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Figure 1: Our new Occlusion Hessian significantly outperforms both the Pure and the Bounded Split-Sphere (clamped to the gradient and
150px max spacing) for irradiance caching. It also performs significantly better than the recently published occlusion-unaware Hessian error
metrics by Jarosz et al. [2012].

Abstract

This paper introduces a new error metric for irradiance caching that
significantly outperforms the classic Split-Sphere heuristic. Our
new error metric builds on recent work using second order gradients
(Hessians) as a principled error bound for the irradiance. We add
occlusion information to the Hessian computation, which greatly
improves the accuracy of the Hessian in complex scenes, and this
makes it possible for the first time to use a radiometric error met-
ric for irradiance caching. We enhance the metric making it based
on the relative error in the irradiance as well as robust in the pres-
ence of black occluders. The resulting error metric is efficient to
compute, numerically robust, supports elliptical error bounds and
arbitrary hemispherical sample distributions, and unlike the Split-
Sphere heuristic it is not necessary to arbitrarily clamp the com-
puted error thresholds. Our results demonstrate that the new error
metric outperforms existing error metrics based on the Split-Sphere
model and occlusion-unaware Hessians.
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1 Introduction

Computing indirect illumination in complex scenes both accurately
and efficiently has been a long-standing challenge in computer
graphics. Since its introduction by Ward et al. over twenty years
ago, irradiance caching [Ward et al. 1988; Ward and Heckbert 1992]
has become a very popular choice for accelerating the computation
of diffuse indirect illumination. Irradiance caching exploits the fact
that indirect illumination varies slowly across diffuse surfaces by
computing it accurately only at a sparse set of locations and inter-
polating (or extrapolating) between the computed and cached irra-
diance values whenever possible.

The decision of whether to interpolate or not is central to the quality
and efficiency of the algorithm. Ward et al. proposed to determine
the cache point radii using the “Split-Sphere” heuristic which ap-
proximates an upper-bound on the rate of change of irradiance at the
cache points. Unfortunately there are many common failure cases
where this basic approach produces unacceptable results. This has
led to several modifications and additions to the original metric to
more robustly deal with such failure cases, by e.g. clamping to min-
imum/maximum radii, constraining the radius based on the gradi-
ent, enforcing the triangle inequality between cache records, and
many more [Křivánek and Gautron 2009]. Though these additions
can lead to a more robust approach, they are inherently trying to
augment a sub-optimal heuristic and, in the process, introducing
many more parameters, which makes it more difficult to control the
algorithm.

Instead of modifying the original heuristic, Jarosz et al. [2012] re-
cently proposed an alternative. While analyzing global illumination
in 2D, they derived second order derivatives of irradiance for scenes
with no occlusions, and showed how this could potentially be ap-
plied to obtain an improved error metric for irradiance caching. The
core idea was to use a second-order Taylor expansion as a principled
error term for the gradient extrapolation used in irradiance caching.
By bounding the allowed error, they showed that the cache point
radii could be derived from an irradiance Hessian instead of the
Split-Sphere heuristic, without relying excessively on clamping and
other corrections. Though they demonstrated that this idea shows
promise, their preliminary investigation fell short of a full practical
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algorithm due to the simplified setting and several practical limita-
tions.

In this paper we propose a new, practical error heuristic for irradi-
ance caching based on irradiance Hessians. Inspired by the prelim-
inary results shown by Jarosz et al., we extend and improve the ap-
proach and perform the necessary evaluation to turn this idea into
a practical error heuristic for general, complex scenes. The core
of our error heuristic is a new formulation of irradiance Hessians
which accounts for occlusion changes. This leads to higher-quality
images compared to previously proposed techniques (see Figure 1),
especially in scenes with complex indirect illumination contain-
ing occlussion and indirect penumbra as we will show in our re-
sults. Furthermore, our approach naturally supports elliptical cache
records by exploiting the anisotropic error information contained
within the Hessian. We also show that, compared to modifications
of the Split-Sphere heuristic, our approach produces substantially
better cache point distributions without relying on radius clamp-
ing and excessive parameter tuning. Finally, our formulation is not
bound to any particular stratification of the hemisphere, which we
show by replacing the traditional polar stratification with the lower-
distortion concentric stratification [Shirley and Chiu 1997].

2 Previous Work

Irradiance Caching. Ward et al. [1988] first introduced irradi-
ance caching as well as the Split-Sphere heuristic. During render-
ing, the cache is queried at every point that needs to be shaded. If
valid cache records are found nearby, the cached indirect illumi-
nation is interpolated; otherwise, the irradiance is computed using
brute-force Monte Carlo ray tracing and a new record is stored in
the cache.

To control the placement of cache records, Ward et al. derived a
conservative upper bound on the expected variation of irradiance
with translation and rotation. They envisioned an imaginary “Split-
Sphere” environment that induces the maximum possible change
in irradiance for scenes without strong sources of indirect illumi-
nation. This error function is used to 1) determine the maximum
valid radius for each cache record (enforcing a maximum error tol-
erance), and 2) derive the weights for each cache record’s contribu-
tion during irradiance interpolation.

Later, Ward and Heckbert [1992] significantly improved the irradi-
ance reconstruction by computing and storing not only the irradi-
ance, but also its translational and rotation gradients at each cache
record. When interpolation is possible, the irradiance at a shading
point is approximated using a first-order Taylor extrapolation of the
cached irradiance values in the local region. We show how to accu-
rately compute the gradient for arbitrary sampling distributions.

