sign. Kites stay in the air with a subtle balance of aerodynamic
lift force, drag force, and torques. Thus, original free-form kite de-
sign is very challenging. Our system allows the user to interactively
explore kite design by displaying equilibria and the stability of the
aerodynamics forces in real-time. A user can intuitively explore fly-
able free-form kites by arranging 3D primitive shapes whose aero-
dynamics are studied beforehand with our data-driven technique.
The system outputs 3D printable parts for the rapid fabrication of
original box kite designs. We demonstrate our design interface with
the design of four flyable non-traditional 3D kites.

This paper makes three main contributions:

• We formulate an aerodynamic model that handles omni-
directional airflow.

• We present a data-driven framework that features lightweight
acquisition of aerodynamic properties.

• We demonstrate an interactive design system for flyable free-
form 3D kites.

2 Related Work

Aerodynamic model. In the field of aerodynamics, forces and
moments resulting from the motion of air acting on an object have
been studied extensively for the design of aerodynamically func-
tional objects, such as aircraft. For example, the aerodynamic prop-
erties of airfoils are well known [Abbott 1959]. While most of the
aerodynamics models assume steady flow, unsteady aerodynamics
are modeled for specific objects such as falling 2D plates [Ander-
sen et al. 2005], falling disks [Zhong et al. 2011], and 2D flapping
wings [Wang et al. 2004].

In computer graphics, the aerodynamic behavior of wings has been
studied for animating [Wu and Popović 2003] and controlling [Ju
et al. 2013] flapping birds. It has also been used for simulating
the flapping of cloth based on drag and lift resulting from a wind
field [Stam 2009]. However, these models typically assume a lim-
ited range of wing configurations (roughly±20◦ in angle of attack),
because such flying objects are designed to move in a single direc-
tion. Except for airfoils and a small class of primitive shapes, aero-
dynamics forces are unknown and have to be determined through
expensive CFD simulations or time-consuming wind tunnel exper-
iments.

For graphical applications, various aerodynamics models have been
presented for real-time animation of 3D objects in the air. Wejchert

et al. [1991] presented an aerodynamic force, given a triangle mesh,
summing up drag and traction forces for each triangle indepen-
dently. However, the model ignores lift force and torque, and is not
directly applicable to objects that stay airborne with lift force. Two
studies [Yuan et al. 2011; Xie and Miyata 2013] achieved chaotic
aerodynamics motions by applying a stochastic force to the object.
However, these studies lack estimations of aerodynamics forces,
which depend on the shape and orientation of a given object. Re-
cently, Weißmann et al. [2012] reported that the wobbling behav-
ior of rigid objects falling within a dense fluid (e.g., water) can be
simulated by adding anisotropic mass to the object. If the fluid’s
density is significantly less than the object’s density, this add-mass
effect can be ignored [Zhong et al. 2011]. Furthermore, the model is
based on the potential flow theory, which does not provide any aero-
dynamics forces under a steady flow (d’Alembert paradox) [Batch-
elor 2000] and thus is not applicable for simulating kites that fly
under steady flow.

Rigid body-fluid interaction in graphics. This paper focuses on
the one-way interaction between fluid and rigid bodies for interac-
tive design applications. Our method is able to animate thousands
of fully immersed rigid bodies in real-time, ignoring pair-wise cou-
pling between the rigid bodies. Requiring much more computation
time, solving for two-way interactions is an extensively studied sub-
ject in computer graphics. Carlson et al. [2004] simulate coupling
using a grid-based fluid simulation and treating the rigid objects as
if they were made of fluid. The rigidity is maintained by constrain-
ing the velocities of the region covered by an object to be rigid body
motion. Klingner et al. [2006], Batty et al. [2007] and Robinson-
Mosher et al. [2008] consider implicit two-way coupling of fluids
to rigid bodies, and Chentanez et al. [2006] propose a method for
coupling of fluids and deformable solids. Interactions between SPH
particles and rigid bodies also have been studied for open surface
fluids [Ihmsen et al. 2014]. Although these methods produce high-
fidelity results, only a few of them are suitable for real-time ap-
plications. Modal analysis has been used for real-time fluid-solid
interactions [Treuille et al. 2006]; however, the method requires ex-
pensive pre-computations for a predefined fluid domain. Our focus
is on interactive design of aerodynamically functional objects and
we restrict ourselves to scenarios where one-way coupling provides
sufficient accuracy. For example, our kite design system prevents
close placement of two objects to avoid interference, which could
only be taken fully into account with more expensive two-way cou-
pling simulations. In practice, we observed that even with such a
design restriction, we can span a highly interesting design space for
functional aerodynamic objects.

Measurement-based parameter fitting. Our aerodynamic
model is formulated in such a way that the behavior of the
simulated object agrees with the behavior of its real-world
counterpart by fitting model parameters to measured data. Data-
driven approaches have been used for a wide range of physical
phenomena. The seminal work of Pai et al. [2001] modeled the
deformation behavior of objects based on captured data. Bickel
et al. [2009] proposed an image-based approach that acquires
the heterogeneous and anisotropic deformation of a given solid.
Physical parameters of cloth deformation have also been estimated
in several studies [Wang et al. 2011; Miguel et al. 2012; Miguel
et al. 2013].

Our work was inspired by Pteromys [Umetani et al. 2014], a system
that captures the parameters of a wing model for interactively de-
signing arbitrarily shaped paper airplanes. However, in contrast to
the acquisition system in Pteromys, which assumes symmetric 2D
shapes flying in the plane of symmetry, our method is able to cap-
ture and simulate the 3D omni-directional aerodynamic properties
of a given 3D object.



Figure 2: An overview of our system. An object with attached markers is recorded while being dropped. From the image data, the 3D motion
trajectory and omni-directional aerodynamic properties are determined. Our data-driven model can be used to simulate the aerodynamic
behavior of objects in real-time and supports interactive design of aerodynamically functional objects such as kites.

