
Phase-based Modification Transfer for Video

Simone Meyer1,2 Alexander Sorkine-Hornung2 Markus Gross1,2

1Department of Computer Science, ETH Zurich 2Disney Research
simone.meyer@inf.ethz.ch alex@disneyresearch.com

Abstract. We present a novel phase-based method for propagating mod-
ifications of one video frame to an entire sequence. Instead of computing
accurate pixel correspondences between frames, e.g. extracting sparse
features or optical flow, we use the assumption that small motion can be
represented as the phase shift of individual pixels. In order to success-
fully apply this idea to transferring image edits, we propose a correction
algorithm, which adapts the phase shift as well as the amplitude of the
modified images. As our algorithm avoids expensive global optimization
and all computational steps are performed per-pixel, it allows for a simple
and efficient implementation. We evaluate the flexibility of the approach
by applying it to various types of image modifications, ranging from
compositing and colorization to image filters.

Keywords: Phase-based method, video processing, edit propagation.

1 Introduction

Many applications in video processing, e.g., frame interpolation or edit propa-
gation, require some form of explicit correspondence mapping between pixels in
consecutive frames. Common approaches are based on matching sparse feature
points, or dense optical flow estimation. However, finding a pixel-accurate map-
ping is an inherently ill-posed problem, and existing dense approaches usually
require computationally expensive regularization and optimization.

Recently, a number of novel phase-based video processing techniques have
been proposed that are able to solve certain types of problems without the need
for explicit correspondences. Examples include motion magnification [20], view
synthesis for autostereoscopic displays [5], or frame interpolation for video [13].
The interesting advantage of such techniques over explicit methods is that they
are based on efficient, local per-pixel operations, which do not require knowledge
about the actual image-space motion of pixels between frames, and hence avoid
the need for solving the above mentioned optimization problems. On the other
hand, the price is that phase-based methods are limited to much smaller motions
between frames than, e.g., methods for sparse feature point matching. However,
given today’s steady increase in video resolution and frame rate, there is also an
increasing need for computationally simple and efficient methods.

In this paper, we extend the range of possible applications for phase-based
techniques. We introduce a method to propagate various types of image modi-
fications over a sequence of video frames, without the need for explicit tracking

2 S. Meyer, A. Sorkine-Hornung, M. Gross

or correspondences. As previous phase-based approaches, we decompose each
frame of a video sequence using a complex-valued steerable pyramid into local
phase and amplitude information. The key question we then address is how to
adjust both phase and amplitude in this decomposition on subsequent frames
in order to transfer edits made on the first frame of a sequence to all other
frames. A particular feature of our method is that it works on textureless or ho-
mogeneous image regions, where explicit tracking approaches often struggle or
require strong regularization. We present various applications of our algorithm,
from adding novel image elements like a logo on a surface and video colorization
to propagation of general image filters.

2 Related Work

Correspondence-based methods. Most methods for transferring modifica-
tions from one image to others require some form of explicit correspondences
between the pixels. General approaches for such correspondence estimation tech-
niques range from dense optical flow [1] to tracking of sparse features like SIFT
[11]. Some early work using optical flow for propagation edits is proposed by
Levin et al. [9]. Such methods often require expensive global optimization which
is difficult to implement and parallelize.

Tracking particular image elements is a long-studied problem as well [12,17].
It has been used for propagating image edits in unordered image collections
[7, 23] as well as for video [16]. While methods for image collections can handle
large displacements well, they are lacking temporal coherence to avoid artifacts
such as flickering when applied to video. A further limitation of tracking-based
approaches is that they usually require sufficiently well textured surfaces. More
robust are template-based methods [14] for video editing, as they also work with
minimal texture and deformable surfaces. However, the template image and the
restshape needs to be known in advance, which is usually not the case for general
videos.