Split-Sphere Extensions. Since its introduction, many modifi-
cations have been proposed to either handle more general reflection
effects [Křivánek et al. 2005] or to improve the cache point distri-
bution obtained from the Split-Sphere. We only discuss the most
relevant prior work here and refer to the recent book by Křivánek
and Gautron [2009] for a complete survey.

One of the most common practical modifications is to constrain the
radius obtained from the Split-Sphere using 1) minimum and max-
imum bounds, and 2) the actual gradient computed from the sam-
pled hemispherical environment [Larson and Shakespeare 1998].
Křivánek et al. [2006] also proposed a sophisticated refinement
scheme to alleviate some of the shortcomings of the Split-Sphere by
iteratively enforcing the triangle inequality and applying neighbor
clamping. Herzog et al. [2009] created anisotropic cache records

by simply squishing the cache records along the direction of the
irradiance gradient by a user-controlled eccentricity parameter.

Illumination Derivatives and Error Control. Derivatives of illu-
mination have also been considered in a wide variety of rendering
contexts outside of irradiance caching. Arvo [1994] derived the ir-
radiance Jacobian due to polygonal light sources and used it to com-
pute isolux contours and find extrema of the irradiance field. Like-
wise, Holzschuch and Sillion [1995] derived radiosity gradients.
More recently, Ramamoorthi et al. [2007] performed a first-order
analysis of general lighting, deriving a principled net-visibility gra-
dient usable for sparse sampling. Many researchers have investi-
gated error control in the context of radiosity [Shirley 1991; Arvo
et al. 1994; Holzschuch and Sillion 1998]. Holzschuch and Sil-
lion [1995; 1998] derived gradients and Hessians of the point-to-
area form factor which we utilize in our approach.

Jarosz et al. [2012] presented a 2D theory of light transport, de-
rived occlusion-unaware Hessians of irradiance, and proposed to
use these for error control in irradiance caching. They also showed
that the irradiance Hessian provides enough information to simul-
taneously obtain both the orientation and eccentricity of elliptical
cache records to optimally adapt to the local anisotropic irradiance
curvature. Though their investigation was primarily theoretical,
they nonetheless showed promising preliminary results.

Approach & Contributions. In this paper, we follow the same
basic recipe as suggested by Jarosz et al. [2012], but propose a num-
ber of fundamental improvements that turn it into a practical, well-
tested error control for irradiance caching in complex scenes:

• We derive an occlusion-aware Hessian for the error term, ac-
counting for irradiance changes in scenes with occlusions.
• We also automatically obtain an occlusion-aware gradient

which (unlike previous formulations) can easily be applied to
general hemispherical sample distributions.
• We derive a more perceptually-motivated error criterion based

on relative instead of absolute error, further reducing artifacts.
• We show how to make a radiometric (and not geometric) er-

ror metric robust, resulting in the first practical error metric for
irradiance caching that is radiometrically meaningful.
• In contrast to Jarosz et al. [2012], we address how to take ro-

tations of the surface normals into account, resulting in a com-
plete and practical error-control formulation.
• We validate our proposed metric in complex scenes and com-

pare to previous approaches, including the Split-Sphere with ra-
dius and gradient clamping, progressive refinement, and neigh-
bor clamping [Křivánek et al. 2006].

3 Background

Irradiance caching exploits the fact that the reflected radiance Lo
on diffuse surfaces can be expressed in terms of the irradiance E:

Lo(x, ~ωo) =
ρ(x)

π
E(x, ~n), (1)

where ρ ∈ [0, 1) is the diffuse reflectance and ~n is the surface
normal. The irradiance is computed using Monte Carlo ray tracing:

E(x, ~n) =

∫
Ω

Li(x, ~ωi)(~n · ~ωi) d~ωi, (2)

≈ 1

N

N∑
i=1

L(x, ~ωi)(~n · ~ωi)
pdf(~ωi)

=
π

N

N∑
i=1

L(x, ~ωi), (3)
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Figure 2: The scene depicted in (C) has the same irradiance first- and second-derivative as the one in (A), but there are no occlusions. (B)
shows Ward and Heckbert’s [1992] interpretation of the stratified sample information used to derive the irradiance gradient, while (D) shows
the interpretation we perform in order to approximate (C).

where the directions ~ωi over the hemisphere Ω follow a cosine-
weighted distribution (pdf(~ωi) = (~n · ~ωi)/π), canceling out the
cosine term in the numerator.

We will follow the approach of Jarosz et al. [2012] and control the
placement of cache records by defining the total error εti of a cache
point i as the integrated difference between the correct irradiance
and the extrapolated irradiance over the support of the cache point:

εti =

∫∫
A

|E(xi + ∆x)− E′(xi + ∆x)| d∆x, (4)

whereA is the area of support of the cache point, ∆x is a 2D devia-
tion in the tangent plane, andE′(xi+∆x) = Ei(xi)+∇xEi(xi) ·
∆x is the first-order Taylor expansion of the irradiance. To make
irradiance caching efficient, the goal is to use the largest possible
area A while bounding the error to a certain threshold εt.

