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Fig. 1. We present an inverse rendering approach to capture dynamic appearance properties of human skin, including per-frame albedo, high-resolution

normals and specular intensity, at high fidelity from a purely passive multi-camera setup.

We present a method to acquire dynamic properties of facial skin appearance,
including dynamic diffuse albedo encoding blood flow, dynamic specular
intensity, and per-frame high resolution normal maps for a facial perfor-
mance sequence. The method reconstructs these maps from a purely passive
multi-camera setup, without the need for polarization or requiring tempo-
rally multiplexed illumination. Hence, it is very well suited for integration
with existing passive systems for facial performance capture. To solve this
seemingly underconstrained problem, we demonstrate that albedo dynam-
ics during a facial performance can be modeled as a combination of: (1) a
static, high-resolution base albedo map, modeling full skin pigmentation; and
(2) a dynamic, one-dimensional component in the CIE L*a*b* color space,
which explains changes in hemoglobin concentration due to blood flow. We
leverage this albedo subspace and additional constraints on appearance and
surface geometry to also estimate specular reflection parameters and resolve
high-resolution normal maps with unprecedented detail in a passive capture
system. These constraints are built into an inverse rendering framework
that minimizes the difference of the rendered face to the captured images,
incorporating constraints from multiple views for every texel on the face.
The presented method is the first system capable of capturing high-quality
dynamic appearance maps at full resolution and video framerates, providing
a major step forward in the area of facial appearance acquisition.
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1 INTRODUCTION

Creating and rendering realistic humans is becoming ever more im-
portant in computer graphics, with applications ranging from visual
effects for entertainment, to educational and training scenarios, and
even medical use cases. Digital humans pose a formidable research
challenge since their virtual appearance is comprised of many differ-
ent components including shape, motion and material properties. In
order to create a compelling and believable overall virtual character
each of these components must be modeled realistically.

One of the most important challenges is to faithfully reproduce
the way light interacts with skin, which we here refer to as ap-
pearance modeling. In the past years the field has made substantial
progress in skin rendering, yielding impressive results even in real-
time [d’Eon et al. 2007; Jimenez et al. 2009; von der Pahlen et al.
2014]. These methods rely on different parameters to simulate skin
appearance, including surface geometry and reflectance properties
such as albedo and specular roughness.

Early work has modeled skin appearance using static parameters
for diffuse and specular reflectance, as described by a bidirectional
reflectance distribution function (BRDF) [Marschner et al. 1999].
General BRDF acquisition from human subjects is extremely chal-
lenging since the space is high-dimensional and hence would require
dense sampling of incoming and outgoing light rays at every point
on the surface, even without considering changes in surface and
physiological state. To avoid such a daunting task, considerable
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effort has been dedicated to the investigation of skin BRDF mod-
els [Ghosh et al. 2008; Weyrich et al. 2006]. However, robustly fitting
the parameters of these models to real skin observations still re-
quires a large sample set of incoming/outgoing rays. Such sampling
is usually achieved by temporally multiplexing different illumina-
tion conditions [Debevec et al. 2000; Wenger et al. 2005; Weyrich
et al. 2006], which limits the approach when capturing non-static
subjects and leads to complex acquisition setups.

Static appearance capture falls short for creating convincing ani-
mations because, as skin shape changes over time, appearance does
not remain static. Appearance also changes dynamically as a result
of various factors, including changes in blood flow and in skin mi-
crostructure. To mitigate this limitation, multiple albedo maps can
be employed and blended during the animation [Alexander et al.
2010]. This is a convenient representation as it naturally integrates
with traditional blendshape animation, where the surface is also
created as a linear combination of a set of base shapes. While this
method has enjoyed much popularity, it is becoming more and more
obvious that linear blendshapes are not sufficient to faithfully rep-
resent the non-linear behaviour of real skin deformation [Ma et al.
2008]. The same holds also for appearance, which is subject to even
more non-linearities as blood flow, for example, exhibits hysteresis
and is also influenced by physiological effects caused by heat or
excitement [Jimenez et al. 2010]. Consequently, just as researchers
explore alternatives to linear blendshape models for representing
the full complexity of dynamic skin deformation [Beeler et al. 2011;
Bradley et al. 2010; Wu et al. 2016], better models for dynamic skin
appearance are also needed.

We present a first comprehensive model for dynamic skin appear-
ance, which couples dynamic reflectance parameters for skin (albedo
and specular reflectance) with dynamic geometry. It provides a com-
pact time-varying model of appearance and surface detail that can
be estimated from multiview image streams without requiring time-
multiplexed illumination. However, given our passive acquisition
setup, we enforce a few constraints on the appearance estimation:
we model the time-varying diffuse reflectance purely as a change in
albedo and do not estimate any subsurface scattering parameters
(e.g., translucency). We also do not explicitly model any anisotropic
skin reflectance changes caused by deformation at the mesoscopic
level, but instead model anisotropy in our per-frame high-resolution
normal and specular intensity maps to achieve a temporally and
spatially varying isotropic BRDF.

Key to our dynamic albedo model is the observation that time-
varying skin albedo samples lie near a compact, one-dimensional
linear subspace of the standard CIE L*a*b* 1976 color space (de-
noted Lab, for simplicity). We demonstrate this relation empirically
by measuring time-varying albedo of different skin tones under-
going changes in facial expression and blood flow. As a result, our
1-D albedo subspace is restricted to explain changes in appearance
that are predominately due to varying skin pigmentation (e.g., con-
centration of hemoglobin), allowing to separate shading changes
from albedo variation. This fact not only removes ambiguities in
albedo estimation but also provides sufficient constraints to recover
dynamic surface geometry (normal field) and specular reflectance
without the need for time-multiplexed illumination.
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In addition to introducing this dynamic appearance model, we
present a method to fit our model to performance capture data of
real subjects. Most notably, our approach requires only a multi-view
video camera setup with static illumination. No temporal multiplex-
ing of lighting patterns are required, making our method highly
suitable for integration with traditional facial performance capture
setups. The skin reflectance maps presented in this paper were com-
puted from just four color cameras. This advantage alleviates the
current need for separate scanning sessions that are required to re-
cover both facial motion and appearance. Furthermore, since we go
beyond static appearance capture, the dynamic performances con-
tain unprecedented per-frame skin reflectance parameters modeling
effects such as hysteresis in blood flow.