Fabrication-oriented design. Computer graphics have already
made significant contributions towards systems that facilitate in-
teractive and intuitive design of real-world objects. Motivated by
advanced computer-controlled fabrication techniques, researchers
have started investigating the design and reproduction of various
properties, such as appearance [Hullin et al. 2013], approximation
of shape [McCrae et al. 2011; Hildebrand et al. 2012; Schwartzburg
and Pauly 2013; Cignoni et al. 2014], deformation behavior [Bickel
et al. 2010], and a general combination of these [Chen et al.
2013]. In addition, several approaches have been presented for op-
timizing functional properties: for example, maximizing structural
strength [Stava et al. 2012; Lu et al. 2014] and mechanical struc-
tures [Ceylan et al. 2013; Zhu et al. 2012].

At a conceptual level, we share similar goals to the computa-
tional approaches that make an object stand by redistributing its
mass [Prévost et al. 2013], or ensuring rotational stability [Bächer
et al. 2014]. While these studies optimize orientation stability under
gravitational or inertial force that is given by an analytical formula,
we target stability under much more complex aerodynamic forces.

Inspired by the seminal work of Plushie [Mori and Igarashi 2007],
an interactive design system for plush toys, several simulation-in-
the-loop systems have been proposed that ensure the designer’s
control over esthetic considerations while maintaining functional-
ity. Interactivity helps to explore complex design spaces, for ex-
ample for designing physically valid furniture [Saul et al. 2011;
Umetani et al. 2012], frame structures [Song et al. 2013], inflatable
balloons [Skouras et al. 2014], a glider [Umetani et al. 2014], me-
chanical automata [Coros et al. 2013], and clothing [Umetani et al.
2011]. At the core of these approaches are physics-based simula-
tion models that carefully balance accuracy and rapid responses for
either rigid-body interactions, solids, or shells. Here, we present a
novel aerodynamics model for 3D objects.

3 Overview

The goal of our system is to provide a workflow that can easily ac-
quire the aerodynamic properties of real-world objects, efficiently
simulate their behavior, and make the design of lightweight objects
that can fly intuitive and efficient. The foremost challenge in our
system is how to represent and acquire omni-directional aerody-
namics for a given rigid body. For representation, we use spherical

harmonics to extend traditional aerodynamic models based on di-
mensional analysis to a novel omni-directional aerodynamic model,
which allows handling of arbitrary airflow directions. For acquisi-
tion, we present a scheme that estimates parameters for the omni-
directional aerodynamic model from video sequences of falling ob-
jects (e.g., a unit of a box kite). These two aspects in combination
constitute the proposed omni-directional aerodynamics pipeline,
called OmniAD.

Fig. 2 gives an overview of our OmniAD system. First, markers are
attached to the object. Then the object is dropped multiple times
with varying starting configurations, where each drop is recorded
by a single video camera. From these video sequences, our system
reconstructs the 3D motion of the object, based on the locations of
the markers (§ 5), and infers the aerodynamic forces. Then the sys-
tem estimates the parameters of the model, fitting the motion and
aerodynamic forces of the object to the reconstructed data (§ 6).
Based on this representation, we can simulate the physical behavior
of hundreds of objects at interactive rates (§ 4.3). This interactive
simulation method also forms the core of our design system for
box kites, called KiteShop. Our design interface allows users to ex-
plore novel kite designs by combining primitive shapes with known
OmniAD properties (§ 7). The system features operations such as
placing, scaling, and continuously manipulating the geometry of
parameterized primitives. A feasible kite design is characterized
by an equilibrium of lift forces, drag forces, torque, and string ten-
sion forces. KiteShop visualizes these quantities in real-time, help-
ing users to gain an intuitive understanding of their design choices.
Finally, the system outputs connectors that can be printed to con-
veniently build real-world kites. Before introducing the proposed
omni-directional model (§ 4), we first specify the equation of mo-
tion, and then describe the target setting.

Notation. In this paper, bold face letters indicate matrices (e.g.,
R). Arrows above symbols indicate vectors (e.g., �v). Uppercase
letters are used for values in the body-fixed frame, and lowercase
letters are used for the corresponding values in the global frame.

Equation of motion. We assume that a falling object is a rigid
body, where its configuration at time t is described by its center of
gravity �y(t) and its orientation by R(t) ∈ SO(3). More formally,
a point �X ∈ R3 in the body-fixed frame of the rigid body moves in



the global frame as �x(t) = �y(t) +R(t) �X . Note that the origin of
the body is the body’s center of mass (see Fig. 3).

We use a global frame to represent the velocity of the object’s cen-
ter of gravity, and use a body-fixed frame for the angular velocity
representation. The velocity of the center of gravity in the global
frame is written as �v = �̇y. When the wind is blowing with ve-
locity �vwind, the velocity of the rigid body against the air in the
body-fixed coordinate can be written as �V = RT (�v− �vwind). The
angular velocity in the body-fixed coordinate frame then becomes
[�Ω] = RT Ṙ, where [�a] denotes a 3×3 skew matrix of vector �a.

The equation of motion specifies how the velocity and angular ve-
locity change with time. From Euler’s equations, the equation of
motion can be written as:

M�̇v = M�g +R�F , (1)

I�̇Ω = −[�Ω]I�Ω+ �T , (2)

where M ∈ R is the mass of the object, and I ∈ R3×3 is the
rotational inertia tensor of the object in the body-fixed frame (I is
constant over time), �T ∈ R3 and �F ∈ R3 are the torque and linear
force, respectively, induced by air in the body-fixed frame. See the
supplemental material for detailed derivation of (2), which is the
Euler’s rotation equation in the body fixed frame.