Since this expression depends on the ground truth irradiance E
(which we want to avoid computing) we approximate it using a
second-order Taylor expansion of the irradiance. The resulting ex-
pression relates the cache point error directly to the irradiance Hes-
sian [Jarosz et al. 2012]:

εti ≈
1

2

∫∫
A

|∆xᵀ Hx(Ei) ∆x| d∆x (5)

=
1

2

∫∫
A

(
|λ1|x2 + |λ2|y2) dy dx, (6)

where the irradiance Hessian is a 2× 2 matrix defining the second
derivatives in the tangent space of the surface. The second line is
reformulated in the coordinate system defined by the principle cur-
vatures of irradiance (eigenvectors vλ1 ,vλ2 of the Hessian matrix
with corresponding eigenvalues/curvatures λ1 and λ2) in the vicin-
ity of the cache point.

By transforming to polar coordinates and then carrying out the in-
tegration, Equation (6) reduces to an error function that grows with
the fourth-power of the deviation along the principle directions vλ1

and vλ2 . Inverting this results in an elliptical cache point with radii

(
Rλ1
i , R

λ2
i

)
≈ 4

√
4εt

π

(
4

√
1

λ1
, 4

√
1

λ2

)
, (7)

where εt is the error threshold specified by the user.

Jarosz et al. [2012] derived irradiance caching in a 2D setting and
proposed the Hessian-based strategy for controlling error in irradi-
ance caching. They derived a Hessian for irradiance assuming no
occlusions in the scene. The Hessian based error metric is promis-
ing, but it becomes inaccurate in the presence of occlusions and
consequently Jarosz et al. presented a Geometric Hessian that ig-
nored the actual radiance values and instead provided a smooth
cache distribution throughout the scene. The Geometric Hessian

performs well in most scenes, but like the Split-Sphere heuristic it
does not adapt in scenes where indirect illumination varies signifi-
cantly. Consider a floor next to a wall that is either dark or bright.
In the case of the dark wall, the sampling density on the floor can
be quite low. In the case of the bright wall the floor needs more
samples to account for the rapid local changes in the irradiance.
The Geometric Hessian (as well as the Split-Sphere heuristic) will
use the exact same sampling density in both cases. Having a ra-
diometric error metric would enable the necessary variation in the
sampling, and it would also enable a more precise control of the
actual error in the extrapolated irradiance, which would lead to a
higher quality irradiance estimation throughout the scene.

4 Practical Radiometric Hessian-based Error

4.1 Occlusion-Aware Translation Hessian

The core to our approach is an irradiance gradient and Hessian that
accurately considers scenes with occlusions, like the one shown
in Figure 2 (A). Ward et al. [1992] previously derived an accurate
occlusion-aware irradiance gradient by interpreting the hemispheri-
cal samples as a coarse sampling of the surrounding geometry (Fig-
ure 2 (B)) and considering the change of strata areas due to occlu-
sions as x is translated.

A natural next step would be to consider this geometric approxi-
mation of the environment, and compute the Hessian of the con-
tribution of each strata. Jarosz et al. [2012] considered this while
ignoring occlusions between strata. This makes the computation far
simpler, but, unfortunately, ignoring occlusion derivatives is known
to produce suboptimal results in irradiance caching [Křivánek et al.
2005].

This problem is in fact the same as computing the occlusion-aware
form-factor Hessian of each polygonal stratum, which has been
derived previous in the context of radiosity [Holzschuch 1996;
Holzschuch and Sillion 1998]. Unfortunately, the discontinuous
geometric approximation in Figure 2 (B) corresponds to a patho-
logical case for these methods where the irradiance derivatives are
always undefined1. Hence, these previous approaches do not pro-
duce usable results when applied to Ward et al.’s stratified environ-
ment.

Geometric Interpretation of Hemispherical Samples. To ad-
dress this problem, we take a different approach. Our key insight
is that we can convert a scene with occlusions (Figure 2 (A)) into
a scene which is radiometrically equivalent at the shade point x,
but which contains no occlusions (Figure 2 (C)). Remarkably, this

1The derivatives are undefined whenever three or more polygon edges
coincide at a single “apparent vertex” from the perspective of the shade
point [Arvo 1994].
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Figure 3: The implicit connectivity information inherent in the
stratified sampling allows efficient triangulation of the environment
approximation. Final gather rays are shown as red points, and the
implicit triangulation is shown in green.

modified scene has the same irradiance, irradiance gradient, and
irradiance Hessian at x as the original scene.

Equivalence arises because irradiance at point x is directly propor-
tional to the solid angle subtended by the uniform diffuse emitter, as
seen from x. The gradient and Hessian are, then, proportional to the
change in solid angle as x is translated. In the case of Figure 2 (C),
the emitter subtends the same solid angles Ω and Ω′, as it does in
Figure 2 (A); hence, the irradiance, gradient and Hessian must also
be the same. Of course for very large displacements this is not nec-
essarily true, but we are only concerned with this equivalence at a
differential scale.

Given this insight about equivalence, our procedure becomes clear.
We interpret the hemispherical samples and construct a continuous,
piecewise-linear approximation (Figure 2 (D)) of the surrounding
scene geometry, which contains no occlusions from the point of
view of x. We can then compute an irradiance gradient and Hes-
sian of this triangulated environment which accounts for occlusions
occurring in the physical scene, while not explicitly considering oc-
clusions in our calculations.