Another area related to our work is appearance editing like color manip-
ulation and colorization. In these methods, sparse user edits get propagated
spatially and temporally throughout a video, usually by solving optimization
problems proportional to resolution and number of frames. Recent works there-
fore focused in particular on reducing high computational costs and memory
consumption [2, 10, 21]. Yatagawa et al. [22] propose a method independent of
the total length of the video as it only processes two frames at the time. A gen-
eral approach to ensure temporal consistency for various applications including
optical flow and colorization has been proposed by Lang et al. [8]. Instead of op-
timizing directly for temporal consistency, Bonneel et al. [3] propose a method
to restore temporal consistency after a filter operation has been applied to each
frame of a video independently. This method also uses optical flow as guidance
and assumes that the filter does not generate new content uncorrelated to its
input. In contrast to such approaches, the advantage of our method is that it

Phase-based Modification Transfer for Video 3

allows the propagation of global modifications without the knowledge of the
particular used image filter.

Our correspondence-free, phase-based method is designed such that it can
handle appearance editing, e.g. local recolorization and global changes by an
image filter, as well as detailed edits such as adding novel image elements on a
surface, given that image motion between video frames is small.

Phase-based methods. Recent works have shown that it is possible to use a
phase representation of the motion between frames for various applications [5,20]
that usually require explicit correspondences. Such a phase-based representation
allows for efficient computation as only per-pixel modifications are required. As a
drawback, they are limited to small motions between the frames. Effort has been
put into extending the motion range, e.g., by combining it again with tracking
or optical flow [6] or by computing a disparity map [24]. A purely phase-based
approach to extend the range of admissible motion for video frame interpolation
has been proposed by Meyer et al. [13].

All these methods have been used for applications that modify or interpolate
the unmodified input frames. Complementary, we extend the set of phase-based
applications by a method to propagate edits of modified frames, which can sig-
nificantly differ from the input frames on which the phase information has been
originally computed.

3 Motion as Phase Shift

Phase-based methods use the intuition that the motion of certain signals or
functions can be represented as a shift of their phase. In this section we first
explain the basic mathematical justification for the 1D case as well as derive the
consequences and challenges when using it for propagating a modified signal.

1D case. The Fourier Shift Theorem motivates the assumption that some
small displacement motion can be encoded using phase differences. In the one
dimensional case, a function f(x) can be represented in the Fourier domain as
a sum of complex sinusoids over all frequencies ω:

f(x) =

ω=+∞∑
ω=−∞

Aωe
iωx =

ω=+∞∑
ω=−∞

Aωe
iφω , (1)

where Aω and φω represent the amplitude and the phase, respectively. The
shifted version of f(x) by a displacement function δ(t) is then defined as:

f(x− δ(t)) =

ω=+∞∑
ω=−∞

Aωe
iω(x−δ(t)) . (2)

The phase difference between the original and the shifted function

φωdiff = ωx− ω(x− δ(t)) = ωδ(t) (3)

4 S. Meyer, A. Sorkine-Hornung, M. Gross

(a) (b)

Fig. 1: Left: Given a simple sinusoidal input function (blue) and its translated
version (red), a modification of the input (cyan) can be translated using the
phase difference of the unmodified functions (Equation 4) (orange, right).

(a) (b)

Fig. 2: For less trivial modifications of the input function, e.g., adding an addi-
tional frequency (left), transferring the modification using only the known phase
difference (orange solid) does not correspond to the actually required, but gen-
erally unknown frequency dependent phase shift (orange dotted).

encodes the frequency-dependent version of the spatial displacement δ(t). In the
context of phase-based methods δ(t) is also referred to as phase shift φshift .

For propagating modifications we are interested in using this phase difference
to translate a modified input function f̂(x). Below we describe the challenges
that arise from the fact that the modified function does not have the same
frequency decomposition anymore as the original input function.

Challenges. Consider the example in Figure 1a, where as an input we are
given a function in the form of f(x) = A sin(ωx − φ) (blue). In our targeted
application scenario this would correspond to a reference video frame. We also
have a modification (cyan), and a translated version of the function (red), which
corresponds to the following video frame that we want to propagate the mod-
ification to. In this simple example the translation is described by subtracting
π/4 from the phase and the modification consists of replacing the old amplitude
with a new amplitude Â = 2. We can compute the translation of the modified
function (Figure 1b, orange) by subtracting the phase difference:

f̂(x) = Â sin(ωx− φdiff) = Â sin(ω(x− φshift)) . (4)

Phase-based Modification Transfer for Video 5

However, for handling less trivial modifications, e.g., adding new frequencies,
we have to decompose the function according to the frequencies and estimate
the necessary phase difference for each frequency separately. In our example in
Figure 2a this corresponds to the fact that we know the phase difference for the
input frequency ω = 1 but not for the added function with ω = 2. This leads us
to the main challenge of using phase differences to transfer modifications:

How can we transfer novel frequency content of a modified function that has
not been present in the two unmodified input functions?