We demonstrate our dynamic appearance model and fitting strat-
egy by reconstructing a number of performances given by several dif-
ferent subjects with varying skin tones. The recovered time-varying
geometry and appearance maps are directly suitable for relight-
ing in applications such as visual effects, VR/AR simulations, or
telepresence.

2 RELATED WORK

While there is significant literature on general reflectance modeling,
we will restrict the discussion here specifcally to facial reflectance
capture and modeling. We refer the interested reader to two recent
surveys on the topic [Klehm et al. 2015; Weyrich et al. 2009]. In the
following, we discuss facial reflectance capture and modeling in
computer graphics in the context of both static and dynamic facial
appearance, using both active and passive capture setups.

Active illumination, static facial appearance: the work by Debevec
et al. [2000] first proposed employing a specialized light stage setup
to acquire a dense reflectance field of a human face for photo-
realistic image-based relighting applications. They also employed
the acquired data to estimate a few view-dependent reflectance
maps that could be interpolated for viewpoint animation. Fuchs et
al. [2005] employed a smaller number of photographs and lighting
directions, at the cost of sacrificing continuously-varying specular
reflectance. Weyrich et al. [2006] employed an LED sphere and 16
cameras to densely record facial reflectance and computed view-
independent estimates of facial reflectance from the acquired data
including per-pixel diffuse and specular albedos, and per-region
specular roughness parameters. They also employed a specialized
skin contact probe to estimate parameters of subsurface scattering
based on dipole diffusion [Jensen et al. 2001]. Subsequently, Ma et
al. [2007] introduced polarized spherical gradient illumination (us-
ing an LED sphere) for efficient acquisition of the separated diffuse
and specular albedos and photometric normals of a face using just
eight photographs, and demonstrated high quality facial geometry
including skin mesostructure as well as realistic rendering with the
acquired data. Ghosh et al. [2008] further extended the acquisition
method to acquire layered facial reflectance using a combination
of polarization and structured lighting. Similar to Weyrich et al.,
they estimated a per-region specular BRDF, but further include
single scattering and a data-driven two-layered subsurface scatter-
ing (modeled with multipole diffusion [Donner and Jensen 2005])
in their reflectance model. Later, Ghosh et al. [2011] extended the
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view-dependent solution of Ma et al. [2007] for multi-view facial
acquisition with polarized spherical gradient illumination. Graham
et al. [2013] have proposed augmenting meso-scale facial geome-
try with micro-geometry of facial skin patches acquired using a
combination of macro-photography and polarized spherical gra-
dient illumination. They employ constrained texture synthesis to
add microscale details to underlying skin meso-structure and also
fit micro-scale skin BRDF for increased realism of skin rendering.
More recently, Fyffe et al. [2016] have proposed an alternate so-
lution for static facial capture that employs commodity hardware.
Their setup achieves near-instant capture of facial geometry and
reflectance using a combination of multiple cameras and multiple
flashes that are triggered in sequence within a few milliseconds.
However, their approach does not extend to dynamic facial appear-
ance capture.

Active illumination, dynamic facial appearance: work by Hawkins
et al. [2004] extended the approach of Debevec et al. [2000] to ac-
quire dynamic facial reflectance fields of a set of key poses. They
then interpolated between the reflectance fields of these key poses
at run-time for synthesizing relightable facial animations. Wenger
et al. [2005] employed an LED sphere and high speed photography
to aquire the response to a dense set of illumination conditions in
order to relight each frame of a target facial performance. They
also proposed employing the data to estimate photometric surface
normals and diffuse and specular albedos for a reflectance-model
based relighting of the facial performance. Ma et al. [2008] instead
employed spherical gradient illumination in conjunction with high
speed acquisition to capture short sequences of facial performances
(from neutral to various expressions). They then employed the ac-
quired facial displacement maps (in conjunction with marker-based
correspondences) to fit polynomial functions over the space of facial
expressions as a way of encoding changes in facial mesostructure
during a performance. Fyffe et al. [2011] instead applied the comple-
mentary spherical gradient illumination based alignment of Wilson
et al. [2010] in conjunction with high speed photography to acquire
longer facial performance sequences. They further applied a heuris-
tics based diffuse-specular separation on the acquired data to obtain
albedo and normal maps for high quality rendering of the acquired
facial performance. More recently, Fyffe & Debevec [2015] have
proposed employing spectral multiplexing with polarized spherical
gradient illumination (using an RGB LED sphere) for facial per-
formance capture at regular video rates. This however requires a
complicated setup with multiple cameras per acquisition viewpoint.
Gotardo et al. [2015] propose a simpler binocular setup with spectral
and temporal multiplexing of nine light sources to compute dynamic
albedo and normal maps, but only diffuse reflectance is modeled.
Finally, Nagano et al. [2015] have acquired microgeometry of vari-
ous skin patches under stretch and compression (using polarized
spherical gradient illumination) and employed the acquired data
for building an efficient real-time rendering technique for dynamic
facial microgeometry using texture space filtering of the neutral
displacement map. Our work is related to this but we estimate skin
surface geometry changes due to stretching and compression at
the scale of mesostructure. Furthermore, compared to above related
works, we rely purely on passive acquisition for such analysis.