Assuming we have a triangulated representation of the hemispheri-
cal environment, the irradiance at x defined in Equation (3) can be
re-expressed in terms of this approximate geometry as:

E(x, ~n) ≈
M∑
j=1

L4j F4j (x), (8)

where M is the number of triangles in the tessellated hemisphere,
and L4 and F4(x) are the observed radiance and form-factor of
triangle4 at x.

The gradient and Hessian of Equation (8) can be readily computed
by summing the gradients and Hessians of the triangle form-factors:

∇xE ≈ ∇x

(
M∑
j=1

L4jF4j(x)

)
=

M∑
j=1

L4j∇xF4j(x), (9)

HxE ≈ Hx

(
M∑
j=1

L4jF4j(x)

)
=

M∑
j=1

L4jHxF4j(x). (10)

Luckily, since our interpretation of the stratified samples induces
no occlusion changes with translation, we can compute these form-
factor derivatives independently for each triangle while ignoring
occlusions. For completeness, we include the formulas for ∇xF4
and HxF4 as derived by Arvo [1994] and Holzschuch and Sil-
lion [1998] in Appendix A.

The Hessian in Equation (10) is fully 3D, whereas we are interested
only in the Hessian across the surface on which it was computed.
To project the 3 × 3 Hessian matrix onto the surface, we define
a = HxE(x)u1 and b = HxE(x)u2 and the tangential Hessian
becomes

H2×2
x =

[
u1 · a u1 · b
u2 · a u2 · b

]
(11)

where u1 and u2 are any two orthonormal vectors on the tangent
space of the surface.

Constructing the Triangulated Environment. To construct our
triangulated environment, we consider the hit distance/position for
each sample ray we trace. We then go over all the samples and con-
nect neighbors into triangles, defining a triangular mesh that covers
the entire hemisphere. Though any triangulation algorithm could
be used, we use the connectivity information implicit to the strati-
fication to make this step efficient (see Figure 3). The mesh, along
with the incoming radiance information, becomes a 3-dimensional
snapshot of the scene, as it is seen from x. Figure 4 illustrates this
for a shade point in the Cornell box scene.

The most important features visible in Figure 4 are the large trian-
gles that connect the surface of the occluder geometry to that of the
wall. It is these polygons that encode the occlusion information of
the scene from the point of view of the sampling location x. While
these triangles have a large geometric extent, they subtend a similar
solid angle as other triangles, and thus their contribution to irradi-
ance is not disproportionate. As x is translated, however, the solid
angle of these large triangles will grow (or shrink) much faster than
for other triangles, leading to a large gradient and Hessian due to
occlusion changes.

To evaluate the irradiance gradient and Hessian, we need to define
the incoming radiance L4 due to each of the triangles in the mesh.
In 2D, as shown in Figure 2 (D), this corresponds to the incoming
radiance stored at the vertex that is farthest away from the shading
location x. The same idea applies in 3D, though, we choose the
farthest of the three vertices of each triangle (instead of two as in
the 2D case). Intuitively, vertices that are farthest from x define
the color of objects that become disoccluded during translation of
x. Ward and Heckbert [1992] used a similar idea to estimate the
differential change in occlusion between strata when computing the
gradient. As shown in Figures 5 and 6, this heuristic results in a
good approximation of the true first and second derivatives of the
irradiance for scenes with significant occlusions. Not surprisingly,

Figure 4: Example of our mesh-based geometry approximation us-
ing the stratified sample data. The left image shows the Cornell Box
with a red dot indicating the visualized location in the scene. The
right image shows the triangle mesh approximation after applying
our method, in this case using a total of 4096 gather rays. Note that
rays that hit nothing are not shown.
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Scene Analytic Gradient New Gradient Ward et al. Gradient Analytic Hessian Occlusion Hessian Radiometric Hessian

Figure 5: The left figure shows the scene configuration: a bright area emitter was placed over a large plane, with two occluders located
between the light and the plane at different distances. The three middle-left figures show a visualization of the first derivative of the irradiance
across the bottom plane, using the mapping (dE/dx, dE/dy) → (r, g), while the three right figures show the eigenvalues of the irradiance
Hessian using the mapping (λ1, λ2, λ3)→ (r,g,b). The numerical results use 4K sample rays per pixel.

W
ar

d
et

al
.G

ra
di

en
t

N
ew

G
ra

di
en

t

100 Gather Rays 1156 Gather Rays 4356 Gather Rays
Figure 6: Quality comparison between the classic Ward et al. irra-
diance gradient and our new formulation. While the gradient ap-
proximations differ slightly – especially at lower gather ray counts
the Ward et al. gradient suffers from stronger artifacts – the quali-
tative results are similar.

the previous occlusion-less Hessian derived by Jarosz et al. [2012]
does not match the ground truth.

Our formulation allows us to implicitly account for occlusion
changes in both the gradient and Hessian without resorting to more
complex form factor computations which account for occlusions
explicitly, and while avoiding the pathological cases that preclude
their use in irradiance caching. Furthermore, our formulation has
practical benefits over the standard approach proposed by Ward
and Heckbert because it allows us to use arbitrary hemispherical
distributions without re-deriving the method. Though we tried
the standard longitude-latitude stratification, we use Shirley and
Chiu’s [1997] concentric mapping in our implementation because it
produces more regular sampling patterns, leading to better results.