To solve this problem, we need an algorithm that detects which frequencies
have been added in the modified function, and which frequencies in the original
input functions represent the relevant motion. Besides addressing this central
question, we also resolve some additional, less obvious issues that arise when
performing phase-based modification transfer on video sequences.

4 Our Algorithm

4.1 Decomposition

For images rather than 1D functions, we first need to generalize the idea to two
dimensions, where we can separate the sinusoids according to frequency ω and
spatial orientation θ using, e.g., the complex-valued steerable pyramid [15,18,19].
This step is essentially identical to previous phase-based approaches [5, 13, 20]
and we describe it only briefly for completeness. The steerable pyramid filters
Ψω,θ resemble Gabor wavelets and decompose an input image I into oriented
frequency bands Rω,θ:

Rω,θ(x, y) = (I ∗ Ψω,θ)(x, y) (5)

= Cω,θ(x, y) + i Sω,θ(x, y) (6)

= Aω,θ(x, y) eiφω,θ(x,y) , (7)

where Cω,θ is the cosine part, representing the even-symmetric filter response,
and Sω,θ is the sine part, representing the odd-symmetric filter response. By
using such quadrature filter pairs we can compute the amplitude

Aω,θ(x, y) =
√
Cω,θ(x, y)2 + Sω,θ(x, y)2 , (8)

and the phase values

φω,θ(x, y) = arctan(Sω,θ(x, y)/Cω,θ(x, y)) . (9)

For our following algorithm it is important to note that this provides a decom-
position with filter responses that are defined in the spatial domain and have
local support, providing per-(multi-resolution)-pixel oriented phase and ampli-
tude values. Please see [13, 20] for a more detailed derivation. In general, this
decomposition allows the computation of phase differences and amplitudes at
various scales and orientations, which is the key element of phase-based meth-
ods. Establishing and appropriately using the relationships between different
decompositions and across levels is the key element of our algorithm.

6 S. Meyer, A. Sorkine-Hornung, M. Gross

4.2 Overview

Given the above decomposition for two input images, It−1 and It, as well as for a
modified image Ît−1, our algorithm allows us to recover the unknown, translated
version of the modified input Ît.

To reconstruct Ît, we need to approximate its filter responses Âtω,θ and φ̂tω,θ
based on the available information. The resulting image is then obtained by
integrating the modified responses according to Equation 1. Where clear from
the context we omit the indices ω and θ in the equations for improved readability.
In general, all computations are done for each pixel at each level and orientation.

Using again the assumption that small motion is encoded in the phase shift,
we can use the phase difference φdiff between the phases of the unmodified
images It−1 and It, i.e.,

φt−1,tdiff = atan2(sin(φt−1 − φt), cos(φt−1 − φt)) , (10)

as an initial approximation of the motion. Due to the circular property of the
phase values we use the four-quadrant inverse tangent atan2 to get angular phase
values between [−π, π].

The phase of the modified input image can then be translated by subtracting
the phase difference from its own phase. Assuming that the motion is small
enough such that only the phase is affected, one could try to simply copy the
amplitude values, i.e:

φ̂t = φ̂t−1 − φt−1,tdiff , (11)

Ât = Ât−1 . (12)

However, as explained in Section 3, and illustrated in Figure 1 and 2, this
only works when the modifications do not change the frequency content. Us-
ing this initial solution can lead to incomplete or even wrong propagation of
some frequency levels. This is the case at locations where the amplitude of the
modified image (Ât−1) is large but not the amplitudes of the unmodified images
(At−1, At). The smaller the amplitude (as a result of weak filter responses in
smooth areas), the more noisy are usually the phase values. Artifacts arise in
particular when noisy phase values are used for trying to propagate modifica-
tions from one image another, and get magnified due to larger corresponding
amplitudes of the modified image. Locations with large amplitude values cor-
respond to strong filter responses which have more influence on the final pixel
value. Therefore it is important that the corresponding phase values are com-
puted carefully.

