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Abstract

Most approaches for video frame interpolation re-

quire accurate dense correspondences to synthesize an in-

between frame. Therefore, they do not perform well in chal-

lenging scenarios with e.g. lighting changes or motion blur.

Recent deep learning approaches that rely on kernels to rep-

resent motion can only alleviate these problems to some ex-

tent. In those cases, methods that use a per-pixel phase-

based motion representation have been shown to work well.

However, they are only applicable for a limited amount of

motion. We propose a new approach, PhaseNet, that is de-

signed to robustly handle challenging scenarios while also

coping with larger motion. Our approach consists of a neu-

ral network decoder that directly estimates the phase de-

composition of the intermediate frame. We show that this

is superior to the hand-crafted heuristics previously used in

phase-based methods and also compares favorably to re-

cent deep learning based approaches for video frame inter-

polation on challenging datasets.

1. Introduction

Video frame interpolation is a classic problem in video

processing and has many applications ranging from frame

rate conversion to slow motion effects. Traditionally this

problem is formulated as finding correspondences between

consecutive frames which are then used to synthesize the

in-between frames through warping. These methods [5,

36, 40] usually suffer from the inherent ambiguities in esti-

mating the correspondences and are particularly sensitive to

occlusions/dis-occlusion and changes in color or lighting.

To overcome the limitations of traditional methods two

main directions have been explored. The first [8, 28] re-

lies on phased-based decomposition of the input images, but

methods in this category are limited in the range of motion

they can handle. The second direction is based on recent ad-
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Figure 1: Video frame interpolation. Compared to re-

cent kernel based method [31], our approach is able to

handle complex scenarios containing motion blur or light

changes. It also improves over existing phase-based inter-

polation methods [28] relying on heuristics, which are lim-

ited in their motion range. (Image source: [21])

vances in deep learning [31]. These methods have largely

improved over optical flow based methods, but are still not

able to handle challenging scenes containing light changing

and motion blur.

In this work we propose a novel neural network architec-

ture, PhaseNet, which combines the phase-based approach

with a learning framework. PhaseNet mirrors the hierarchi-

cal structure of the phase decomposition which it takes as

input. It then predicts the phase and amplitude values of the

in-between frame level by level. The final image is recon-

structed from these predictions at different levels. There-

fore, PhaseNet is able to handle a larger range of motion

than existing phase-based methods [28] (which use hand-

tuned parameters) while addressing the issues of optical

flow and kernel based methods [31].

PhaseNet processes channels of the input images inde-

pendently and shares weights across channels and pyramid

levels and as such requires a relatively small number of pa-

rameters.

Furthermore, we introduce a phase loss, which is based

on the phase difference between the prediction and the
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ground truth and encodes motion relevant information.

To improve training efficiency and stability, PhaseNet is

trained hierarchically starting from the coarsest scale and

proceeding incrementally to the next finest scale. Alto-

gether, we show that this allows us to outperform exist-

ing state-of-the-art methods for video frame interpolation

in challenging scenarios.

2. Related Work

Intermediate frames of a video sequence are commonly

obtained by interpolating an optical flow field [5] represent-

ing a dense correspondence field between images. There-

fore the final interpolation result is heavily dependent on the

accuracy of the computed flow. However, finding a pixel-

accurate mapping is an inherently ill-posed problem. Ex-

isting approaches usually require computationally expen-

sive regularization and optimization, see [40] for a thor-

ough analysis. Furthermore, they often rely on the bright-

ness constancy constraint and therefore have difficulties

handling scenes with large changes in brightness, although

small changes can be handled by working in the gradient

domain [25]. Alternatevly, Fleet et al. [11] suggest to use

a phase constancy constraint to compute the optical flow

and recently, a pure phase-based interpolation method was

proposed [28]. By using per-pixel modifications and not

computing explicit correspondences, such an approach is

more stable to lighting changes. Its main drawback is the

limit in the range of motion and the heuristics it introduces.

Phase-based motion representations have also been used

for various other applications, such as motion magnifica-

tion [44, 10, 47], light-fields [48], image editing [27] and

image animation [35]. Approaches to extend the motion

range have been proposed, e.g., by combining it with op-

tical flow [10] or by computing a disparity map [48]. In

this work we increase the robustness by combining it with a

neural network.