4.2 Cache Record Valid Region

To compute the anisotropic validity region for the cache records,
we could now use Equations (6) and (7), while using our improved
occlusion-aware Hessian. However, Equation (6) is suboptimal
since it defines the error with respect to the absolute variation in
irradiance. We would instead like to define a relative error term.
This has a number of advantages: 1) it more strongly relates to our
visual system’s response to contrast instead of absolute changes in
intensity and 2) it makes the error independent of the absolute scale
of the scene and absolute intensity of the light sources used, making
its parameters more compatible across scenes. To accomplish this,
we modify the error formula by dividing the Hessian by the indirect
irradiance computed at the sample location:

Occlusion Hessian (Absolute) Occlusion Hessian (Relative)

Figure 7: Visualization of the radii estimated for the Occlusion
Hessian using both absolute and relative measures for the total er-
ror. A relative measure allows larger radii in bright regions where
absolute differences in irradiance induce lower perceived error.

Isotropic Occlusion Hessian Anisotropic Occlusion Hessian

Figure 8: Comparison of isotropic to anisotropic cache records for
the relative Occlusion Hessian metric with the same threshold. The
eccentricity of the cache records is visualized as the filled-in color,
with green representing isotropic records and dark blue represent-
ing maximum anisotropy. Note that we have clamped the major axis
at twice the length of the minor axis.

εri ≈
1

2

∫∫
A

|∆xᵀ H2×2
x (Ei) ∆x|
Ei

d∆x (12)

=
1

2

∫∫
A

(
|λ1|
Ei

x2 +
|λ2|
Ei

y2

)
dy dx. (13)

As in Equation (6), we perform the integration in Equation (13) in
polar coordinates and invert the resulting expression. This leads to
the following anisotropic cache record radius equation:

(
Rλ1
i , R

λ2
i

)
=

4

√
4εrEi
π

(
4

√
1

λ1
, 4

√
1

λ2

)
, (14)

where εr becomes the primary (relative) error control parameter in
our algorithm. The primary differences compared to Equation (7)
are that we use our new occlusion-aware Hessian, and that the cache
point size is scaled by the fourth-root of the indirect irradiance
(more absolute error can be tolerated in bright regions of the scene
than in dark regions). In Figure 7 we compare the radius derived us-
ing a relative error versus an absolute error in the Sponza scene. The
walls in the inner part of the Sponza courtyard have much brighter
indirect irradiance, which allows for larger radii when accounting
for relative error. For an absolute error, doubling the intensity of the
lighting would modify the sample distribution (forcing the user to
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Figure 9: Comparison of the Radiometric and Occlusion Hessian
methods and our improvements for relative error and robustness.
The first column shows the result when using an absolute error,
while the second column uses a relative measure. The third column
adds 1% of the total irradianceEi to all the triangle radiancesL4j

prior to computing the Hessian. While this improves the result for
the Radiometric Hessian method, it still retains a few distracting
artifacts, that are not present for the Occlusion Hessian.

manipulate the error threshold to obtain the same image), whereas
this would have no effect on our relative metric. In Figure 8 we ad-
ditionally visualize the effect of allowing anisotropic cache records
compared to forcing isotropic records (by using the minimum of
the two radii from Equation 14). Anisotropic records adapt their ec-
centricity to the local irradiance curvature, allowing for fewer cache
records (16.5K vs. 20.5K) for the same error threshold. In practice,
we clamp the major axis of the elliptical cache records at twice the
length of the minor axis, to prevent artifacts that can arise in cases
where the irradiance Hessian is locally very small in one direction.

Pathological Cases. One of the fundamental problems with any
radiometric approach is that pathological cases (where all or most
of the gather rays return black) can result in undefined or infinite
radii. When computing full global illumination with many bounces,
this is rarely a problem; however, when computing only a sin-
gle bounce of indirect, this problem occurs more often. Jarosz et
al. [2012] noted this issue, which forced them to revert to a com-
pletely geometric approach (the Geometric Hessian). To retain the
benefits of a radiometric approach, we instead add 1% of the indi-
rect irradiance Ei to all the triangle radiances L4j before comput-
ing the Hessian in Equation (10). In the case where all gather rays
return black, we set all triangle radiances L4j = 1. This has the
effect of switching to an occlusion-aware geometric Hessian only
for this special case. Note that we only add 1% during the Hessian
computation and do not modify the irradiance stored in the cache.

Evaluation. In Figure 9 we show the effect of incorporating these
improvements (moving from an absolute to a relative error, and
adding 1% of the irradiance) when applied to both the occlusion-
less Radiometric Hessian, and our Occlusion Hessian. These two
changes (moving left to right) improve both methods, but the most
striking improvement comes from accounting for occlusions in the
Hessian itself (bottom row vs. top row). The Radiometric Hessian
produces distracting artifacts due to interpolation across steep local
gradients. This is because this error-control method is oblivious to
occlusion changes, resulting in cache records that are too large for
the local irradiance curvature. These artifacts disappear when using

256 Gather Rays 4096 Gather Rays

Figure 10: Our method is robust to low gather ray counts, produc-
ing nearly identical cache point distributions with 256 (left) as with
4096 (right) gather rays per cache record.

our Occlusion Hessian.

To validate that our radius computation is robust to low gather ray
counts, in Figure 10 we compare the cache point distribution for
the Cornell box scene using 256 gather rays and 4096 gather rays.
Even with 16 times fewer gather rays, the cache point distribution
remains qualitatively the same.