We propose an extension to this initial solution in order to handle general
modifications, which may alter the decomposition significantly. Furthermore,
we are not only interested in propagating the modification to one additional
frame but to a whole image sequence. Figure 3 provides an overview of our
general procedure. Algorithm 1 provides a summary of the core steps of our
algorithm. In order to solve the challenges stated above we have to solve two main
tasks: First, determine the pixels per frequency band which contain information

Phase-based Modification Transfer for Video 7

Fig. 3: Illustration of the general
procedure. The pyramid decom-
position of the input, two unmod-
ified images, I0 and I1, as well as a
modified image Î0, are processed
by our algorithm to generate the
translated modified image Î1. By
repeating this to the next set of
images, the whole sequence can be
processed.

Algorithm 1 The inputs are two unmodi-
fied images I0 and I1 and a modified image
Î0. The output is the modified image Î1. Pi
are the steerable pyramid decompositions
consisting of Ai and φi.

(P0, P1, P̂0)← decompose(I0, I1, Î0) . [15]

φdiff ← phaseDifference(φ0, φ1) . Eq. 10
(A0, A1, Â0)← normalize(A0, A1, Â0)
ϕ1 ← significantMotion(A0, Â0) . Eq. 13
%1 ← relevantMotion(A0, A1) . Eq. 17
for all l = L− 1 : 1 do

φ̂l
1 ← compute(φ̂0, φdiff , ϕ1, %1) . Eq. 20

end for

Î1 ← reconstruct(Â0, φ̂1)
P̂1 ← decompose(Î1)
Â1 ← correctAmpl(Â0, Â1, φ̂1) . Sec. 4.5

Î1 ← reconstruct(P̂1) . See [15]

about the motion and those which have been changed due to the modification.
Secondly, using this information to approximate the missing information in order
to propagate the modifications to succeeding frames. As a guide we can use the
amplitude information as larger amplitudes are the result of strong and reliable
filter responses. In the following we explain the core algorithmic steps.

4.3 Detecting Missing Phase Information

Detecting the locations where we have new frequency content with unknown
motion is the first central step in our algorithm. In principle we of course know
exactly which pixels in the input image have been modified. However, it is im-
portant to consider which modifications result in actual frequency and phase
changes, and on which decomposition level these changes happen.

Therefore we perform the detection process in two steps: We first detect
pixels with significant modifications, and then decide whether the corresponding
phase difference between the unmodified signals represent the motion. To guide
this detection process we employ the available amplitude information, which
indicates how strong the response at a specific pixel location is.

Amplitude normalization. Before we can use the amplitude as a guide
we need to normalize the values across the levels such that they are scale-
independent and comparable. Because we are downsampling the image during
the pyramid decomposition the amplitudes have to be rescaled by the scaling

8 S. Meyer, A. Sorkine-Hornung, M. Gross

factor of the pyramid decomposition λ, i.e., A(l, x, y) ← A(l,x,y)
λl−1 , with l = 1

being the topmost, i.e. finest, level of the pyramid.

Identification of significant modifications. In general, not all modifica-
tions result in a significant change on a specific frequency level. Significant means
in our case that the modification results in large amplitude values compared
to the amplitude values of the unmodified image. Without postprocessing (see
next paragraph) possibly noisy phase values will be used. As a first idea to
identify significant modifications one could use the difference between the am-
plitudes of the unmodified and modified image, i.e. |Ât−1(x, y)− At−1(x, y)| as
a measurement on how much a pixel has changed. In order to get a relative
measurement between all pixels and a definition of significance, we need to nor-
malize the differences. Using the absolute difference and a fixed threshold, i.e.
|Ât−1(x, y) − At−1(x, y)| > ϑ would be feasible for a single image pair, but as
we are interested in propagating the edits over a whole image sequence we need
a more robust measurement.