Target setting. Our model is tailored to rigid bodies that are light
enough to exhibit aerodynamic effects (e.g., flying kites). We de-
note L as the representative length of the object, which is defined as
the diagonal length of the object’s bounding box. Our example ob-
jects range from 30 cm to 1 m in L, and 50 g and 200 g in mass M .
The airspeed varies from 1 m/s to 10 m/s. The Reynolds number
(Re = ρL|�V |/µ) indicates whether the dynamics of the surround-
ing air contains turbulence, where ρ is fluid density and µ is fluid
viscosity. Given the properties of air (we use ρ = 1.2 kg/m3 and
µ = 1.8× 10−5 kg/ms throughout this paper), the large Reynolds
number (Re > 104) suggests the all flows are in turbulent states.
Note that the fluid around an object produces turbulence immedi-
ately after it starts falling. For example, a 30 cm diameter sphere
with weight of 50 g reaches Re = 2 × 104 within 0.1 s when it
travels down 6 cm on its way towards the ground.

4 Omni-directional Aerodynamic Model

Our aerodynamic model is based on a dimensionality analysis, and
several assumptions allow a formulation that makes it applicable to
a wide variety of phenomena associated with turbulent flow. We do
not intend to provide exact aerodynamics forces or torques. Instead,
we develop a model that agrees with most of our assumed target
situations, and which makes the following reasonable assumptions:

body-fixed frame global frame

0

Figure 3: Definition of the coordinate systems.

Quasi-static assumption. We assume that the object’s accelera-
tion is low, which means that the inertia of the air can be ignored.
Furthermore, if the acceleration is low, velocity changes slowly
and the flow reaches a quasi-static state, which allows us to ignore
the history of the object’s motion. Specifically, the aerodynamic
forces depend solely on the current velocity and angular velocity
〈�V , �Ω〉 → (�F , �T ). A well-known history-dependent phenomenon
is fluttering, the self-induced vibration of an elastic object in flow.
However, our focus is on rigid objects and thus fluttering is beyond
the scope of this work.

Small angular velocity assumption. We assume that the angu-
lar velocity of the object is small compared to the linear velocity.
Hence, coupling between linear velocity and angular velocity can
be ignored. Specifically, the aerodynamics force and torque are
given as (�F , �T ) = (�FV + �FΩ, �TV + �TΩ), where (�FV , �TV ) are the
forces where the angular velocity is zero 〈�V , 0〉, and (�FΩ, �TΩ) is
the force and torque where the linear velocity is zero 〈0, �Ω〉. Ig-
noring the coupling between linear velocity and angular velocity
means that in our model the Magnus effect [Batchelor 2000] (e.g.,
curved motion of a spinning ball) cannot be observed. Note that
Magnus effects are visible only when the angular rotation is large,
and thus are negligible for falling rigid bodies or kites.

4.1 Dimensional Analysis of Aerodynamic Forces

In this section we will introduce the background of dimensionality
analysis and how we model aerodynamic forces and torque.

Buckingham π theorem. Modeling forces from complex turbu-
lence flow is difficult because turbulence contains a large number
of small vortexes. However, the model can be drastically simplified
using dimensional analysis by applying the Buckingham π theo-
rem [Batchelor 2000]. The theorem allows the derivation of the
minimum number of dimensionless parameters that parameterize a
physical phenomenon by analyzing the physical dimensions of the
involved physical variables. This theorem is powerful because it
provides a method to obtain a revised form of the involved vari-
ables in terms of non-dimensional parameters. The number of pa-
rameters can be reduced, and the fact that they are dimensionless
makes them independent of the unit system used in the measure-
ments. Furthermore, using this theorem we can derive relationships
between force and involved physical quantities (e.g., wind speed,
object size) without the need to know the governing equation (e.g.,
the Navier-Stokes equation). For an extensive discussion, we refer
the reader to Batchelor [2000].

Linear velocity dependent forces. We first apply a dimensional
analysis to a problem where angular velocity is zero to obtain linear
velocity dependent force and torque (see supplemental material for
a detailed derivation). We obtain the non-dimensional parameters
Re and �CF ∈ R3 and �CT ∈ R3, allowing us to describe aerody-
namic forces as:

�FV =
1

2
ρ|�V |2 �CFL

2, �TV =
1

2
ρ|�V |2 �CTL

3. (3)

The aerodynamic coefficients �CF and �CT depend on the object’s
normalized shape (L = 1) and its moving direction against the air
�E = �V /|�V |. These coefficients are used widely in engineering to
measure how airplanes and cars perform.

In a strict sense, these coefficients are also a function of Re. How-
ever, in the state of turbulence, the aerodynamic coefficient is insen-
sitive to Re (Newton’s law of resistance [Batchelor 2000]). Hence,



airflow

Figure 4: Anisotropy of the aerodynamic forces. The aerodynamic
force (dark blue) and torque (purple) change significantly with re-
spect to the airflow direction relative to the object.

the aerodynamic coefficients can be modeled as constant to Re.
Note that this model captures time-averaged aerodynamic force, ig-
noring the fluctuation caused by vortex shedding. Such fluctuation
force is typically negligible compared to the averaged force.

Angular velocity dependent forces. Next, we apply dimen-
sional analysis to a problem where the linear velocity is zero to ob-
tain angular velocity dependent force and torque (see supplemental
material for a detailed derivation). From this we obtain

�FΩ =
1

2
ρ|�Ω|2 �DFL

4, �TΩ =
1

2
ρ|�Ω|2 �DTL

5, (4)

where �DF ∈ R3 and �DT ∈ R3 are coefficients, which depend
on the object’s normalized shape and normalized angular velocity
�Ω/|�Ω|. By assuming a small angular velocity, the angular-velocity
induced linear force �FΩ = 0 can be ignored. This means that
propeller-like thrust force (e.g., flying boomerang or maple seed)
are ignored. Moreover, we simplify the torque coefficient �DT as
|�Ω|2 �DT = −|�Ω|D�Ω, where D ∈ R3×3 is a positive definite sym-
metric matrix, called the rotational damping coefficient. This coef-
ficient produces torque, which counteracts, i.e., decreases, angular
velocity.