Passive acquisition: In order to overcome the requirements of
specialized acquisition setups, researchers have also investigated
approaches for passive facial acquisition. Such acquisition is par-
ticularly well suited for facial performance capture since active ap-
proaches usually require time-multiplexed illumination, imposing
requirements of high frame rate acquisition and synchronization. A
popular approach has been to employ uniform constant illumination
for multi-view facial capture [Beeler et al. 2010; Bradley et al. 2010].
Such an approach enables estimation of an albedo texture under
flat lit illumination for rendering purposes besides facial geome-
try reconstruction based on multi-view stereo. Beeler et al. [2010]
further proposed augmenting the reconstructed facial geometry
with mesostructure detail extracted from the albedo texture using
a high-pass filter (“dark is deep” assumption). The approach was
later extended for reconstructing facial performances with drift-
free tracking over long sequences using anchor frames [Beeler et al.
2011]. While producing very good qualitative results for facial geom-
etry and a uniformly lit texture for rendering, the estimated albedo
is not completely diffuse and contains a small amount of specular re-
flectance baked into the texture. Furthermore, the approach has thus
far not enabled estimation of detailed specular reflectance parame-
ters over the facial surface which we target in this work. Researchers
have also extended passive facial geometry and performance cap-
ture to simple binocular [Valgaerts et al. 2012] and even monocular
setups [Cao et al. 2015; Garrido et al. 2013; Ichim et al. 2015; Shi et al.
2014] under uniform, uncontrolled illumination settings including
indoor and outdoor environments. These methods often assume that
skin reflectance is Lambertian and constant over time, with lighting
estimation limited to low-frequency spherical harmonics. In addi-
tion, they strongly rely on facial geometry priors (e.g. blendshape
models) and, although shading-based geometry refinement reveals
facial wrinkles at larger scales, they cannot resolve the same level
of fine detail achieved with our novel approach. Also related to our
work is the appearance model of Jimenez et al. [2010], which is used
to drive a spectral skin BSSRDF [Donner et al. 2008] for rendering
faces with time-varying skin color. They employ passive acquisi-
tion to estimate hemoglobin concentration maps for various facial
expressions; these maps provide an N-dimensional linear model
of hemoglobin variation (due to blood flow) over the face caused
by expressions as well as physiological or emotional changes. The
exact value for N is not given and can be large, making it difficult to
capture the model. In contrast, we model albedo dynamics using a
single, one-dimensional basis in Lab space, which is captured with
the simple protocol outlined in section 3.2. The compactness of
our model is key in making it possible to resolve per-frame albedo,
specular intensity, and high-detail normal maps without requiring
multiplexed illumination. Furthermore, we do not restrict blood flow
to be piecewise linear over time and instead model its full dynamics
(including hysteresis effects) over each frame of facial performance.
Fyffe et al. [2014] have employed a database of acquired high quality
facial scans (using the method of [Ghosh et al. 2011]) to augment
a monocular video sequence of a facial performance acquired un-
der passive illumination with high resolution facial geometry and
reflectance maps for realistic rendering. The approach achieves im-
pressive qualitative results but requires the existence of a dense set
of facial scans with reflectance information of the target subject.
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Saito et al. [2017] have proposed a deep learning approach for data-
driven inference of high resolution facial texture map of an entire
face for realistic rendering from an input of a single low resolution
face image with partial facial coverage. This has been recently ex-
tended to inference of facial mesostructure given a diffuse albedo
texture [Huynh et al. 2018] , and even complete facial reflectance
and displacement maps besides albedo texture given partial facial
image as input [Yamaguchi et al. 2018]. These approaches focus
on easily creating a believable digital avatar rather than accurate
reconstruction of facial appearance and rely on a facial database
acquired using polarized spherical gradients for training. In this
work, we aim to estimate detailed facial appearance information
including time varying changes in diffuse albedo and changes in
specular reflectance and mesostructure due to skin deformation
using a typical passive facial capture setup, without requiring to
borrow any information from a database. Unlike previous work,
we also target truly dynamic appearance modeling at the temporal
resolution of every acquired frame of a facial performance.

3 DYNAMIC APPEARANCE MODEL

Skin appearance does not remain constant over time, but changes
at several time-scales. In this section, we explain how we model the
time-varying effects of skin appearance such that it can be estimated
from our captured data. We start by reviewing the skin reflectance
model and subsequently introduce our dynamic appearance model.

3.1 Skin Reflectance Model

In this work, we model skin as a two-layer material composed of
a rough dielectric layer, the stratum corneum, which accounts for
reflection at the surface of the skin, and a diffuse layer that accounts
for body reflection. Following previous work [Weyrich et al. 2006],
we model the stratum corneum with the microfacet BRDF model
[Cook and Torrance 1981]
D(wo, wi,n, @) G(wo, wi) F(n,n, w;)
4[(n, w;) (n, wo) |

where D is the distribution term, which we model using a Blinn-
Phong lobe with exponent a, G is the standard geometric mask-
ing/shadowing term, and F is the Fresnel term, which we model
using Schlick’s approximation [Schlick 1994]. The specular inten-
sity o controls how strongly the incoming light is reflected at this
location, and is influenced by properties such as oiliness or specular
ambient occlusion. To make dynamic capture well-constrained, we
assume a known index of refraction # for skin and specular lobe «
as measured in [Weyrich et al. 2006].

We model the body reflection as a simple diffuse Lambertian lobe

fs(wo,wj) = 0 , (1)

fatwo. o) =2, @

where p is the RGB albedo color. An additional scalar parameter ¢/ is
introduced to capture residual diffuse ambient occlusion in locations
where the initial base mesh does not capture fine geometric detail,
for example in wrinkle folds (data capture is described in Sec. 5).
We employ this simple model for the body reflection instead of a
more sophisticated subsurface scattering model (e.g., [Donner and
Jensen 2006]) for ease of model-fitting from the acquired data.
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Fig. 2. Albedo Subspace - (a) We found that time-varying albedo lies near
a straight line in Lab space for the amount of blood flow typically observed
during performances. (b) When looking at the lines for different locations
over a person’s face, we see how they follow the same general direction
with only a slight variation in angular slope (line color). (c) Directions vary
considerably more when looking across different skin types (line colors).
(d)-(f) Sequence of real albedo maps showing face reddening due to blood
flow. (g) Quality of our albedo subspace approximation using a standard
perceptual metric, CIE AE3g9, averaged over 10 frames within sequence
(d)-(f); AE3p00 < 3.0 corresponds to mostly imperceptible differences.