Propagating phase information over several images results in diminishing
response and therefore inevitably leads to smaller amplitudes and loss of infor-
mation for the modified image. This reduction of the amplitude is shown for
one time step in Figure 4c (left). As a general solution we therefore propose to
standardize the distribution of amplitude differences:

ϕt(At−1(x, y), Ât−1(x, y)) =
|Ât−1(x, y)−At−1(x, y)| − µt

σt
, (13)

where µt represents the sample mean over all pixels, orientations and scales

µt =
1

N

∑
x,y

|Ât−1(x, y)−At−1(x, y)| (14)

and σt the sample standard deviation

σt =

√
1

N − 1

∑
x,y

(|Ât−1(x, y)−At−1(x, y)| − µt)2 . (15)

N is the number of all pixels over all orientations and scales. Although the am-
plitude differences are technically not normal distributed (only positive values,
with a peak close to 0) experiments have shown that the concluded criterion
together with a threshold τϕ independent of t

ϕt(At−1(x, y), Ât−1(x, y)) > τϕ (16)

allows for a robust identification of significant modifications.

Estimation of relevant motion. Until now we have only compared the un-
modified image It−1 with the modified one Ît−1. In order to estimate how to use
existing phase differences for edit propagation, we have to identify useful motion
information between the two unmodified images It−1 and It.

Phase-based Modification Transfer for Video 9

I

x

(a) Propagation of edits without phase and
amplitude correction introduces high fre-
quency artifacts and decreases quality.

(b) Closeup left without, right with our
proposed correction algorithm. Note the
reduced low and high frequency artifacts.

I

x

I

x

I

x

(c) The one dimensional signals illustrate the three intermediate steps of our algo-
rithm improving the result (orange) from left to right: Correcting phase difference at
all locations where significant modifications has been detected. Applying correction
only where necessary, i.e. no relevant motion information is available. Postprocessing
the amplitude to recover details. Our final result.

Fig. 4: Improvement of our algorithm for applications which changes the fre-
quency content. The blue and red curve correspond to the unmodified input
signals at two consecutive time steps. The cyan curve corresponds to the modi-
fication on the blue input curve, and the orange curve represents our result.

As a consequence of the downsampling, any modification affects the ampli-
tude on the lower levels. On the other hand, the low frequency levels correspond
to the general, more global image motion that we are interested in. We therefore
distinguish pixels with significant modifications into two cases: either the corre-
sponding phase difference already captures the relevant motion or not. Only in
the second case we need to adjust the phase differences for better propagation.

For reliable motion (i.e., phase difference) estimation we require reliable phase
information in both unmodified input images, which, in turn, depends on the
relative strength of the respective amplitudes compared to other pyramid levels.
We therefore measure pixels with relevant phase information using:

%t(At−1(x, y), At(x, y)) =
min(At−1(x, y), At(x, y))− µt

σt
, (17)

where µt and σt are the mean, respectively the standard deviation, of the
min(At−1(x, y), At(x, y)) samples. Pixels with %t larger than some threshold τ%

%t(At−1(x, y), At(x, y)) > τ% (18)

are defined to have a relevant motion.

The combination of these two criteria, Equation 16 and 18, define where
we are missing relevant information, i.e., where we have significant change in
amplitude information and no reliable motion information. This allows us to

10 S. Meyer, A. Sorkine-Hornung, M. Gross

define an indicator function in which areas an adaption of the phase information
is required in order to achieve phase-based edit propagation:

IA(x, y) = (ϕt > τϕ) ∧ (%t < τ%) . (19)

The thresholds are independent of t and can be fixed for an image sequence.

4.4 Correction of Phase Differences

After having detected the locations where we are missing necessary phase differ-
ence information, we need to fill them in with values representing the required
motion. Due to the change of frequency content this corresponds to inferring
phase differences for frequencies which do not already exist in the input data.
To approximate them we use the available information given by the pyramid de-
composition. Due to the fact that the complex steerable pyramid is translation-
invariant, we can assume that the frequency bands move in a similar way. In
addition, we already know the relevant phase differences (Equation 18), i.e. the
relevant motion of the unmodified image pair. Therefore, in our correction algo-
rithm, we substitute missing phase differences by a reliable phase difference from
the closest lower level, denoted as k. To propagate the chosen phase difference
φkdiff to the current level, we need to multiply it with the scale factor of the
pyramid λ accordingly. At all other locations we can use the computed phase
difference to translate the phase of the modified input image:

φ̂lt(x, y) =

{
φ̂lt−1 − λk−lφkdiff if IA(x, y) = 1,

φ̂lt−1 − φldiff otherwise.
(20)

4.5 Correction of Amplitudes

Although the above algorithm improves the results there is still the problem of
the diminishing response in the amplitude, see Figure 4c, which manifests in
images as increasing blur. One reason is the propagation of phase information
from pyramid levels with lower resolution, which can result in a loss of sharpness
of details. Secondly we assume that the motion is only captured in the phase,
and the amplitude remains the same. The resulting artifacts such as ringing and
blurriness are mainly visible at high frequency details such as edges. As we want
to avoid the computation of any explicit correspondences which would allow to
move the amplitude, we propose the following algorithm to recover some of the
details by using only per pixel modifications.

By comparing the decomposition of the newly synthesized modified image Ît
with the unmodified image It at the same time step we can detect how much
the amplitudes have changed due to the modification. The idea is to increase
the amplitude of the modified image where necessary using a specific transfer
function. At locations where the new amplitude is large, it is probably not as
large as it should be. Because a linear transfer function unnecessarily enhances
small amplitudes, we propose a sigmoid function. To get an estimation on how

Phase-based Modification Transfer for Video 11

(a) Input and modification, t = 0 (b) Input detail, t = 20 (unmodified)

(c) Blur without amplitude correction (d) With correction of amplitudes

Fig. 5: Processing the amplitude helps to recover some of the details and reduces
blur, but can also magnify artifacts such as ringing. In order to increase the
visibility of the effect, the modification has been propagated over t = 20 frames.

much energy in terms of the amplitudes has been lost, we use the amplitude of
the previous modified image, i.e. max(Ât−1)/max(Ât). The proposed transfer
function η(Ât(x, y)) maps the input range of [0,max(Ât)] to the range of the

magnification factor
[
1, max(Ât−1)

max(Ât)

]
:

η(Ât(x, y)) =
max

(
max(Ât−1)

max(Ât)
− 1, 0

)
1 +

(
Ât(x,y)

αmax(Ât)+ε

)−β + 1 , (21)

where β defines the steepness of the curve, αmax(Ât) the midpoint of the transi-
tion and ε = 10−4 is used to avoid division by 0. The maximal amplitude values
are computed for each oriented frequency band separately. The advantages of
this approach are demonstrated in Figure 5.

5 Results

We demonstrate the flexibility of our method by applying it to various kinds
of video editing operations, ranging from appearance changes to detailed edits
including adding new image content. More detailed results can be found in the
supplementary video on our project webpage.

Edit image appearance. The appearance of an image can be modified either
locally or globally by changing its color or applying a filter. Modifications which
only change the color of an image are easier to propagate as they do not change
the frequency content significantly. In these cases we do not have to correct the
phase difference to adapt for changing frequencies. But our proposed correction
of the amplitude is still a necessary step for the quality of the results as shown
in Figure 5. Figure 6 shows the result of a local recolorization, while Figure 7
shows the propagation result of applying an artistic filter operation.

12 S. Meyer, A. Sorkine-Hornung, M. Gross

(a) Input and modification, t = 0 (b) Input detail, t = 0 (modi-
fied) and t = 10 (unmodified)

(c) Our result,
t = 10

Fig. 6: Propagation result for local recolorization. A longer sequence of this ex-
ample can be found in the supplementary video.

(a) Input and modification, t = 0 (b) Input detail, t = 0 (mod-
ified) and t = 5 (unmodified)

(c) Our result,
t = 5

Fig. 7: Propagation result for applying a filter to the first image. In this case an
artistic filter has been used, which adds an artistic blur to the image.

Adding image content. Due to our detection and correction algorithm we
can also propagate image edits which significantly change the frequency content,
see Figure 8. Furthermore, our method is especially suitable to handle edits on
homogeneous, textureless surfaces, see Figure 9.