Neural networks have enjoyed a recent resurgence in

popularity due to the huge growth in data and computa-

tional resources which has allowed models to be trained

successfully [20, 6]. They have achieved state-of-the-art

performance in a variety of applications domain such as

large-scale image and video classification, detection, local-

ization and recognition (e.g. [19, 39, 41, 15]). Most mod-

els for these tasks are trained in a supervised manner, re-

quiring large amounts of labeled data. Supervised meth-

ods [9, 16, 42] have also been suggested for optical flow es-

timation. However, this requires a large volume of ground-

truth optical flow data. To estimate optical flow without

ground-truth data Long et al. [23] synthesize interpolated

frames as an intermediate result.

Neural networks have been applied for image synthesis

in various contexts [26, 12, 18]. Directly predicting images

often produce blurry results [14, 43, 46]. Instead of pre-

Figure 2: Interpolation as phase shift. The translation

of a simple sinusoidal function (blue to green) can be ex-

pressed by the phase difference. To estimate the middle sig-

nal, phase-based interpolation needs to determine the cor-

rect phase value among the two possible solutions in purple.

dicting pixel value, Zhou et al. [49] predict an appearance

flow and use it to warp pixels and synthesize novel view-

points. In the same spirit, Liu et al. [22] propose to train

a convolution neural network to synthesize an intermediate

frame by flowing and blending pixel values from the ex-

isting input frames according to the predicted voxel flow.

Niklaus et al. [31, 30] combine motion estimation and im-

age synthesis into a single convolution step. These methods

generally result in sharp images and already better handle

challenging situations—such as brightness changes—than

traditional optical flow methods. However, in these scenar-

ios, we show that our phase-based approach performs better.

3. Motion Representation

Similar to previous works, we base our method on the

intuition that motion of certain signals can be represented

by the change of their phase [28, 44]. Our goal is to directly

estimate the phase value of the intermediate image. To il-

lustrate our motivation, we adapt the example used in [28]

followed by a similar review of the phase-based image de-

composition for completeness.

Motivation. We first introduce the concept and chal-

lenges of phase-based motion representation. To illustrate

them we use one dimensional sinusoidal functions y =
A sin(ωx−φ), where A is the amplitude, ω the angular fre-

quency and φ the phase. Assuming we have two functions,

which are defined as y = sin(x) and y = sin(x − π/3),
for example. Graphically they represent the same sinu-

soidal function but one is translated by π/3, see Figure 2.

The translation, i.e. the motion, can be represented by the

phase difference of π/3. This demonstrates the general

idea of representing motion as a phase difference. In terms

of frame interpolation, these two curves (blue and green)

would correspond to the input images. An in-between

curve would then represent the interpolated intermediate

image. But due to the 2π-ambiguity of phase values (i.e.

y = sin(x − π/3) = sin(x − π/3 + 2π)) there exists

two valid solutions, namely y = sin(x − π/6) (purple)



and y = sin(x − π/6 + π) (purple dotted). The difficulty

of phase-based frame interpolation is to determine, which

is the correct solution. While [28] describes a heuristic on

how to correct the phase difference to correspond to the ac-

tual spatial motion. In this work we propose to learn to

directly predict the phase value of the desired intermediate

result.

Image decomposition. More complex one dimensional

functions can be represented in the Fourier domain as a sum

of complex sinusoids over all frequencies ω:

f(x) =

ω=+∞∑

ω=−∞

Aωe
iφω . (1)

Images can be seen as two dimensional functions which

can be represented in the Fourier domain as a sum of sinu-

soids over not only different frequencies but also over dif-

ferent spatial orientations. This decomposition of the image

can be obtained by using e.g. the complex-valued steerable

pyramid [34, 37, 38]. By applying the steerable pyramid

filters Ψω,θ, consisting of quadrature pairs, we can decom-

pose an image into a set of scale and orientation depended

complex-valued subbands Rω,θ(x, y):

Rω,θ(x, y) = (I ∗Ψω,θ)(x, y) (2)

= Cω,θ(x, y) + i Sω,θ(x, y) (3)

= Aω,θ(x, y) e
iφω,θ(x,y) , (4)

where Cω,θ(x, y) is the cosine part and Sω,θ(x, y) the sine

part. Because they represent the even-symmetric and odd-

symmetric filter response, respectively, it is possible to

compute for each subband the amplitude

Aω,θ(x, y) = |Rω,θ(x, y)| (5)

and the phase values

φω,θ(x, y) = Im(log(Rω,θ(x, y))) , (6)

where Im represents the imaginary part of the term. The

frequencies which can not be captured in the pyramid lev-

els will be summarized in real valued high- and low-pass

residuals rh and rl, respectively. This decomposition of the

image will be used as input to our network.