Following the dichromatic reflection model [Shafer 1985], our
full appearance model is expressed as the sum of Eq. 1 and Eq. 2,

fr(wo, wi) = fa(wo, wi) + fs(wo, wj) . (3

3.2 Dynamic Albedo

Skin albedo is mainly the result of underlying concentrations of
melanin and hemoglobin [Anderson and Parrish 1981]. In this work,
we assume that albedo changes are only caused by varying hemoglobin
concentration due to blood flow, which is a reasonable assumption
at the time-scales we are concerned with. When modeling longer
time-scales, one might also have to take into account changes in
melanin concentrations, for example, due to tanning. The blood con-
centration in skin may change either due to physiological effects,
such as blushing, or physical effects such as muscular activity that
actively presses blood out of one part of the skin and into another
[Jimenez et al. 2010]. We model this variation in albedo due to blood
flow using a compact subspace which we analyze in the following.

Albedo Subspace. Chardon et al. [1991] show that skin albedo
with a given melanin concentration projects onto a single line in
the Lb plane of the Lab color space. They quantify this line by its
angle with the b axis, called the typology angle of skin. Inspired by
this work, we analyzed the time-varying component of skin albedo
and found that it resides near a line » in Lab space (Fig. 2) as blood
flow is observed during facial performance. The albedo values for
this subspace analysis were obtained in a separate capture process
using cross-polarization to isolate the pure diffuse reflectance.

Thus, for a given skin patch (texel), our subspace models the
albedo py at any point in time (frame) f as a combination of a
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base albedo py in Lab space plus a scalar hy describing blood-flow-
induced change in hemoglobin concentration,

pr = Tab (po + hfv) , 4

where 7| 5 denotes the transformation from Lab to RGB space. In
fact, we define our albedo subspace as a line segment centered at
the base albedo, since we expect to observe only a limited amount of
blood flow during performance capture. This constraint is enforced
during model fitting by penalizing the magnitude of h¢ (deviation
from the base albedo). In addition, we further constrain the change in
hemoglobin concentration h¢ to be spatially smooth, while allowing
the base albedo to model the full skin pigmentation and spatial detail.

The albedo line direction v varies considerably among people as
a function of their skin typology (Fig. 2 (c)). However, we found that
variation over a person’s face was limited to +6 degrees (Fig. 2 (b)).
This finding further constrains our model and facilitates capturing
v: once its effect is observed on a small face area, its estimate can be
applied over the whole face (Sec. 5.5). To validate this claim, we eval-
uate our blood flow subspace in approximating a 10-frame sequence
of albedo maps showing pronounced face reddening, Fig. 2(d)-(f),
corresponding to the data in Fig. 2(b). A common line direction was
used for all texels. We measure appromixation error using a stan-
dard, perceptually-motivated color difference metric, CIE AE2g0,
between original and approximated albedos; AEzp00 = 2.3 corre-
sponds to a Just Noticeable Difference (JND) [Sharma and Bala
2002]. Figure 2(g) shows that the errors of our model range from
imperceptible to minimally perceptible.

A key result of our albedo subspace model is that base albedo po
and its hemoglobin direction v can be pre-acquired (and fixed) using
a simple protocol. Then, dynamic albedo capture only requires the
estimation of a single degree of freedom ¢ per texel and per frame.
By constraining the dynamic albedo in this way, our model makes
it tractable to estimate dynamic, non-Lambertian BRDF parame-
ters and resolve high-resolution per-frame surface normal without
requiring active, polarized illumination as demonstrated next.

4 DYNAMIC APPEARANCE ESTIMATION

This section describes how we solve for the per-frame parameter vec-
tor ©f = [po, v, hf, lﬁf, or> nf] in our dynamic appearance model
introduced in Section 3. Here we assume that camera and lighting
calibration, and 3D face mesh tracking have been performed a priori,
as detailed in Section 5. We also assume that the hemoglobin direc-
tion v has been captured from a small face area, using a separate
capture protocol detailed in Section 5.

4.1 Inverse Rendering

At the core, our inverse rendering pipeline estimates optimal pa-
rameters by minimizing the residual between a synthesized pixel
and its captured color c¢,,, in the camera views w, € Vy where
it is visible. We model incident illumination as a set of directional
light rays w; that are uniformly sampled over the incident sphere
(€2) and present constant illumination color ¢,,, and uniform solid
angle Aw = %. For each texel, we denote the set of unoccluded
lights at that texel location as L. Using Eqs. 1-4, our rendering

loss is formulated for each frame and texel as

Ef(@f)= ZE;V waO“wao— ;: fr(wo,wi,Gf)(n}wi)cwiAw”Z.
wo€Vy Wi f
(5

Here, wy,,, is a precomputed per-camera weight that encodes how
reliable the observation Cf o, is, based on factors such as focus,
motion blur and view foreshortening.

For efficiency purposes, we operate entirely in the texture space of
the tracked 3D face mesh, which facilitates pooling data across views
and, when necessary, also across time. All input data is converted
into texture domain and visibility information is precomputed and
stored in the input texture maps (Figs. 3 and 4). For each frame,
we also precompute self-shadowing maps given the light rays and
3D face geometry. The final output of the method is a per-frame,
multichannel parameter map with per-texel vectors Oy (Fig. 6).