To summarize, aerodynamic forces and torque are modeled as

�F =
1

2
ρ|�V |2 �CF ( �E)L2, (5)

�T =
1

2
ρ
{
|�V |2 �CT ( �E)−D|�Ω|�ΩL2

}
L3. (6)

4.2 Omni-directional Aerodynamic Coefficients

This section describes how to parameterize the proposed aerody-
namic model, OmniAD. As discussed above, the aerodynamics
force is modeled with �CF ( �E) and �CT ( �E), which are two functions
that map points on the unit sphere to 3D vectors. Modeling these
functions is challenging, because their values change greatly with
respect to the relative airflow direction �E (see Fig. 4). Due to this
direction-sensitive nature, the aerodynamics force cannot generally
be modeled with a linear model.

Spherical harmonics for aerodynamic coefficients. Spherical
harmonics (SH) are used to represent the functions �CF ( �E) and
�CT ( �E) defined on the unit sphere. Spherical harmonics is a set
of solutions to Laplace’s equation on the unit sphere. These so-
lutions can be used as a basis to represent an arbitrary smooth
scalar function, defined on the unit sphere. In practice, we ob-
served that our data changes smoothly over the unit sphere, and
therefore SH are well suited for approximating it. In the field of
computer graphics, SH are used, for example, for lightweight en-
vironmental maps [Ramamoorthi and Hanrahan 2002], and for the
rotation-invariant shape descriptors [Kazhdan et al. 2003].
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Figure 5: Spherical harmonics representation of an aerodynamics
coefficient. The cyan arrows and the color contour are an actual
force coefficient value computed for a cube where two opposing
sides are open. The top sphere shows variation in the drag force and
middle and bottom spheres show how lift force varies with respect
to the incoming air direction.

Because the aerodynamic coefficients are 3D
vector functions, we first decompose the vec-
tor coefficient with three ortho-normal bases
and then represent each component of each
basis with SH (see Fig. 5). Given a direc-
tion �Z, we establish bases as �E1 = �E,
�E2 = ( �E × �Z)/| �E × �Z|, �E3 = �E × �E2. These bases can be
seen as radial ( �E1), longitudinal ( �E2), and latitudinal ( �E3) direc-
tions for a given point �E on a unit sphere with a north-pole direc-
tion �Z. The spherical harmonics representation is insensitive to the
choice of �Z, and here we manually choose �Z in such a direction
that the object is most axially symmetrical around it. This vector
field representation has two singular points �E = {�Z,−�Z} where
�E2 cannot be defined. In such a case we chose �E2 in an arbitrary
direction orthogonal to �Z.

Note that aerodynamics force in the direction of �E1 is the drag
force, and the force in the direction of �E2 and �E3 is the 3D lift
force. Using these bases, the aerodynamics coefficients can be writ-
ten as:

�CF ( �E) =

3∑
i=1

N∑
l=0

l∑
m=−l

αi
lmYlm( �E) �Ei, (7)

�CT ( �E) =

3∑
i=1

N∑
l=0

l∑
m=−l

βi
lmYlm( �E) �Ei. (8)

As a result, the omni-directional linear force and momentum coeffi-
cient can be expressed with 3N(N+1)/2 discrete parameters A =
{αi

lm}, B = {βi
lm} where 0 ≤ i ≤ 3, 0 ≤ l ≤ N,−l ≤ m ≤ l.

The choice of N is discussed in § 6.

Throughout this paper, we visualize the values of aerodynamic
force coefficients and torque coefficients with arrows sampled dis-
cretely on unit spheres. Arrows of force coefficients (cyan) show
�CF scaled by a factor of −0.5 and arrows of torque coefficients
(purple) show �CT scaled by a factor of 5. The object with normal-
ized length (L = 1) is rendered at the center of the sphere (orange).

4.3 Simulation

Given the aerodynamic model, we can compute the animation by
integrating (1) and (2) over time. While any time-integration
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Figure 6: Our acquisition setup. We record scenarios where either
linear (left) or angular velocity (right) is dominant.

schemes can be used to solve these equations, in this work, we
use fourth-order Runge-Kutta integration (see supplemental mate-
rial for more detail). We denote a state of the object at time step k
as ~sk = (~y,R, ~v, ~Ω)T , and denote the time-integration function as
~sk+1 = f(~sk).

5 Reconstruction of Aerodynamic Force

This section describes how to reconstruct the motion of a 3D rigid
body from videos taken from a single viewpoint. The reconstructed
motions are used to estimate the parameters for the omni-directional
aerodynamic model, as discussed in the previous section.

Inputs of the motion reconstruction. All videos were captured
using a Canon DSLR X7i, with an image resolution of 1280×720 at
60 frames per second (FPS). Furthermore, six to eight visual mark-
ers were placed on the object in advance, such that four of them
were visible in all view directions at any time. Then we tracked the
screen positions of the visible markers for each image. The user
specifies the initial position and orientation of the object, as well as
its mass M and inertia tensor I.

OmniAD has two types of terms: i) velocity-dependent terms (the
first terms of (5) and (6)), and ii) angular velocity-dependent terms
(the second term of (6)). To estimate the parameters of both terms,
two types of motion are captured: i) motions where linear velocity
is dominant and ii) motions where linear velocity is small and angu-
lar velocity is dominant. For the first type of video (typically six to
eight takes), the object is dropped from a height of approximately
6m, resulting in image sequences K1. For the second type of video
(typically between four to six), the object is manually thrown in the
air with a rotating motion at the height of 1m, providing the image
sequences K2 (see Fig. 6).