Phase prediction. The goal of our network is to predict

the phase values of the intermediate frame, based on the

steerable pyramid decomposition of the input frames. Each

level of the multi-scale pyramid represents a band of spa-

tial frequencies. The phase computation according to Equa-

tion (6) yields phase values between [−π, π] for every pixel

at each resolution.

We have seen earlier that there exists two solutions for

the middle frame. Furthermore, the assumption that motion

is encoded in the phase difference is only accurate for small

motion, i.e. the lower levels of the pyramid. Due to the fre-

quency banded filter design the response value is based on

a locally limited spatial area. On the higher levels the mo-

tion could be larger than the receptive field of the filters. As

a consequence, the phase values of a pixel at two different

time steps are not comparable anymore. By assuming that

large motion is already visible and captured correctly by the

phase on a lower level, this information can be used to im-

prove the prediction on the higher levels. Instead of using

heuristics [28] to propagate the information upwards in the

pyramid, we propose using a convolutional network to learn

how to combine the available phase information.

4. Method

The aim of the network is to synthesize an intermediate

image given its two neighboring images as input. Instead

of directly predicting the color pixel values, our network

predicts the values of the steerable pyramid decomposition.

4.1. Learning Phase-based Interpolation

The color input frames I1 and I2 are decomposed using

the steerable pyramid (Eq. (2)). We denote the obtained

decomposition as R1 and R2, respectively:

Ri = Ψ(Ii) = {{(φi
ω,θ, A

i
ω,θ)|ω, θ}, ril , rih} . (7)

These decomposition responses R1 and R2 are the inputs

to our network. Using these values, the objective is to pre-

dict R̂, the decomposition of the interpolated frame. The

prediction function, F is a CNN with parameters Λ. The

interpolated frame Î is given by

Î = Ψ−1(R̂) = Ψ−1(F(R1, R2; Λ)) , (8)

where Ψ−1 the reconstruction function.

The network is trained to minimize the objective func-

tion L over the dataset D consisting of triplets of input im-

ages (I1, I2) and the corresponding ground truth interpola-

tion frame, I:

Λ∗ = argmin
Λ

EI1,I2,I∼D[L(F(R1, R2; Λ), I)] . (9)

Our objective is to predict response values R̂ that lead

to a reconstructed image similar to I . We also penalize the

deviation from the ground truth decomposition R. This is

reflected in our loss function that consists of two terms: an

image loss and a phase loss.

Image loss. For the image loss we use the ℓ1-norm of

pixel differences which has been shown to lead to sharper

results than ℓ2 [24, 26, 31]:

L1 = ||I − Î||1 . (10)
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Figure 3: PhaseNet architecture. Given two consecutive frames, their decomposition can be obtained by applying the

steerable pyramid filters (Ψ). The decomposition of these two input frames (denoted as R1 and R2) are the inputs to our

network: PhaseNet, which has a decoder only architecture. The number of layers and their dimensions mirror the input frame

decompositions. We only display the blocks of each level (the details of the blocks are discussed later). Each block takes as

input the decomposition values from the corresponding level. We only display the links from the decomposition of the first

frame to avoid cluttering the image. The predicted filter responses (R̂) are then used to reconstruct the middle frame.

Phase loss. The predicted decomposition R̂ of the inter-

polated frame consists of amplitude and phase values for

each level and orientation present in the steerable pyramid

decomposition. To improve the quality of the reconstructed

images we add a loss term which captures the deviations

∆φ of the predicted phase φ̂ from the ground truth phase

φ. The phase loss is then defined as the ℓ1 loss of the phase

difference values over all levels (ω) and orientations (θ):

Lphase =
∑

ω,θ

||∆φω,θ||1 , (11)

where ∆φ is defined as

∆φ = atan2(sin(φ− φ̂), cos(φ− φ̂)) . (12)

We use atan2, the four-quadrant inverse tangent, which

returns the smaller angular difference between φ and φ̂.

We could also define a similar loss on the predicted am-

plitude values Âω,θ but we found that it did not improve

over the combination of phase and image loss in practice.

As motion is primarily encoded in the phase shift, it is more

important to enforce correct phase prediction.