To estimate this parameter map, we implemented our model
in Eq. 5 as an auto-differentiable renderer using Ceres Solver [Agar-
wal et al. 2016]. To navigate around local minima and improve
robustness, we optimize using block coordinate descent and com-
pute the solution in three main steps. In each step we optimize a
different subset of the parameters Gf, with different constraints,
as detailed next. Albedo is first computed in RGB space, given the
other fixed parameters, then projected onto its precomputed Lab
subspace. By working in Lab space, this projection step minimizes
a perceptually more meaningful error metric.

4.2 Tangent Space Normal Paramaterization

We represent each normal ng = Ren; in terms of its corresponding
tangent space normal n;. The tangent space of the texel is given
by the (known) 3D rotation Ry = [ty br (tf X by) ], where t7 and
b are the unit tangent and bitangent directions precomputed from
the tracked 3D face mesh at frame f and texel (u, v). Considering
all texels, this tangent space normal field is parameterized using a
height surface map z(u, v), which presents integrability as a hard
constraint and only a single degree of freedom per texel (instead of
2), making normal estimation better constrained [Onn and Bruck-
stein 1990]. A tangent space normal n; is encoded by the partial
derivatives (forward differences) z,, and z,, of z,

—zy(u,v) X
n;(u,v) = |-z, 0)| (1 + zu(u,v)2 + 2o (u, v)z)_E . 6)
1

Initializing z(u, v) = 0, Yu, v, corresponds to initializing all ny to the
normals of the base mesh at frame f. Note that ny does not depend
on the absolute values in z, only on its derivatives. We therefore
constrain z to remain near 0 by penalizing its magnitude squared.
This parameterization based on derivatives of z couples the solutions
of all texels; however, these solutions are easily parallelized via an
iterative, alternated optimization strategy on a Red-Black texel grid.

4.3 Step 0 — Base Albedo py and Specular Intensity g

This first optimization step can be considered a calibration step and
is required only once per actor. Given the pre-acquired hemoglobin
direction v (Section 5.5), our main goal now is to capture the origin
of our albedo subspace for every texel. The base pg captures the
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full skin pigmentation and its spatial detail. To achieve this goal,
we require the actor to hold a neutral expression while also slowly
rotating their head up-down, left-right, to form a cross pattern. This
is a multi-frame step that simulates temporal multiplexing of illumi-
nation by moving the face instead of lights, thus varying the relative
direction of illumination incident on the face. Note that light direc-
tions w; and colors ¢y, remain constant, but lighting visibility L¢
and the integration hemisphere do vary with the changing tangent
space of each surface patch, as obtained from the tracked 3D face
mesh. This simple protocol leads to a well-constrained photometric
stereo problem without requiring active illumination: it provides
F = 30 frames at different illumination conditions (up to 4F ~ 120
image samples ¢y, per texel, depending on camera visibility Vy),
to which we fit 5 parameters in our model, as described next.

For these neutral frames, we fix base hemoglobin concentration
hy = 0and ¢y = 1,V f. We solve for temporally constant scalar of =
oo and py = pg in RGB space, before converting albedo to Lab. Given
the rigid face motion, we also compute a new per-texel tangent space
normal n; = ng (represented by a single height surface zy) that is
also constant over these neutral frames. We thus solve

Jmin. > Ep(0) +Aillzollf + Aalloo el (7)
f

where A; = 17° and A, = 0.05 are small regularization weights;

0 = 1is used to regularize towards Fresnel reflection for skin, and

||||,2: denotes the Frobenius norm.

In summary, this calibration step estimates 5 degrees of freedom
per texel (po, o, z) via a multi-frame fit to nearly 4F ~ 120 image
samples acquired under varying illumination due to relative motion
between head and light rig.

4.4 Step 1- Per-Frame Normals ns

Once the calibration stage above is done, the only remaining degree
of freedom in our albedo subspace is hr. We now turn to a more
difficult problem in which we independently process new frames
with arbitrary facial expressions. Given a single frame f (up to 4
RGB samples per texel from 4 views), Step 1 estimates 3 degrees of
freedom per texel, {hf, or Zf}, as to minimize the rendering loss
in Eq. (5). In this stage, our main goal is to estimate a high-detail
normal field, parameterized by height surface z¢ as above. To avoid
ambiguities in representing shading in the input face images, we
initially maintain ¢y = 1 fixed; hy and o are allowed to vary but
both are constrained to be spatially smooth. The intended effect is
to push as much geometric detail as possible into the normal map
represented by zg, which is responsible for explaining most of the
observed high-frequency shading. We solve

min  Ef(©f) + Aillz¢llF + Azllof — eolly + Asllhplly  (8)
hr.ef.zf
+Agl|V22p 12 + 25 (11 Vor I + VA1) .
where V denotes the gradient (forward differences) and V? is the
Laplacian operator on a 3 X 3 neighborhood in texture space. We

also found it beneficial to weakly constrain zf to be smooth in small
regions with ambiguous normal (14 = 0.005, A5 = 1.0).
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Our albedo subspace in Eq. 4 actually defines a sector along a line
(i.e., observable concentrations of hemoglobin), with origin at the
base albedo. We thus regularize the estimates hy to remain near 0
(A3 = 0.002). Another weak regularizer acts on of to bias it towards
the neutral g when data evidence is weak (11, A2 as in Step 0).

To further improve detail resolution in z¢, we apply different
weights per color channel (wg = 0.1,wg = 0.3, wp = 1.0) to the
loss in Ef(©y) to account for wavelength-dependent blurring due
to subsurface scattering.