Motion reconstruction. The 3D motion of the falling and ro-
tating rigid body is determined from the reconstructed 2D marker
positions in screen space. One method of reconstructing the 3D
motion is to geometrically estimate the object position for the in-
dividual frames. However, because the marker positions contain
small tracking errors, the estimated depth is noisy and errors are
rather large. Because the object is rigid and its motion follows the
physics of a rigid body, we instead use Kalman filters [Welch and
Bishop 2001] to guess the 3D rigid body motion from the input
marker positions. With a reasonable physics model f(~s) and obser-
vation function h : R3 → R2, Kalman filters are known to produce
a reasonable estimation. In our case, h(.) projects a 3D position to
2D, using the intrinsic camera parameters obtained with the cam-
era calibration toolbox for Matlab [Bouguet 2000]. We used our
OmniAD framework as the physics model f(~s). In the next para-
graphs, we explain how we estimated the parameters of our model.
For further implementation details about our Kalman filter, we refer
the reader to the supplemental material.

Aerodynamic force reconstruction. Let us denote the recon-
structed rigid body state at each frame as ~s ∗k k ∈ K1,K2. In
the following, we use an asterisk to indicate reconstructed quanti-
ties. Given ~s ∗k , we compute the force and torque from the example
sequence using central differences applied to (1) and (2) as

~F ∗k = R∗k
−1 {M(~v ∗k+1 − ~v ∗k−1)/(2∆t)−M~g} , (9)

~T ∗k = I(~Ω∗k+1 − ~Ω∗k−1)/(2∆t) + [Ω∗k]I~Ω∗k, (10)

where ∆t is the time interval between two frames. These forces are
computed for all the frames in the videos.

Stability enforcement. From the quasi-static assumption, the
aerodynamic force ~F causes the velocity of the object to decrease:
i.e., given any configuration, the object does not obtain any kinetic
energy from the surrounding air. Hence, the aerodynamic coeffi-
cient function CF ( ~E) in (5) has to satisfy CF ( ~E) · ~E < 0 for any
direction ~E. We also ignore the frames where ~Fk · ~Vk > 0. This
ensures that the acquired aerodynamic model does not produce ar-
tificial thrust forces. As discussed in § 4.1, the angular velocity
damping tensor D has to be positive definite. We ensure this prop-
erty by ignoring frames for which ~Tk · ~Ωk > 0.

The following section describes how to obtain parameters for our
omni-directional aerodynamic model, given these reconstructed
forces and motions.

6 Force Space Parameter Fitting

This section describes how we identify the parameters for our pro-
posed aerodynamic model, as described in § 4.2. The previous sec-
tion explains how to reconstruct the rigid body motion and aerody-
namic forces and torques from the given 2D videos. These recon-
structed example data are collected, which include the object’s lin-
ear velocity and angular velocity 〈~V ∗k , ~Ω∗k〉, and the object’s force
and torque (~F ∗k , ~T

∗
k ). From these data, we establish the relationship

between velocities and forces 〈~V , ~Ω〉 → (~F , ~T ), as accurately as
possible. The outputs of this are the parameters used to evaluate the
proposed omni-directional aerodynamic model.

Note that in our parameter-identification technique, we fit the forces
instead of the trajectories of the marker positions. When identifying
the parameters of elastic objects, it is common to fit displacements
to determine stiffness parameters [Otaduy et al. 2012]. However,
unlike elastic objects, where elastic reaction forces are determined
mainly by displacements, aerodynamic forces largely depend on the
object’s velocity (§ 4). Moreover, even a small perturbation in the
initial setting results in a significant difference in the final position.
Because a rigid body inside a fluid undergoes stochastic motion, it
is difficult to identify a physics model that accurately matches the
acquired trajectories. The force space parameter fitting used in this
paper can identify parameters when there is a strong relationship
between velocity and force, even if the resulting trajectory is chaotic
and too sensitive to the aerodynamic parameters.

Fitting linear force. The parameters A for the omni-directional
aerodynamics coefficient ~CF are obtained from the frames captur-
ing the object’s falling sequences K1. For frame k ∈ K1, the
aerodynamics coefficient for the direction ~E∗k corresponding to the
frame can be computed as ~C∗F ( ~E∗k) = ~F ∗k /(0.5ρ|~V ∗k |2L2). Be-
cause the bases of the spherical harmonics are ortho-normal, we
can obtain the coefficients of spherical harmonics αi

lm by comput-



ing the convolution over a unit sphere S1.

αi
lm =

∫

S1

(
�C∗
F ( �E) · �Ei

)
Y l
m( �E)ds, (11)

where �C∗
F ( �E) is a coefficient for a given direction �E obtained

through interpolating discretely sampled coefficients at every frame
�C∗
F ( �E

∗
k). For this interpolation we use a three-nearest neighbor

method where the distance measure is | �E − �Ek|. We compute this
integration numerically over a discretized unit sphere with 32 lon-
gitudinal divisions and 16 latitudinal divisions.

Fitting damping torque. We first fit the angular damping coeffi-
cient by matching the recovered torques reconstructed from the first
set of video frames, defined as K2, capturing the object’s rotations.
Note that the damping coefficient is a symmetric tensor; thus, only
six independent parameters need to be computed.

D = arg min
Dij ,1≤i≤j≤3

∑
k∈K1

‖�T ∗
k − 1

2
ρD|�Ω∗

k|�Ω∗
kL

5‖2. (12)

Fitting velocity dependent torque. After computing the damp-
ing coefficient, the parameters of the direction-dependent torque
coefficient B are obtained. From the obtained damping coefficient
D and (6), the amount of torque at each frame k is estimated to be
�C∗
T ( �E

∗
k) = (�T ∗

k − 0.5ρD|�Ω∗
k|�Ω∗

kL
5)/(0.5ρ|�V ∗

k |2L3). Similar to
the previously obtained aerodynamics force coefficient, the coeffi-
cients of SH can be computed by applying a convolution over the
unit sphere.