As the filter responses used in our method have local support, the method
can also be applied to scenes with additional moving objects. Figure 9 shows
such an example where a moving action has been captured while the hand-held
camera was subject to small motion. Because in this case the motion between
any frame and the first frame is sufficient small, we can apply our algorithm
to process the current frame relatively to the first one. This avoids potential
artifacts due to incremental propagation.

Furthermore, as the modifications only happen locally in a more or less static
area, they can be localized easily, e.g. by using an approximate bounding box
to the difference image of the unmodified/modified image pair. The propagation
then only has to be applied to this area while the rest of the image can be
substituted by the corresponding original frame of the input video sequence.
This avoids potential artifacts in unmodified areas.

Qualitative comparisons. The advantage of our method is that it is ap-
plicable to general modifications independent on whether they contain local or
global modifications of the input image. The methods mentioned in the related
work section are optimized for specific use cases. In order to compare our results
visually to correspondence based methods we use a general approach consist-
ing of computing the optical flow field [4] and using it to warp the modified
image. Figure 8 shows that we obtain visually similar results. Because optical

Phase-based Modification Transfer for Video 13

(a) Input, t = 0 (b) Optical flow [4] (c) Our result

Fig. 8: Propagation result (t = 10) for adding image content on a wall and
comparison to using optical flow based propagation.

(a) Input, t = 0 (b) Moving shadow, t = 0 and t = 8

(c) Without our correction, t = 8 (d) Our result, t = 8

Fig. 9: Propagation result for a video with small camera motion while there is an
additional motion happening, in this case a moving shadow on the wall. Due to
the locality of the filter responses the camera motion and the additional motion
can be processed separately.

flow based approaches use explicit matching they introduce less blur and can
naturally handle longer propagation sequences better, see Figure 10.

Implementation details. Our proposed phase-based approach has a few pa-
rameters. One set for controlling the pyramid decomposition, the other for the de-
scribed phase and amplitude correction algorithm. The parameters for the pyra-
mid decomposition are a tradeoff between separability and localization. Smaller
frequency bands are better for separation but have a larger spatial support.
Regarding the correction algorithm, experiments have shown that we obtain fa-
vorable results for a wide set of parameter choices. For the results in this paper
we have used a fixed set of values: For constructing the pyramid we used #θ = 8
number of orientations, a scale factor λ = 1.2, and the number of levels is deter-
mined such that the coarsest level has a minimal dimension of 10 pixels. For the
correction of the phase difference we have used τϕ = τ% = 3. The function for
correcting the amplitude has been defined with β = 8 and α = 0.1. Similar to
previous phase-based methods, frequency content which has not been captured
in the pyramid levels and is summarized in real valued high- and low-pass resid-
ual needs to be treated specially. As we have no motion information available for
these two residuals, we just use as an approximation the low-pass residual of the
modified image Ît−1 and ignore the high-pass residual. As the high-pass residual

14 S. Meyer, A. Sorkine-Hornung, M. Gross

(a) Input, t = 0 (b) Optical flow [4] (c) Naive approach (d) Our result

Fig. 10: The input image has been modified by adding a patch of Perlin noise to a
flat, textureless wall. Our correction algorithm improves the propagation results,
but propagation over several frames still lead to increased blur, see comparison
with optical flow based propagation. Results are shown at t = 1 and t = 10.

contains high frequency details, adding it without considering motion would po-
tentially add artifacts. We share this open research question with previous works
on phase-based methods.

Discussion and limitations. While our method provides a novel and effi-
cient alternative to traditional edit propagation algorithms using optical flow
and tracking, it has some limitations. The difficulties lie in propagating high
frequencies. As the phase-based encoding of the motion is only an approxima-
tion we lose sharpness in each propagation step. Additionally, the blurring gets
increased by our multi-scale approach, as we are using the motion of lower lev-
els which do not contain the same level of details as the higher levels to which
the information gets propagated. Furthermore, sharp edges can cause ringing
artifacts. Our current transfer function, used for correcting the amplitude and
recovering details, can not distinguish between correct details and these artifacts.
As a result, these get incorrectly amplified as well, see Figure 5. In general, arti-
facts such as ringing and blurriness become more visible the further the edits get
propagated resulting in a degeneration of quality. But our algorithm still enables
an improved phase-based propagation, see Figure 10.