4.5 Step 2 - Per-Frame Albedo hf, Specular Intensity of,
and Diffuse Ambient Occlusion ¢

In this step, we fix the normals estimated above and focus on recov-
ering the other BRDF parameters (3 degrees of freedom per texel).
To estimate optimal appearance parameters, we now weigh color
channels uniformly (wg = wg = wg = 1). In addition, we now
also fit ¢ and remove the spatial smoothness constraint from of.
The intended effect is to allow both to explain any residual shading
(ambient occlusion on both diffuse and specular layers) not captured
by the high-detail normals and base 3D face mesh. We solve

min Ep(0f) + Aallos - eollf: + AsllhglIF + AslIVAgIIE . (9)

h-er-Yr

Note that we still require that hemoglobin concentration values h¢
be spatially smooth and not too far from the base albedo. Also, we
maintain the regularizer on specular intensity, of, biasing it towards
the better constrained base gy estimated in Step 0.

4.6 Sensitivity to Regularization Weights

Normal optimization requires a very small number of passes (approx-
imately 5) on the Red-Black texel grid. Thus, the final displacement
values z(u, v) remain near 0, reducing sensitivity to weight A;; if A
is too high, less surface detail is recovered. Weight A4 is also very
small and only needs to be strong enough to smooth small regions
with temporally noisy normals. Weights A5 and A3 regulate variabil-
ity in appearance relative to that of the neutral face; if set too high,
the dynamic model behaves more like a static one. Finally, if A5 is
too weak, high-frequency shading is more prominently encoded
as specular ambient occlusion, leading to diminished recovery of
surface detail in z (Fig. 12).

5 DATA ACQUISITION AND PREPROCESSING

In this section we describe how we acquired the input data for the
presented method, as well as data preprocessing steps to compute
derived data using prior art algorithms.

5.1 Hardware Setup

Our capture setup (shown in Fig. 3) consists of a multi-view stereo-
rig composed of eight 12MP Ximea CB120MG monochrome cameras
arranged in four stereo-pairs in order to cover the entire face of
our actor, which are used to reconstruct our base 3D model. We
interleave four additional color cameras (20MP Ximea CB200CG),
one between each stereo-pair, to record RGB color data for facial
appearance estimation. Both geometry and appearance data are
acquired at 30 frames per second. During performance capture, we
illuminate our actors with constant white illumination provided by
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Fig. 3. Capture setup and pre-processing pipeline — Our capture setup
(a) consists of 12 cameras: 8 monochrome for Multi-View Stereo geometry
reconstruction (b), and 4 colour cameras (c) for appearance capture. From
these, we compute per-camera textures (d) which allow us to efficiently
formulate our inverse rendering problem in texture-space.

16 LED strips placed in front of the actor. The strips were clustered
to produce two horizontal and two vertical linear light sources,
where the horizontal ones illuminate the face slightly from below
and above and the vertical ones from each half-profile.

5.2 Calibration

We require both geometrically and photometrically calibrated cam-
eras. After each acquisition session, we capture a planar calibration
target with fiducial markers [Garrido-Jurado et al. 2014] for geomet-
ric calibration, plus an X-Rite ColorChecker® chart for photometric
calibration of the acquired footage with respect to a linear SRGB
color space.

5.3 Environment Map

We also need to accurately model the incident illumination for in-
verse rendering. For this purpose, we acquire an HDR light probe of
the surrounding environment by capturing a mirror sphere at sev-
eral exposures using the frontal color camera. From our calibrated
cameras, we estimate the position of the mirror sphere in the scene
and compute a latitude-longitude environment map (1024 X 512).
We compress this environment map to 900 uniformly distributed
light directions by integrating for each light direction the radiance
within the corresponding Voronoi area in the environment map. For
human skin, reducing to a few hundred light directions is reasonable
and yields a lighting resolution comparable to the typical one of
Light Stages [Fyffe et al. 2014; Ma et al. 2007; Weyrich et al. 2006].

position normal albedo sub.
(o]
S
]
£
<
%)
S
S
G
Y]
T
()
o
color visibility weight

Fig. 4. Input Data — We prepare the input data for the inverse renderer
in texture domain, computing per frame position and normal maps. We
also pre-compute the dynamic albedo blood flow subspace as a line in Lab.
Furthermore, we generate for every color camera a color texture and visibility
maps, as well as a weight map that indicates sharpness and reliability.

5.4 Base Geometry Reconstruction

For the presented dynamic appearance capture we require a base
mesh, fully tracked over time. We apply a state-of-the-art passive
multi-view performance capture system to reconstruct geometry
using the eight monochrome cameras [Beeler et al. 2010] and track
a consistent topology to all frames [Beeler et al. 2011]. The result-
ing shapes are stabilized with respect to the neutral face [Beeler
and Bradley 2014]. From the four color cameras we compute high-
resolution texture maps. Since our inverse rendering framework will
operate in texture space, we encode the mesh vertex positions and
base normals as texture maps for every frame. We further compute
for each color camera per-frame visibility textures as well as weight
textures (Fig. 4). These per-texel weights measure how sharp the
texel is, integrating information from camera focus and motion blur.

5.5 Albedo Blood Flow Subspace

The dynamic albedo will be described by varying blood flow over
time. As detailed in Section 3.2, this blood flow is parameterized
by an albedo subspace, characterized by a single line in Lab color
space. Since the slope of the line is person-specific and depends
on skin type, we propose a simple method to pre-compute the line
for the given capture subject. Using a digital SLR camera with a
mounted ring flash, we photograph a small patch of skin in burst
mode, immediately after the actor presses firmly on the skin with
their fingers. This sequence of photos provides a time-varying mea-
sure of hemoglobin concentrations, to which we fit a line in Lab
space. We use linear cross-polarization on the flash and camera
lens to filter out specular highlights, and we align the images using
optical flow [Brox et al. 2004] to account for small motion. The
images are color calibrated using an X-Rite ColorChecker, and we
place white markers in the scene to compute and account for any
variability in the ring flash from photo to photo; Fig. 5 (15! row)
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Fig. 5. Blood Flow Subspace — We precompute the color subspace for
dynamic albedo by photographing the subject in burst mode after pressing
firmly on a forehead skin patch (15 row). These images are aligned and cal-
ibrated photometrically, before the person-specific albedo line is computed
in Lab space. The resulting albedo subspace is validated both qualitatively
(2"9 row) and quantitatively (3”4 row) using a standard perceptual met-
ric; AE2g0 < 3.0 corresponds to mostly imperceptible differences. Row 4
shows the distribution of coefficients along the albedo subspace right after
pressure from the fingers has been released (left), after blood flows back in
the affected region (middle) and after blood flow has settled (right).