We define our final loss as a weighted sum of the image

loss and the phase loss:

L = L1 + νLphase . (13)

In our experiments the weighting factor ν is chosen such

that the phase loss is one order of magnitude larger than L1,

i.e. ν = 0.1.

4.2. Network Architecture

The architecture of PhaseNet is visualized in Figure 3.

The design is inspired by the steerable pyramid decomposi-

tion. For each resolution level it predicts the values of the

corresponding level of the pyramid decomposition of the in-

termediate frame. It is structured as a decoder-only network

increasing resolution level by level. At each level we incor-

porate the corresponding decomposition information from

the input images. Besides the lowest level, due to the steer-

able pyramid decomposition, all other levels are structurally

identical. At each level we also incorporate the information

from the previous level. This follows the assumption that

motion will be captured at different scales and the phase

values do not differ arbitrarily from level to level.

As input to the network we use the response values

from the steerable pyramid decomposition of the two in-

put frames consisting of the phase φω,θ and amplitude Aω,θ

values for each pixel at each level ω and orientation θ, as

well as the low pass residual. Before passing them through

the network we normalize the phase values by dividing by

π. The residual and amplitude values are normalized by di-

viding by the maximum value of the corresponding level.

Each resolution level consist of a PhaseNet block (Fig-

ure 4) which takes as input the decomposition values from

the input images, the resized feature maps from the previous

level as well as the resized predicted values from the previ-

ous level. This information is passed through two convolu-

tion layers each followed by batch normalization [17] and

ReLU nonlinearity [29], which have shown to help training.

Each convolution layer produces 64 feature maps by either
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Figure 4: PhaseNet block. Each block of the PhaseNet

takes as input the decompositions of the input frames at cur-

rent level (shown in blue and green). Each level performs

two successive convolutions with batch normalization and

ReLU. From the intermediate features map, each block pre-

dicts the response (amplitude and phase) at current level

with one convolution layer followed by the hyperbolic tan-

gent function. Feature map and predicted values are reused

in the next block after resizing.

using 1× 1 or 3× 3 convolution filters (see supplementary

material for details). In general, we observe, that smaller

kernels are preferable for lower resolution. Between levels

the resolution is increased by the scaling factor λ, which

has been used to produce the steerable pyramid. Resizing is

done by bilinear interpolation. On the lowest level, the first

PhaseNet block receives as input only the concatenation of

the two low level residuals of the two input frames.

After each PhaseNet block we predict the values of the

in-between frame decomposition by passing the output fea-

ture maps of the PhaseNet block through one convolution

layer with filter size 1×1 followed by the hyperbolic tangent

function to predict output values within the range of [−1, 1].
From these we can compute the decomposition values R̂ of

the intermediate image and reconstruct it, see Section 4.3.

The number of output channels depends on the number of

predicted values for each pixel, i.e. d for the lowest level,

and 2bd for the intermediate levels, where we predict phase

and amplitude for each dimension d and orientation b.

In our case, the network is built for a single color dimen-

sion (i.e. d = 1) and trained for color images by reusing

the weights across the color channels. This allows to sig-

nificantly reduce the weights while producing comparable

results. To process higher resolutions at testing time we

share the weights of the highest three levels. We describe

this in Section 5.

4.3. Image Reconstruction

In general we can reconstruct an image from the steer-

able pyramid decomposition by integrating over all pyra-

mid levels according to Equation 1 and adding the low and

high pass residual. Due to the normalization of the steerable

pyramid values before passing them through PhaseNet and

by predicting values between [−1, 1] we need to remap the

predicted values before we can reconstruct the image. The

following remapping is applied to each pixel (x, y) at each

level ω and orientation θ.

To compute the phase values φ̂ of R̂ we scale the pre-

dicted values by multiplying them with π. To approximate

the low level residuals and the amplitudes of the interme-

diate frame [28] propose to average the values. This works

well for lower levels where these values correspond mainly

to global luminance changes. For higher frequency bands,

averaging the amplitude values can lead to artifacts. For

more flexibility, instead of exactly averaging, we allow the

network to learn the mixing factors.

The low level residual, r̂l as well as the amplitude values

Â of R̂ are computed using the predicted values as a linear

scaling factor between the values of the input decomposi-

tions R1 and R2:

r̂l = α ∗ r1l ∗ (1− α) ∗ r2l , (14)

Â = β ∗A1 + (1− β) ∗A2 , (15)

where α and β are the learned mixing weights mapped to

[0, 1]. We observe that the high pass residual can be ignored

as the introduced blur is often very subtle.