In Figure 11 we evaluate the Radiometric Hessian and Occlusion
Hessian on a simple scene with an indirect occluder. The Occlusion
Hessian successfully concentrates samples in regions of rapid irra-
diance change due to occlusions (the indirect penumbra regions).

4.3 Rotation Error

To account for changes in irradiance due to rotation, we could fol-
low a similar procedure and derive a rotational irradiance Hessian
by using rotational form-factor derivatives in Equations (9) and
(10). Since the rotational derivatives only account for the change in
the cosine foreshortening term as the surface normal is rotated, and
no occlusion changes occur, the computation simplifies to the first
and second derivatives of a cosine. Unfortunately, this approach
does not work well. The problem is that occlusions in fact do oc-
cur: for any significant rotation, the change in the cosine factor
is insignificant compared to the impact of regions from the lower
hemisphere becoming disoccluded and contributing to the irradi-
ance. In effect, rotational derivates in the upper hemisphere ignore
all occlusions (the occlusions along the hemispherical boundary),
and this has by far the biggest impact on the change in irradiance.
Unfortunately, since we can only reliably sample the upper hemi-
sphere, we have little hope of detecting what is under the upper
hemisphere to accurately predict the change in irradiance.

Scene Radiometric Hessian Occlusion Hessian

Figure 11: A simple scene with indirect occlusions (left) where we
visualize the emitted radiance on the emitter above and the indirect
illumination on the other surfaces. The Radiometric Hessian (mid-
dle) ignores occlusions, producing a relatively uniform distribution
whereas our Occlusion Hessian method (right) successfully adapts
to the irradiance change near the penumbra region.
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In the face of these challenges, we opt for a simple but intuitive
strategy as originally proposed by Tabellion and Lamorlette [2004].
We enforce a maximum deviation angle ∆~nmax that is allowed dur-
ing extrapolation: no cache records are allowed to extrapolate be-
yond an e.g. 10◦ deviation in surface normal. We set the default
value to ∆~nmax = 0.2 radians, but allow the user to modify this if
needed.

4.4 Irradiance Storage and Interpolation

With each cache point i we store: the location and normal (xi, ~ni),
the irradiance (Ei), irradiance gradients (∇xEi, ∇~nEi), the two
anisotropic radii (Rλ1

i , Rλ2
i ), and the corresponding eigenvectors

(vλ1
i ,vλ2

i ).

Note that computing the eigenvalue decomposition for H2×2
x in

Equation (13) results in eigenvectors in the tangent-space defined
by vectors u1 and u2. To make these usable during interpolation,
we transform each tangent-space eigenvector (v′i) into world-space
coordinates (vi = [u1 · v′i,u2 · v′i]ᵀ) before storing it in the cache.

To interpolate cache records, we use the same first-order extrapola-
tion strategy as proposed by Ward and Heckbert [1992], but with a
modified weighting function:

E(x, ~n) ≈
∑
i∈S wi(x)(Ei +∇xEi ·∆xi +∇~nEi ·∆~ni)∑

wi(x)
(15)

where ∆xi = x− xi and ∆~ni = ~n× ~ni are the translational and
rotational deviation of the shading location x with normal ~n to the
cache point.

The set S includes all cache records whose valid regions (Equa-
tion (14)) overlap x and whose normal deviation is less than ∆~nmax.
To weight the cache records, we propose to use a kernel weighting
in both translation and orientation that falls off to zero at the bound-
aries:

wi(x) = k(1− tx, 0, 1)× k(t~n, cos ∆~nmax, 1), (16)

where k is a simple tent filter, k(t, tmin, tmax) = t−tmin
tmax−tmin

, and

tx =

√√√√[∆xi · vλ1
i

Rλ1
i

]2

+

[
∆xi · vλ2

i

Rλ2
i

]2

+

[
∆xi · ni
Rλ1
i

]2

, (17)

t~n = (~n · ~ni), (18)

are the translational and rotational distances. We use the cache
record only if wi(x) is greater than zero. Note that k could eas-
ily be replaced with a higher-order smooth kernel that falls off to
zero, but we did not find this to provide a significant benefit.

Extension to Radiance Caching. Extending our method to ra-
diance caching [Křivánek et al. 2005] would be relatively straight-
forward. Since radiance caching re-uses irradiance caching’s Split-
Sphere for error control, we could trivially replace this with our Oc-
clusion Hessian term. For a standard polar stratification, we could
project both the radiance and gradient onto spherical harmonics just
as in previous work [Křivánek et al. 2005]. If a concentric mapping
is used, projecting the radiance would still be trivial, but some work
would be needed to derive a projection of the translational radiance
gradient onto spherical harmonics.

5 Results

We implemented the new error metric by modifying the native Ir-
radiance Cache implementation in version 2 of PBRT [Pharr and

500 Rcords 1K Records 2K Records 4K Records

Figure 12: Comparison of the convergence behavior for the
Bounded Split-Sphere (top) and our Occlusion Hessian (bottom).