shows a subset of captured albedos for one actor. The corresponding
approximated albedos, using the calculated subspace for the same
person, are also shown in Fig. 5 (2" row) and closely match the
captured data. We further evaluate our blood flow subspace in Fig. 5
(3"4 row) by computing the standard, perceptually-motivated color
difference metric CIE AEzp00 between ground-truth and approxi-
mated albedos. Finally, we show in Fig. 5 (4! b row) how blood flow
affects the distribution of coefficients (hy) along the albedo subspace:
positive values correspond to blanching while negative values show
reddening of the skin patch.

6 RESULTS AND EVALUATION

We now assess the individual appearance maps computed by our
method and show the outcome of the complete pipeline. Our ex-
periments were run on a 12-core Mac Pro desktop computer with
average runtimes of 250 min for Step 0 (processing 30 frames on
average), 15 min/frame for Step 1, and 2 min/frame for Step 2.
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Fig. 6. Recovered Maps - Our method recovers per-frame appearance
maps, including albedo, specular intensity, high-detail normals, and diffuse
ambient occlusion (AO). We show the resulting maps from Step 2 for a single
frame (bottom row). Also shown are the intermediary results for Step 0 (top
row), where neutral maps are computed only once per actor, and Step 1
(middle row), where smooth specular intensity of pushes detail into the
normal map ny and single-channel hemoglobin map hy shows blood flow
(in red). The final albedo py is defined by hy and po.

6.1 Dynamic Appearance Maps

The output of the proposed system is a set of four parameter maps
per frame, namely albedo, diffuse ambient occlusion, specular in-
tensity, and high-resolution normals. This output is illustrated in
Fig. 6, which also shows the neutral maps computed in Step 0 and
intermediary maps obtained in Step 1. Except for the results in Step
0 (computed once per actor), these maps are time-varying and can
be used with existing rendering packages to render a face under
different illumination as shown in the next section.

Albedo Map. The albedo map contains the shading-free color
of the face. When acquiring albedo in film production, an actor’s
face is typically lit as uniformly as possible and captured using
cross-polarization. While the cross-polarized filters can succeed at
removing direct specular reflection from the skin, diffuse shading
will remain baked into the resulting map, Fig. 7 (a). Applying the
proposed inverse rendering pipeline on cross-polarized data allows
to remove this shading and produces a shading-free albedo, Fig. 7 (b).
Finally, the presented method succeeds at extracting a very similar
albedo from regular un-polarized data, showing that it can effec-
tively separate diffuse and specular reflection computationally at a
similar quality as physical polarization.

Albedo changes over time due to blood flow (Fig. 8), either caused
by physiological effects such as exercise (a) or due to physical pres-
sure exerted onto the skin when activating facial muscles (b). Blood
flow is not instantaneous, which causes hysteresis effects over time.
This effect is shown in Fig. 8 (b), where it takes several frames
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Fig. 7. Albedo Validation - (a) Using cross-polarization, an albedo texture
can be extracted directly from the cameras without specular shading. How-
ever, diffuse shading remains baked in. (b) From the same data, our inverse
rendering pipeline can provide an excellent albedo. (c) Even from regular
unpolarized footage (captured at a different time from our setup in Fig. 3),
our pipeline yields an albedo of similar quality with negligible shading.

Fig. 8. Dynamic Albedo Map - We compare the input images to our dy-
namic albedo maps. (a) Physiological effects such as exercise or overheating
can alter blood flow which we see here by splitting two different frames left-
right, particularly in the forehead. (b) Facial expressions also alter blood flow
(shown as forehead crop over time). Blood flow can be apparent for several
frames after the expression returns to neutral due to hysteresis over time.
Our method recovers both of these effects in the captured performance.

until blood has fully returned after releasing an expression. By con-
straining albedo to change along a one-dimensional line, which
we precompute per actor as described in Section 5.5, the proposed
method recovers high-quality per-frame albedo maps.

Diffuse Ambient Occlusion Map. We introduce this map in order
to capture residual diffuse shading that stems from the base mesh
not faithfully capturing the geometry everywhere, in particular in
wrinkle folds (e.g. refer to Fig. 6).

Specular Intensity Map. This map modulates the light reflected off
the skin surface. The amount of light reflected depends on a variety
of factors, such as oiliness or wetness of the skin (Fig. 9 (left)) or
changes in skin microstructure due to stretch (Fig. 9 (right)) and
tissue scarring (Fig. 10). This map also accounts for specular ambient
occlusion caused by mesoscopic skin detail, such as pores, when not
completely explained by the normal map. Some of these properties
change over time and motivate per-frame specular intensity maps.

Dynamic Normal Map. Skin surface is not flat but covered by
mesoscopic detail that is too finescale to be picked up by the coarse

Fig. 9. Dynamic Specular Intensity Map - The amount of light reflected
off the skin changes over time. The left column shows an example where the
actor wet his lips between two takes, which increases specular reflectance.
And in the right column the expression of the actor causes skin to stretch
as the cheeks bulge, which in amounts in an increase in specular reflection.