4.4. Training and Implementation Details

Each pixel in the synthesized image is influenced by the

predicted phase and amplitude values from all scales. For

stability, we adopt a hierarchical training procedure where

the layers at lowest levels are trained first. When training

the first m levels, we still need to reconstruct the interpo-

lated frame to compute the loss. In this case we use ground

truth response values for levels m + 1, . . . , n as illustrated

in Figure 5.

This training procedure can be seen as a form of curricu-

lum learning [7] that aims at improving training by gradu-

ally increasing the difficulty of the learning task. This type

of learning strategy is often used in sequence prediction

tasks and in sequential decision making problems where

large speedups in training time and improvements in gen-

eralization performance can be obtained.

Our training procedure is related to the filtered scheme

adopted in [13] where ground truth masks are first blurred

then smoothly sharpened over time. In our case, by using a

steerable pyramid decomposition we have already a coarse

to fine representation of the image which is well suited for

such a hierarchical training procedure. It also matches the

assumption that the motion and therefore pyramid values of

higher, finer levels are related to the previous, lower levels.

For training we use triplets of frames from the DAVIS

video dataset [33, 32], randomly selecting patches of 256×
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Figure 5: Hierarchical training. On the left, PhaseNet

takes as input the decompositions R1 and R2 of the input

frames. In this example the two lowest levels are being

trained (m = 2). Corresponding blocks are displayed in

green. The other blocks (in gray) will be added at the next

iteration. On the right, we have the ground truth frame de-

composition R. To reconstruct the predicted image, we use

ground truth values for the layers not being trained yet.

256 pixels. To build the pyramid decomposition we use a

scale factor of λ =
√
2 leading to a pyramid of 10 levels.

More details on the training procedure can be found in the

supplementary material.

Computation Time. PhaseNet is implemented in Tensor-

flow and takes advantage of efficient spectral decomposi-

tion layers. With one Nvidia Titan X (Pascal), training our

model (∼460k parameters) takes approximately 20h in total

for 9 hierarchical training stages. Computation time for de-

composition, interpolation and image reconstruction is 0.5s
for 256 × 256 patches (training) and 1.5s for 2048 × 1024
images (testing).

5. Results

We compare our method with a representative selec-

tion of state-of-the-art methods by evaluating them quanti-

tatively and qualitatively on various images. As a represen-

tative of optical flow we chose MDP-Flow2 [45], which cur-

rently performs best on the Middlebury benchmark for in-

terpolation. To synthesize the interpolated frames from the

computed optical flow field, we use the same algorithm as

used in the benchmark [5]. According to Middlebury, MDP-

Flow2 is followed closely by [31], a neural network based

method learning seperable convolution filters for frame int-

perolation (SepConv). In terms of phase-based represen-

tation methods for frame interpolation we compare to [28]

(Phase). The image sequences used are from the footage

of [21], Blender Foundation [1], Vision Research [2] and

YouTube [3, 4]. To produce the results of these methods,

we use the code and trained models provided by the origi-

nal authors.

Ours Ours (detail) W/o phase loss

Ours Ours (detail) Avg. low levels

Figure 6: Design choices. The first row shows the benefit

of using the phase loss giving sharper results compared to

only using the image loss (best viewed on screen). For im-

ages larger than the training patches, the second row shows

the benefit of reusing last layers weights over averaging the

lowest levels of the decomposition. (Image source: [3, 21])

Loss function. For training our network we use the com-

bination of the two loss functions: the image loss (L1) and

the phase loss (Lphase). Training only with the image loss

already produces reasonable interpolation results. Because

the phase loss is computed at each resolution level and en-

codes motion relevant information, it is necessary to achieve

sharp results, see Figure 6 (top). Furthermore, we observe

that optimizing for the phase loss additionally to the im-

age loss stabilizes the training procedure and helps to re-

duce training time. For our final results we use a linearly

weighted combination of both terms, see Eq. (13). We did

not notice any particular sensitivity of the results regarding

the weighting factor (ν ∈ [0.1, 1]). Using only the phase

loss is however not sufficient.

High resolution data. Because we are using a fully con-

volutional network, we are able to handle larger images at

testing time. Our network is trained on patches of 256×256
leading to a pyramid of 10 levels. To produce higher resolu-

tion images during testing, we need to extend the pyramid.