βi
lm =

∫

S1

(
�C∗
T ( �E) · �Ei

)
Y l
m( �E)ds. (13)

Iterative refinement. Because the aerodynamic model of the ob-
ject is unknown, a Kalman filter is used to guess the best rigid
body’s motion to reconstruct the input trajectory. The guess made
by the Kalman filter is refined iteratively, by adding the recon-
structed forces and parameters of our model. First, the aerodynamic
force and torque are initialized with zero (i.e., A0 = 0,B0 =
0), from which the first guess of model parameters is obtained
(A1,B1). Then, using the first guess, the Kalman filter is applied
again to improve the guess of the rigid body motion to get a sec-
ond guess of the aerodynamics coefficients (A2,B2). In practice,
we observed that the model estimation converges quickly. Fig. 7
shows how the sampled and interpolated aerodynamics force coef-
ficient �C∗

F ( �E) changes with respect to these iterations. Initially, the
Kalman filter cannot discern the process noise from actual forces

number of iterations
1 2 3 4

Figure 7: Iterative estimation of aerodynamic coefficient. The ac-
quired aerodynamics force quickly converges by iterating between
Kalman filter motion estimation and parameter fitting. The spheri-
cal harmonics representation of �CF ( �E) further reduces noise.

well, because it assumes no aerodynamics forces as underlying
physics model. Therefore, in the first iteration, a lot of noise is
present in the coefficients. However, by iterating this process, we
refine the accuracy of the physics model used in the Kalman filter,
and thus improve the filter’s accuracy. Moreover, the SH represen-
tation further filters high-frequency noise. In all of our experiments,
three iterations were sufficient.

Model resolution. We use spherical harmonics to represent the
aerodynamic forces, which change significantly with respect to the
airflow direction relative to the object. By changing the maximum
degree N in the spherical harmonics approximation, we can adjust
the level of detail in the force change with respect to the direction.
Fig. 8 shows a comparison where a falling foam plate is simulated
using N = 1, N = 8, and N = 10. The falling simulation with
N = 1 is too smooth because it does not capture the force change
with respect to direction. On the other hand, simulations with both
N = 8 and N = 10 reproduce rapid velocity changes, capturing
the characteristic motion of the actual sequence. In this paper we
use N = 8, because it provides sufficient accuracy to build aerody-
namically functional box kites.

actual behavior 
of a falling plate 

N=1N=1 N=5N=5N=5 N=8 N=10N=10

actual behavior 
of a falling plate 

Figure 8: Simulating a foam plate with different spherical harmon-
ics resolutions (cyan arrows illustrate the force coefficient �CF and
purple arrows the torque coefficient �CT ). The initial conditions are
identical. Increasing the resolution gives more plausible and com-
plex animations.

7 Application to 3D Kite Design

Because OmniAD is based on actual measured data, it has a “true”
physical meaning. Thus, it can to be used for the design and fabri-
cation of aerodynamically functional objects. To demonstrate this,
we describe how OmniAD can be used to interactively design 3D
kites. A kite flies stably in air when it reaches an equilibrium of lift
forces, drag forces, torque, and string tension forces. We propose
an interactive kite modeling tool, called KiteShop, which supports
the user in creating 3D kites by visualizing these quantities in real
time. While the dynamics of simple plane kites have been studied
before [Veen 1996; Wright 1998], our tool allows the user to design
free-form original 3D box kites. Our tool also makes small on-the-
fly adjustments to the string attachment position to easily achieve a
state of equilibrium.
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Figure 9: Screen-shot of our kite design interface.

User interface. Fig. 9 shows the user interface of KiteShop. The
user can assemble box primitives, which are cuboids with two open
opposing faces, by rotating, translating, and scaling them in 3D.
The shape of the box primitive is parameterized with its dimen-
sions (height, depth, width) and the user can adjust these param-
eters interactively. Furthermore, the user can add an arbitrary 3D
object, the aerodynamic properties of which are captured with Om-
niAD. To construct a single rigid frame structure, the user manually
specifies the pairs of primitives that are connected with rods. Cur-
rently the tool does not perform structural analysis. However, if
a primitive is connected to other primitives with more than three
rods, it usually gives enough rigidity to the frame structure. Dur-
ing the user’s interactive kite shape editing, the system visualizes
its equilibrium and stability based on a real-time simulation (top-
right window), string force and unbalanced torque (middle-right
window), and stability (main window). The position to attach a
string is automatically optimized during editing to achieve maxi-
mum equilibrium.

Aerodynamics parameterized primitive. We used spherical
harmonic coefficients to interpolate aerodynamic properties of pa-
rameterized primitives. Fig. 10-left illustrates how a box primitive
is parameterized and how we interpolate given example aerody-
namic properties. The local coordinate of a box is defined such
that the opening sides is on the y-axis. The longer edge of the
closing face is the x-axis and the shorter edge is on the z-axis.
We denote these lengths in x, y and z axis as lx, ly, and lz , re-
spectively. Because OmniAD is defined on the normalized shape
L = l2x + l2y + l2z = 1 and we exploit the symmetry of a box,
thus a box shape can be parameterized 1/8th of a unit hemisphere
(ly > 0, lx > lz > 0). A rectangular plate is treated as a special
case of a box primitive where length along z is zero: i.e., lz = 0.
With this normalized dimension space, SH coefficients are blended
using normalized weights, based on the inverse distance in param-
eter space.

