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Abstract

We propose a novel approach to generate a high quality
photometric compensated projection which, to our knowl-
edge, is the first one, which does not require a radiometrical
pre-calibration of cameras or projectors. This improves the
compensation quality using devices which cannot be easily
linearized, such as single chip DLP projectors with complex
color processing. In addition, the simple workflow signifi-
cantly simplifies the compensation image generation. Our
approach consists of a sparse sampling of the projector’s
color gamut and a scattered data interpolation to generate
the per-pixel mapping from projector to camera colors in
real-time. To avoid out-of-gamut artifacts, the input image
is automatically scaled locally in an optional off-line op-
timization step maximizing the achievable luminance and
contrast while still preserving smooth input gradients with-
out significant clipping errors.

1. Introduction
Photometric projector compensation is used in various

application fields such as entertainment, cultural heritage
and augmented reality. Its preparation, however, still is
a laborious process. While several algorithms have been
presented within the last decade which generate a compen-
sated projection with impressive quality, they all require the
devices to be, at least partially, radiometrically calibrated.
This can be a cumbersome and time consuming process
which reduces the overall flexibility of the system, while
it also limits the compensation quality on devices such as,
for example, certain DLP projectors which offer complex,
non-monotonic color processing algorithms and additional
primaries as well as transparent components in their color
wheels [14, 13].

1.1. Motivation

The main motivation to develop a novel projector com-
pensation algorithm has been the lack of an existing
straightforward method which does not require any radio-

Figure 1. Our method computes a compensation image without
any knowledge of the device’s response curves. The input image
(a) is projected (f) onto a textured surface (e) leading to color arti-
facts (b). Our method computes a compensation image (g) which
reduces the errors (c). A global optimization step further mini-
mizes saturation artifacts (d). Although the used DLP projector
contains complex color processing, our compensation method is
able to generate a high quality compensation image (h).

metric pre-calibration and thus can be widely applied in, for
example, mobile and cheap off-the-shelf projection setups.
Our method is based on the application of scattered data in-
terpolation to describe the mapping of projector to camera
pixels in a non-linear manner. We used thin plate splines
(TPS) [7] to compute the mapping which, besides their
relatively low computational complexity using radial basis
functions (RBF), guarantee an optimally smooth transition
between the captured color samples.

1.2. Background and Related Work

In this section an introduction to photometric compen-
sation will be given and the existing methods will be sum-
marized. The interested reader is referred to Bimber’s et al.
state of the art report [4] for details.
The main purpose of photometric compensated projections
is the neutralization of non-perfectly white or textured sur-
face reflectance. This is accomplished by using a projector-
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camera system to evaluate the reflectance properties for
each pixel and to calculate colors which, if projected onto
the surface pigments, modulate to the expected intensity
when captured by the camera. Therefore a geometric cal-
ibration is required to map projector to camera pixels which
is usually carried out by projecting a series of well defined
structured light patterns. Depending on the method, several
patterns are projected in addition to estimate the color trans-
formation needed to compute the compensation images. To
our knowledge, all existing methods require the projector or
camera to be at least partially radiometrically calibrated to
enable a linear modeling of the light modulation.
The oldest algorithms focused on modeling the compensa-
tion without taking the input image content into account and
mostly varied in their complexity as well as their prerequi-
sites. In Bimber et al. [3], a multi-projector approach was
presented in which the devices are assumed to be fully lin-
earized and their rgb color channels to be completely inde-
pendent. While this approach is able to also compensate for
environmental illumination, most real-world setups require
a modeling of the overlapping color channels to achieve a
high quality compensation. In Nayar et al. [14], a 3x3 ma-
trix was used to model this color channel mixing which gen-
erates a more accurate compensation. This method was in-
tegrated into a real-time feedback system in [8] to support
dynamic projection surfaces. Yoshida et al. [22] extended
this approach to a 3x4 matrix which also considers the un-
controllable, ambient illumination. In [5] it was shown that
the color mixing matrix can also be separated from the spa-
tially varying surface reflection and thus it only has to be
stored once for a setup. An extended approach enabling the
compensation of global, complex illumination effects such
as caustics, refractions and scattering has been presented in
[21]. It’s based on the idea of measuring the full light trans-
port between the projector and camera and inverting it to
compute the compensation image. This approach requires,
besides the device linearization, up to several hours of scan-
ning time depending on the scene complexity which makes
it quite impractical for real-world applications.
While these algorithms are able to achieve satisfying results
under well calibrated conditions, image contrast will be lost
and color artifacts might occur due to intensity saturation of
the projector on dark surface pigments.
More recent compensation methods are focused on content
dependent adaptation to increase the visual quality of the
projected images by maximizing perceived contrast and lu-
minance while still suppressing saturation artifacts at the
same time. The methods optimize the projection images
with different computational complexities, depending on
the application scenarios. They all, however, also require
a radiometrically calibrated projector-camera setup.
The first adaptive photometric compensation method was
presented by Wang et al. [20], in which the input image