We test our algorithm on images of 1280×720. For stability

of the used Fast Fourier transform and the pyramid decom-

position we symmetrically pad the images to 2048 × 1024
leading to 14 pyramid levels. A naive approach would be

to consider averaging the phase values at the lower levels

and use our model only on the 10 highest levels. However,

this implicitly limits the range of motion we can interpolate,

see Figure 6 (bottom right). A better approach is to reuse

the weights of the trained higher levels for the following,

additional layers. Because they shared their weights during

training over several levels, this approach generalizes well

to further levels, see Figure 6 (bottom middle).

Qualitative comparisons. We evaluate our method on a

set of challenging image pairs including motion blur and



Ours Ours (detail) Phase [28]

Figure 7: Advantage of a data driven approach. Using

heuristics [28] for phase-based frame interpolation reaches

its limits in these two examples. Our data driven approach

is able to better handle large motion and obtains sharper re-

sults. ( c© Blender Foundation [1], c© Vision Research [2])

extreme light changes, see Figure 10. Because optical

flow based methods, such as MDP-Flow2, compute explicit

pixel correspondences it produces visible artifacts once the

used brightness constancy assumption is violated. The pure

phase-based method as well our phase-based-network com-

bined approach, on the other hand, are robust against such

lighting changes and produce smooth and plausible results.

In the case of the explosion scene in the second row, our re-

sult is even preferable over the pure phase-based approach.

The last two rows show some examples with motion blur.

The pure phase-based approach is limited in the amount

of motion it can handle. This is visible in the last row,

where the pole in the background moves too far to be cor-

rectly captured by the method resulting in ghosting artifacts.

In this example SepConv is unable to correctly interpolate

the car due to the motion blur. Our method improves on

both of them. However, the frequency banded filters influ-

ence some area around each in pixel in the spatial domain.

As a result, reduced accuracy in the phase prediction can

lead to some minor ringing and color artifacts during re-

construction. These are noticeable around high frequency

edges. Although both phase-based methods have this issue

in common, the main improvement of PhaseNet over the

pure phase-based methods is visible in the case of interpo-

lating large motion and high frequencies, as shown in Fig-

ure 7.

Quantitative comparisons. We use the same set of se-

quences as in [28], consisting of representative scenes with

many moving parts and challenging lighting conditions as

well as one synthetic example (Roto) containing many high

frequencies. For quantitative evaluation, we compare sev-

eral methods on a number of sequences using the leave-one-

out method, where we compare synthesized frames to the

original ones. In Figure 8 we report the error measurements

using the structural similarity (SSIM) measure. In general,

the optical flow method and SepConv achieve a better error

Figure 8: Error measurements of different methods for

different sequences by computing the structural similarity

measuremnt (SSIM) averaged over several frames. Exam-

ple images of the evaluated sequences are shown in the sup-

plementary material.

Ground truth

Ours

SepConv [31]

Figure 9: Comparison of interpolation results with our

method and separable convolution filters to the ground truth

including a difference map using absolute differences. Best

viewed on screen. ( c© Vision Research [2])

measure, mainly due to the fact they introduce less blur. Es-

pecially for the sequences with high frequencies (barrier,

fireman, sand and roto) we perform worse. The strength

of our method lies in handling challenging scenarios with

motion blur and brightness changes (e.g. light and hand-

kerchief ). Although the measure is perceptually motivated

it does not always reflect the visual comparison, as illus-

trated in Figure 9. For the light sequence (right column), our

approach produces noticeably better results. For the fire-

man sequence (left column), although the difference map

shows a global degeneration for high frequency content for

our method, there is no perceptual difference between the

different methods.

Discussion and limitations. Our method significantly

improves over previous phase-based methods, both in terms

of motion range and high frequencies. It is well suited for

scenes with motion blur and difficult light changes. We
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Figure 10: Visual comparison with frame interpolation methods on challenging scenarios. See text for details and discussion.

(Image source: [2, 4, 21])

still however do not reach the same level of detail as meth-

ods which explicitly match and warp pixels. On the other

hand these methods may produce more disturbing artifacts

whereas our model creates less noticeable effects.

6. Conclusions

We have presented a method which combines the advan-

tage of phase-based and data driven methods for frame in-

terpolation. We propose a neural network architecture that

synthesizes an interpolated frame from its predicted phase-

based representation. By combining both a phase loss and

standard ℓ1-norm over the reconstructed image we are able

to produce visually preferable results over optical flow for

challenging scenarios containing motion blur and bright-

ness changes.
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