Force on a kite. Fig. 10-right shows the configuration of primi-
tives in a kite. We denote P as a set of primitives in the kite. Each
primitive in the kite p ∈ P is rotated with Qp and translated �Yp

from its reference configuration. As illustrated in Fig. 3, the entire
kite is then rotated against the global frame with R. We denote �P
as the attachment point of the string to the kite. Force and torque at
the center of gravity on a kite can be written as:

�fkite = M�g + �fstring +R
∑
p∈P

Qp
�Fp, (14)

�Tkite = �P × (RT �fstring) +
∑
p∈P

Qp
�Tp + �Yp × (Qp

�Fp)

︸ ︷︷ ︸
�Tair

, (15)

interpolated 
primitive

examples

Figure 10: Left: interpolation of example coefficients for a given
box shape (red point). Normalized dimensions of box examples and
plate examples are shown as blue and green points, respectively.
The black points represent example shapes with no surface area,
thus all coefficients are zero at these locations. Right: configuration
of a kite.

where �fstring is the tension of the string. �Fp and �Tp represent the
aerodynamic force and torque of primitive p. Because an object
in the flow predominantly affects the aerodynamic force of down-
stream objects [Veen 1996], the tool prohibits placing two overlap-
ping objects in the wind direction; thus, we can ignore interference
between primitives. With these forces, we can simulate kite dynam-
ics using the equations of motion ((1) and (2)) and display them in
real time.

Let a kite be in a static equilibrium, where linear velocity and an-
gular velocity are zero (�v = 0, �Ω = 0) and forces are in balance
(�fkite = 0, �Tkite = 0). The velocity of primitive p against air
becomes �V = −QT

p R
T�vwind. From (14) and linear equilibrium

�fkite = 0, we can compute the tension force �fstring , then we can
compute unbalanced torque �Tkite from (15). We visualize the di-
rection of the tension force as the direction of string and unbalanced
torque �Tkite with a red circular arrow. For a kite to achieve static
balance in the air, the tension force must pull the kite downwards
�fstring · �g > 0. When this condition is violated, the system visual-
izes the force with a red arrow.

Stability of a kite. A kite stays in the air stably when it produces
restitution torque against perturbations. Such stability can be ana-
lyzed by taking the derivative of the aerodynamic torque. Specif-
ically, a kite produces restitution torque if (∂ �Tkite/∂�Θ) · �Θ < 0,
where �Θ is an arbitrary infinitesimal 3D vector that changes the ro-
tation as R′ = R[�Θ]. This requires all three eigenvalues of the
symmetric part of the Jacobian matrix (∂ �Tkite/∂�Θ) to be negative.
During the user’s editing, we perform an eigen decomposition of
the symmetric part of the Jacobian matrix. If an eigenvalue of the
matrix is positive, the kite is unstable around the axis in the direc-
tion of the corresponding eigenvector. The system visualizes the
stability with three circular arrows around each eigenvector direc-
tion either in red (unstable) or in blue (stable).

Optimization of string attachment position. The torque force
changes depending on the string attachment position �P . The sys-
tem automatically optimizes this position such that the unbalanced
torque �Tkite becomes as small as possible during the user’s editing.
Given the torque generated from primitives �Tair (the second term
of the (15)), the string attachment position to minimize magnitude
of unbalanced torque |�Tkite| can be solved analytically from (15)
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Figure 11: Omni-directional aerodynamic coefficients of various objects. The bottom row shows side-by-side comparison of their actual and
simulated falling motions.

as a point on a line parameterized with γ ∈ R as:

�P = �Fstring × �Tair/|�Fstring|2 + γ �Fstring. (16)

where, �Fstring = RT �fstring . The choice of γ does not affect the
static equilibrium, but does affect stability. Furthermore, we need to
consider potential intersections of the string with primitives. Thus,
we simply let the user interactively adjust γ to determine the string
attachment position with the real-time stability feedback.

8 Results

We measured the aerodynamic properties for the following objects:
foam plate (Fig. 2, Fig. 8 and Fig. 12), open box (Fig. 11), hat
(Fig. 11), small umbrella (Fig. 11), foam heart (Fig. 1), and card-
board leaf (Fig. 11). The size of the foam plate was 30×50×2 cm
and had a weight of 48 g. The size of the heart shaped foam ob-
ject was 5 × 30 × 34 cm and had a weight of 56 g. Inertia ten-
sors for these objects are estimated from their material densities
and shapes. The dimensions of the other objects are provided in
Fig. 11. It took approximately two minutes to estimate parameters
after the 2D marker positions were provided. All of the acquired
data is included in the supplemental material. The accompanying
video shows acquired input video sequences, and generated anima-
tions of these object for various initial configurations.

As shown in Fig.11 and the video, our method is able to reproduce
the characteristic behavior of the object’s falling motion. For exam-
ple, the foam plate glides when the velocity is low. Then it quickly
gathers speed, to a point where it flips over and finally looses its
momentum. The hat follows a self-induced wobbly trajectory while
falling. The simulated leaves reproduce the stable spinning motions
around the axis, which is predominant in the falling experiments of
the cardboard leaves. The box model exhibits dynamic stability
when its open side is oriented upwards. See supplemental material
for comparisons between actual and simulated falling motions.

The evaluation of force and torque with our model is efficient.
Thus, the computational overhead it imposes on the overall rigid
body simulation pipeline can be negligible. For example, evaluat-
ing the force and torque for a single object takes less than 0.004 ms

on a Macbook Pro (2.8 GHz Intel Core i7, 16 GB RAM). Our demo
application simulates up to 1,000 rigid bodies at about 30 FPS in-
cluding rendering time (no collision detection, or two-way coupling
between objects). Our approach is thus suitable for use in real-time
applications such as games or for interactive design tools.