6 Conclusions

We presented a novel approach for correspondence-free modification transfer for
video, extending the existing range of video processing operations possible using
purely phase-based approaches. We believe that, in particular in the context of
the steady increase in video frame rate and resolution, phase-based approaches
provide an interesting and efficient alternative to traditional approaches that
require explicit frame-to-frame correspondences.

The recently regained interest in phase-based methods has opened up a num-
ber of surprising applications that were believed impossible before. We think
that such methods bear potential for many more interesting research and ap-
plications, and hope that our work provides a new step in such a direction. For
more immediate directions of future improvements and research the discussed
limitations of our method provide various opportunities.

Phase-based Modification Transfer for Video 15

References

1. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database
and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)

2. Bie, X., Huang, H., Wang, W.: Real time edit propagation by efficient sampling.
Comput. Graph. Forum 30(7), 2041–2048 (2011)

3. Bonneel, N., Tompkin, J., Sunkavalli, K., Sun, D., Paris, S., Pfister, H.: Blind video
temporal consistency. ACM Trans. Graph. 34(6), 196 (2015)

4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow esti-
mation based on a theory for warping. In: ECCV. pp. 25–36 (2004)

5. Didyk, P., Sitthi-amorn, P., Freeman, W.T., Durand, F., Matusik, W.: Joint view
expansion and filtering for automultiscopic 3D displays. ACM Trans. Graph. 32(6),
221 (2013)

6. Elgharib, M.A., Hefeeda, M., Durand, F., Freeman, W.T.: Video magnification in
presence of large motions. In: CVPR. pp. 4119–4127 (2015)

7. Hasinoff, S.W., Jwiak, M., Durand, F., Freeman, W.T.: Search-and-replace editing
for personal photo collections. In: ICCP. pp. 1–8 (2010)

8. Lang, M., Wang, O., Aydin, T.O., Smolic, A., Gross, M.H.: Practical temporal
consistency for image-based graphics applications. ACM Trans. Graph. (2012)

9. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans.
Graph. 23(3), 689–694 (2004)

10. Li, Y., Ju, T., Hu, S.: Instant propagation of sparse edits on images and videos.
Comput. Graph. Forum 29(7), 2049–2054 (2010)

11. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2),
91–110 (2004)

12. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: IJCAI. pp. 674–679 (1981)

13. Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based
frame interpolation for video. In: CVPR. pp. 1410–1418 (2015)

14. Ngo, D.T., Park, S., Jorstad, A., Crivellaro, A., Yoo, C.D., Fua, P.: Dense image
registration and deformable surface reconstruction in presence of occlusions and
minimal texture. In: ICCV. pp. 2273–2281 (2015)

15. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics
of complex wavelet coefficients. IJCV 40(1), 49–70 (2000)

16. Rav-acha, A., Kohli, P., Rother, C., Fitzgibbon, A.: Unwrap mosaics: A new rep-
resentation for video editing. ACM Trans. Graph. (2008)

17. Shi, J., Tomasi, C.: Good features to track. In: CVPR. pp. 593–600 (1994)
18. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for

multi-scale derivative computation. In: ICIP. pp. 444–447 (1995)
19. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale

transforms. IEEE Trans. Information Theory 38(2), 587–607 (1992)
20. Wadhwa, N., Rubinstein, M., Durand, F., Freeman, W.T.: Phase-based video mo-

tion processing. ACM Trans. Graph. 32(4), 80 (2013)
21. Xu, K., Li, Y., Ju, T., Hu, S., Liu, T.: Efficient affinity-based edit propagation

using K-D tree. ACM Trans. Graph. 28(5), 118:1–118:6 (2009)
22. Yatagawa, T., Yamaguchi, Y.: Temporally coherent video editing using an edit

propagation matrix. Computers & Graphics 43, 1–10 (2014)
23. Yücer, K., Jacobson, A., Hornung, A., Sorkine, O.: Transfusive image manipula-

tion. ACM Trans. Graph. 31(6), 176 (2012)
24. Zhang, Z., Liu, Y., Dai, Q.: Light field from micro-baseline image pair. In: CVPR.

pp. 3800–3809 (2015)