Humphreys 2010]. All results were rendered using 4 samples per
pixel on a PC with a 2.66Ghz Intel Core i7-920 CPU. Our im-
plementation of the Split-Sphere heuristic follows Ward’s [1988]
original formulation and uses the harmonic mean distance. For the
Bounded Split Sphere we clamp this radius to a maximum pixel size
and to the computed irradiance gradient (increasing the sample den-
sity in areas where the first-order gradient magnitude exceeds the
Split-Sphere prediction). All methods use 4096 rays per irradiance
sample, and we enforce a minimum cache point radius equivalent
to the projected size of 1 pixel at the sample location, except where
noted. For the Hessian based methods there is no upper bound for
the cache point radii. All Hessian based results use the default value
∆~nmax = 0.2 radians as the maximum normal deviation angle. We
report the render times in Table 1.

Figure 1 shows a comparison of the Occlusion Hessian error control
method against the Split-Sphere Heuristic as well as the Geometric
and Radiometric Hessian metrics defined by Jarosz et al. [2012].
All images were rendered at a resolution of 1800x1800 pixels with
a single bounce of indirect illumination. The error thresholds were
adjusted for each method to enable the use of 1700 +/- 2% cache
records. With just 1700 cache records the Split-Sphere method
shows severe interpolation artifacts. Even with a maximum ra-
dius of 150px (a lower threshold is not possible with 1700 cache
records) the Bounded Split-Sphere method shows significant errors
throughout the rendered image. The Radiometric Hessian works
well in lit regions, but has artifacts in shadowed regions. The Geo-
metric Hessian works well in most of the scene, but shows interpo-
lation artifacts on the walls and the ceiling. The Occlusion Hessian
produces the best overall result, resolving the detail in the shadow
while maintaining a sufficient density of samples on the walls and
ceiling to reconstruct the irradiance. For the simple geometry in
this scene the Occlusion Hessian added roughly 20% overhead to
the computation time. For our more complex scenes this overhead
becomes negligible as the time is dominated by ray tracing.

Figure 12 compares the behavior of our Occlusion Hessian method
to the Bounded Split-Sphere heuristic with increasing cache point
densities. All images used 4096 gather rays, and the Split-Sphere

Table 1: Rendering times for the scenes and methods presented.

Cornell Box Sponza San Miguel
Method Figure 1 Figure 15 Figure 17

Split-Sphere 01:02.3 53:08.4 07:15:22.4
Radiometric Hessian 01:06.5 n/a n/a
Geometric Hessian 01:04.7 n/a n/a
Occlusion Hessian 01:16.5 54:35.6 07:17:43.7
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Reference Enhanced Split-Sphere Occlusion Hessian Occlusion Hessian (O)
123.4s 76.5s 122.3s

RMSE: 0.0117 RMSE: 0.0071 RMSE: 0.0049

Figure 13: We show the result of adding progressive refinement,
neighbor clamping and an overture pass [Křivánek and Gautron
2009] to the Split-Sphere, and compare to our Occlusion Hes-
sian method without and with an overture pass. While these ad-
ditions significantly improve the Split-Sphere result, render time is
increased, and it still does not match the quality achieved by the
Occlusion Hessian without an overture pass.

used a maximum radius of 150px (a tighter bound was not possi-
ble for very limited cache point counts). Note how the Occlusion
Hessian produces a high-quality result even with 500 cache records,
while the Split-Sphere suffers from large artifacts even with 1000
records. These artifacts occur because the strong constraint on the
record count requires setting such a high error threshold that cache
records from the ceiling are used on the walls, and vice-versa.

In Figure 13 we extended the Split-Sphere with progressive refine-
ment, neighbor clamping, and an overture pass [Křivánek et al.
2006]. Rendering of the enhanced Split-Sphere image took 123.4s
while the Occlusion Hessian rendering, with the overture pass, took
122.6s. The quality obtained by the Occlusion Hessian is visibly
better, even though the improvement for the Split-Sphere is signif-
icant. Note that the overture pass has less impact on the Occlusion
Hessian as the error metric more closely follows the actual error in
the irradiance.

The Geometric Hessian is generally robust in most scenes, but since
it is a purely geometric metric, like the Split-Sphere it does not
adapt to changes in the illumination. In Figure 14 the Cornell box
has been changed such that the back wall is completely black. This
adds contrast to the indirect illumination, which the Occlusion Hes-
sian is able to detect and consequently it produces a higher quality
output with fewer artifacts than the Geometric Hessian.

Figure 15 shows close-ups of Sponza rendered using the Occlusion
Hessian and the Split Sphere heuristic (both unbounded and with
a maximum radius of 20 pixels). For this scene we used a photon
map to add multiple bounces of indirect illumination. The irradi-
ance cache is used to gather the irradiance at the first diffuse surface
seen by the eye, and we used 32K +/- 1% cache records for the full
images. The resulting images show how the Split-Sphere heuristic
has interpolation artifacts in the shadows on the columns, while the
Occlusion Hessian is much better at reconstructing the lighting de-
tails. Figure 16 shows a direct visualization of the cache record radii
(top), and the record support footprints (bottom), for the Sponza

Reference Geometric Hessian Occlusion Hessian

Figure 14: Irradiance rendering of the Cornell Box after changing
the back wall so it has an albedo of 0. The Geometric Hessian does
not take the radiometry of the scene into account, so its cache point
distribution is the same as for the standard Cornell Box, which is
sub-optimal. Our new Occlusion Hessian adapts its distribution to
match the radiometry in this new configuration, producing a higher
quality result. Note that we have scaled the difference image color
range to ease comparison.

scene with the various methods. Note that we visualize the geo-
metric mean of the two radii for the anisotropic methods, and cache
record outlines are drawn at 45% of their maximum size to avoid
overlap in the visualization. The Split-Sphere images show that ad-
ditionally bounding the cache point radii by the true first-order gra-
dient leads to smaller radii in areas of high irradiance variance, such
as the indirect penumbras visible at the base of the columns. This
behavior is, as expected, mirrored by the Occlusion Hessian, which
defines the radii in proportion to the rate of change of irradiance.
However, the contrast is much higher for the Split-Sphere images
– the radii variations are much larger – which explains the worse
results obtained from this metric (e.g. sampling the scene outside
of the penumbra regions leads to cache points with very large radii
and the penumbra regions become severely under-sampled).