Input Image
opaq|y asnyla

Our Result
"Ju| Jejndads

Fig. 10. Scar — A small scar is shown on the subject’s forehead. As the scar
is not deep, it influences predominately surface reflectance, namely specular
intensity, since it is smoother than the surrounding skin tissue.

base mesh, such as pores and fine wrinkles. As skin stretches or
compresses, these details change dramatically and strongly influ-
ence the appearance of the face. The proposed method can recover
high-quality per-frame normal maps that encode this dynamic geo-
metric detail (Fig. 11). The effect of the different constraints used
in resolving fine geometric detail in Step 1 is illustrated in Fig. 12.
We also compare the level of detail obtained by our method to that
of the mesoscopic augmentation approach by Beeler et al. [2010];
Fig. 13 shows improved skin detail in our results computed from a
cheek patch at both 2K and 4K texture resolutions.
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Fig. 11. Skin Detail - Closeups of various areas on the face show the level
of detail the method can recover, ranging from pores to finescale wrinkles.
The last row shows two examples of dynamically changing detail: (left)
a patch on the forehead exhibits strong anisotropic wrinkling when the
eyebrows are raised; and (right) a patch around the chin shows deformation
caused by a muscle pulling skin tissue towards the upper left side of the
image, causing pores and wrinkles to stretch in an elliptical pattern.

6.2 Dynamic Appearance Relighting

The recovered maps can be used to create renders of the face with a
high degree of realism as demonstrated in Fig. 16 (col. 2). From the
per-frame normal maps (col. 8), diffuse surface shading (col. 5) is
computed using a Lambertian BRDF modulated by diffuse ambient
occlusion, and specular surface shading (col. 6) is computed using
the Cook-Torrance model with a Blinn-Phong distribution. The final
rendering is computed by multiplying the diffuse shading with the
dynamic albedo (col. 4) and adding the specular shading modulated
by specular intensity (col. 7). The maps have been recovered by
minimizing the difference of the render to the input image (col. 1).
An evaluation of the dynamic appearance is provided as an error
per texel, computed as the absolute pixel re-render error averaged
over all channels and views, illustrated as a percentage (col. 3).

For validation, we use the maps recovered for a neutral face to
re-render the face under a different illumination condition (Fig. 14),
where we configured the lights to illuminate the face only from
the left side. The rendering can reproduce the surface appearance
of the face under this novel condition very well, as compared to
a reference photo under the same conditions. Note that our result
is lacking a more elaborate sub-surface contribution, as the scope
of this work is somewhat focused on surface reflection, Fig. 10.
This is akin to existing skin appearance acquisition used for visual
effects. Nevertheless, our method can readily make use of simple
approximate techniques for sub-subsurface scattering in texture
space [d’Eon et al. 2007].

Finally, we demonstrate the ability to relight the captured faces
under various illumination conditions by re-rendering in a commer-
cial renderer (Autodesk Maya®). Although our method does not
readily capture subsurface scattering parameters, these additional
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Fig. 12. Ablation study - The left and right images in each row illustrate
the effect of the different constraints used in Step 1 to resolve fine geometric
detail in the per-frame normal map (lips and left cheek).

Beeler et al. 2010 Our Result (2K) Our Result (4K)

Fig. 13. Mesoscopic Comparison — We compare recovered skin detail
against mesoscopic augmentation (“dark is deep”) by Beeler et al. [2010].
Finest scale detail is obtained by our method at 4K texture resolution.

parameters can be manually set during relighting as to achieve
higher realism, as in Fig. 1 (right) and Fig. 15. In our relighting
results, we used the same subsurface scattering parameters for all
actors (weight 1.0, subsurface color set to albedo texture, RGB scat-
tering radii [0.324, 0.148, 0.064] and scale 0.25). For more results, we
refer the reader to the accompanying video.

7 DISCUSSION

In this work, we have presented a practical approach for measurement-
based modeling of dynamic facial appearance. Unlike previous
works that have modeled appearance dynamics as a linear blend be-
tween a few acquired key poses, we present a method that achieves
truly dynamic appearance capture at video framerates of acquisition,
and under standard uniform illumination setups that are commonly
employed for facial performance capture. We believe our approach
takes a big step forward in bridging the gap in rendering fidelity
for dynamic facial appearance acquired with passive acquisition
compared to that achieved using specialized active illumination se-
tups such as Light Stages. Given limited measurements from passive
acquisition in few viewpoints, robust fitting of the variability in
diffuse albedo during a facial performance is made possible with
our novel albedo subspace and a comprehensive set of constraints
on appearance and geometry parameters.
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Fig. 14. Appearance Validation — The face is rendered under a novel
lighting configuration with half the lights turned off. Our result closely
matches a reference image recorded under the same conditions.

Fig. 15. Relighting — We demonstrate the ability to re-render the captured
faces with our appearance parameters under novel environment lighting.

However, given limited input, we do make a few simplifications
to the overall dynamic facial appearance model. We currently model
the body (subsurface) reflection purely with a Lambertian BRDF
and only model albedo change during skin dynamics. Modeling
changes in additional parameters of a more sophisticated subsurface
scattering model might be required for increased realism for some
applications - for instance, modeling any change in spatially vary-
ing skin translucency, or explicit modeling of changes in melanin

vs. hemoglobin concentrations. Our proposed albedo subspace is
based on the assumption of blood flow being the dominant factor
for changes in albedo which is true for typical facial performances.
However, our dynamic albedo model does not consider the effects
of any change in melanin concentration or changes due to applica-
tion of any cosmetics on skin. Our formulation for skin dynamics,
while effective in anisotropically updating the surface normal, cur-
rently enforces the specular lobe (roughness) to remain isotropic.
A more accurate modeling of skin appearance under deformation
will additionally require anisotropic modeling of the specular BRDF
under stretch and compression. This remains an important chal-
lenge for future work, as capturing the shape of specular lobe can
be an ill-posed problem even in the static scenario with active illu-
mination [Ghosh et al. 2008]. Despite these current limitations, we
demonstrate high fidelity results with dynamic appearance changes
for several subjects with different skin types which we believe high-
light the unprecedented capabilities of the proposed approach.
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