Comparisons. Fig. 12 compares motions generated with our
model against four other motions: motion in a vacuum, motion
based on the Kirchhoff tensor model [Weißmann and Pinkall 2012],
motion with the drag and traction model [Wejchert and Haumann
1991], and motion with simplified aerodynamics [Wu and Popović
2003]. In this experiment, we released the foam plate with no initial
velocity or angular velocity. The motion with the Kirchhoff tensor
shows wobbling behavior but it lacks the chaotic gliding and tum-
bling motion. Both the motion with the drag and traction model
and simplified aerodynamics show sliding motions because resis-
tance force is higher in the normal direction. However, these mod-
els do not reproduce the complex flipping motion because they ig-
nore aerodynamic torque force. Our model successfully reproduces
the characteristic of complex falling motions with the directional

our model
Kirchhoff 
tensor model

motion in
vacuum

drag-traction
model

simplified
aerodynamics

Figure 12: Motion comparison of a falling rigid plate: Motion in a
vacuum (red), motion generated using Kirchhoff tensors (orange),
drag and traction model (green), simplified aerodynamics (dark
green), and motion generated by our aerodynamic model (blue).
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Figure 13: Comparison of the drag and lift coefficients of the plate
model against coefficients obtained from CFD simulation [Taira
and Colonius 2009].

dependent force and torque forces (see the actual falling motion in
Fig. 8 and Fig. 2).

Validation. We validate obtained omni-directional aerodynamics
coefficients of the plate by comparing a section of them against
ground truth coefficients computed for a rectangular thin plate using
high resolution CFD simulation [Taira and Colonius 2009]. Fig. 13
shows the comparison of lift and drag coefficients of the plate with
the angle of attack ranging from 0 to 60 degree. Our estimation of
the coefficients deviates 13% with drag coefficient and 16% with
lift coefficient based on the L1 norm. We believe this accuracy is
sufficient in animation and DIY kite fabrication.

Interactive demo application. To demonstrate the effectiveness
of our approach, we developed an interactive application showing
falling objects (see Fig. 14). While falling motions of the many ob-
jects are simulated, the user can interactively change three param-
eters of the object: the fluid density (ρ), size of object (L), and the
scale of mass and inertia of the object (M ,I). Note that our aero-
dynamics model allows changing these parameters with a single set
of aerodynamics coefficients.

Interactive design of 3D kites. Fig. 15 shows four 3D kites that
are designed with our design tool and are also fabricated and tested
in the real world. All these kites are asymmetric and dissimilar to
existing traditional box kite designs. All four fabricated 3D kites fly
stably in the air with a wind speed over 4m/s even with fluctuations
in the wind velocity, as can be seen in the accompanying video.

All of the boxes in the designed box kites have different dimen-
sions from the originally measured box primitives, showing the ef-
fectiveness of our model and the interpolation scheme. All boxes
are open in the wind direction because the aerodynamic drag force
is too large when a closed surface faces the wind direction. How-
ever, the orientations of the boxes are designed carefully such that
the kites achieve aerodynamic equilibrium and stability. Only with
our omni-directional aerodynamic model can the user explore such
boxes orientations with interactive stability and equilibrium evalu-
ations. The omni-directional aerodynamic properties are also im-
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object size
slider

object density
slider
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Figure 14: Interactive parameter adjustment application. The user
can adjust density of the fluid, size and weight of the falling objects.

portant in analyzing stability, because stability is determined by
restoration torque when the kite’s orientation is perturbed. Fur-
thermore, based on the OmniAD model, the user can design a kite
carrying an arbitrary free-form object by acquiring its aerodynamic
property with a simple experiment. For example, the kite in Fig. 15-
(c) carries a heart made of foam.

We constructed all kites using carbon fiber rods (diameter 2 mm)
that are connected together with 3D printed sockets. The geome-
try of the sockets were generated automatically using OpenSCAD
such that two rods intersected with a specific angle. We put kitchen
plastic wrap around the framework to cover the closed faces of each
box. These materials allow very lightweight kite constructions. For
example, a kite with two box primitives, which spans about 1 m,
weights about 100 g, takes approximately 3 h to assemble, and
costs about 50 US dollars for the construction materials.

9 Conclusion

We have presented OmniAD, an omni-directional aerodynamic
model for light, rigid objects moving within air. Our model enables
common users to acquire aerodynamic properties of a given object
simply by recoding several videos while being dropped. OmniAD
provides sufficient accuracy for creating compelling animations of
lightweight objects in the air as well as for the design of real-world
aerodynamic objects such as kites. Additionally, OmniAD is effi-
cient and allows real-time simulation of hundreds of objects. Our
design system KiteShop is based on OmniAD and provides intuitive
and interactive interface for designing 3D kites. As demonstrated in
the result section, we successfully estimated the omni-dimensional
aerodynamic properties of a variety of objects and even fabricated
several functional kites.

Limitations and future work. By design of our method, objects
have to be lightweight, stay in the air for several seconds, and their
motion trajectory needs to be affected by aerodynamics; otherwise,
we cannot acquire the aerodynamic properties faithfully. Our model
does not handle interference between multiple objects that are close
together. For future work, we would like to investigate how inter-
ference could be handled, for example by switching aerodynamic
models when an object is close to other objects. Also, we plan to in-
vestigate further use cases of our aerodynamic model, for example
for interactively designing other types of functional objects such as
free-form model airplanes. Finally, we think an exciting direction
of future work would be to extend our framework to handle non-
rigid objects such as deformable paper flying in the air, swimming
fish, or flapping birds.
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BÄCHER, M., WHITING, E., BICKEL, B., AND SORKINE-
HORNUNG, O. 2014. Spin-it: Optimizing moment of inertia
for spinnable objects. ACM Trans. Graph. (Proc. SIGGRAPH)
33, 4.

BATCHELOR, G. K. 2000. An Introduction to Fluid Dynam-
ics (Cambridge Mathematical Library). Cambridge University
Press, 2.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling. ACM Trans.
Graph. (Proc. SIGGRAPH) 26, 3.
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