Figure 17 shows a view of the PBRT San Miguel scene. The meth-
ods were tuned so that 50K cache points (+/- 1%) would be pro-
duced. A photon map was used for the secondary light bounces,
with 1 million photons stored. Our Occlusion Hessian approach
was able to properly define all indirect shadows in the image, and
exhibits fewer interpolation artifacts in areas of the scene where the
irradiance varies slowly. Rendering times for the Bounded Split-
Sphere and the Occlusion Hessian were within 0.5% of each other.

To facilitate detailed comparison, uncropped, full-resolution im-
ages for all results are available in the supplemental material.

6 Conclusion & Future Work

In this paper we have described a new method for controlling the
approximation error in irradiance caching. The new method is
based on computing the second derivative of irradiance - the trans-
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Reference Pure Split-Sphere Bounded Split-Sphere Occlusion Hessian

Figure 15: In Sponza the Occlusion Hessian is superior to the Split-Sphere in both defining shadow details and eliminating interpolation
artifacts across surfaces. The shadows at the base on the column are captured by the Occlusion Hessian, while the Split-Sphere heuristic
shows severe interpolation artifacts, even when bounded to 20px and clamped by the gradient.

Pure Split-Sphere Bounded Split-Sphere Radiometric Hessian Geometric Hessian Occlusion Hessian

Figure 16: Direct visualization of the radii (top) and footprints (bottom) of the cache records for various error metrics. The Pure Split-Sphere,
Radiometric and Geometric Hessians are all unable to detect the indirect shadows on the columns, while the Bounded Split-Sphere (clamped
to 20px and the gradient) as well as the Occlusion Hessian correctly predict smaller radii in these rapidly changing regions. Unfortunately,
the contrast in the Split-Sphere is too high, leading to lost detail due to the greedy nature of the irradiance caching algorithm.

lation Hessian - while taking object inter-occlusions into account.
A second-order Taylor expansion of irradiance is used as an or-
acle to the true irradiance, in order to estimate the error induced
by first-order Taylor expansion during rendering. The Hessian also
naturally supports anisotropic cache points. As a result, record den-
sity closely matches the rate of change of irradiance in the scene,
leading to reduced error in the rendered images when compared to
all previous approaches. Furthermore, our method does not rely
heavily on user-defined minimum and maximum cache point radii,
leading to more intuitive user control. The robustness of our new
Occlusion Hessian method also minimizes the need to use other cor-
rective techniques, such as progressive refinement, neighbor clamp-
ing, or an overture pass, resulting in a simpler implementation.
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Figure 18: Illustration of the notation used in the form-factor, its
gradient and Hessian.

A Form Factor, Gradient, and Hessian

The formula for the point-to-triangle form-factor F4(x) is given
by [Holzschuch and Sillion 1998]:

F4(x) =
1

2π
n ·

3∑
i

Γi (19)

where i indexes the three vertices, ri, expressed as vectors from x,
and Γi = ri × ri+1 and has norm γi (see Figure 18).

Holzschuch and Sillion derived the following formulas for the gra-
dient and Hessian of the form-factor:

∇xF4(x) =− −1

2π

∑
i

n× eiI1

+ 2n · (ri × ri+1)(riI2 + eiJ2) (20)

and

HxF4(x) =− 1

π

∑
i

Q(n× ei, riI2 + eiJ2)

− n · (ri × ei)I2I3×3

+ 2n · (ri × ei)(Q(ri, ri)I3

+Q(ei, ei)K3 + 2J3Q(ri, ei)), (21)

where:

I1 =
γi

‖ei × ri‖
,

I2 =
1

2‖ei × ri‖2

(
ei · ri+1

‖ri+1‖2
− ei · ri
‖ri‖2

+ ‖ei‖2I1
)
,

I3 =
1

4

1

‖ei × ri‖2

(
ei · ri+1

‖ri+1‖4
− ei · ri
‖ri‖4

+ 3‖ei‖2I2
)
,

J2 =
1

2‖ei‖2

(
1

‖ri‖2
− 1

‖ri+1‖2

)
− ei · ri
‖ei‖2

I2,

J3 =
1

4‖ei‖2

(
1

‖ri‖4
− 1

‖ri+1‖4

)
− ei · ri
‖ei‖2

I3,

K3 =
1

‖ei‖2
(
I2 − ‖ri‖2I3 − 2(ri · ei)J3

)
, and

Q(a,b) = abᵀ + baᵀ.

Note that a and b are column vectors, such that Q(a,b) results in
a 3x3 matrix.

Arvo [1994] presented a formula for the irradiance Jacobian due
to a diffusely emitting triangle, which results in an alternate, but
equivalent, expression for the form-factor gradient.
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