is scaled automatically by a global scaling factor until the
saturation artifacts approach the per-pixel visibility thresh-
old.The presented algorithm is only able to compensate gray
scale images which constrains its applicability. This idea
was extended for color images by Ashdown et al. In [2]
they describe a compensation framework which operates in
the CIE L*u*v* color space and applies a luminance and
chrominance rescaling of the input image based on the hu-
man visual perception. This rescaling is optimized such
that the visual impression after applying the photometric
compensation still is close to the desired input. This al-
gorithm was further improved in [15] enabling smoother
chrominance adaptations. Another algorithm presented by
Grundhöfer et al. [9] focused on a GPU accelerated real-
time adaptation to enable the system to also work with
real-time content. A sophisticated compensation method
was recently presented by Aliaga et al. [1] which applies a
globally optimized compensation using the measured light
transport matrix between a camera and multiple projectors.
It, however, also requires radiometrically calibrated projec-
tors and cameras.
While those methods show that high quality compensated
projections can be achieved with radiometrically calibrated
devices, the latter makes the usage quite cumbersome for
several reasons: Any change in the hardware settings e.g.
adapting the projectors’ brightness to a new setup or re-
placing it with a different model requires a radiometric re-
calibration; furthermore, some DLP projectors apply com-
plex, multi-primary color processing and thus are difficult
to accurately linearize. While projection-based illumina-
tion on public spaces becomes more and more popular, the
surface colors are mostly not compensated at all because of
the missing expertise and hardware to adequately calibrate
the response curves of the projection system.

1.3. Our contribution

Our approach computes a compensation image by gener-
ating a non-linear per-pixel color mapping between the ra-
diometrically uncalibrated projector-camera pair. Scattered
data interpolation based on TPS is used to calculate an ac-
curate color transformation. The advantage of the applied
RBF compared to the ones used in other scattered interpo-
lation techniques, such as Shepard’s interpolation method
[19] or multiquadrics [11], is its ability to smoothly inter-
polate between given sample points as well as to adequately
extrapolate the colors. It is able to compensate for non-
monotonic responses as well as inter-channel color modu-
lations.
We present two compensation image generation methods:
The first one processes images in real-time, while the sec-
ond optimizes the input image off-line in a global optimiza-
tion step to further minimize local clipping errors while pre-
serving a high overall luminance and contrast.



2. Uncalibrated Photometric Projector Com-
pensation

Instead of having to pre-calibrate the cameras and pro-
jectors, the proposed method can be applied immediately
after setting up the devices. Uncalibrated projectors and
cameras, however, require a per-pixel non-linear mapping
function to accurately describe the unknown color transfor-
mation from the camera to the projector via the surface ma-
terial. While, theoretically, this can generated by a dense
sampling to populate a 3D look-up table, this would require
several millions of images to be captured and stored which
is impractical considering acquisition time and memory re-
quirements. The number of required samples can be min-
imized by sparsely sampling the colors and applying inter-
polation methods to compute the remaining values. While
tri-linear interpolation obviously won’t generate satisfying
results, more complex interpolation methods as, for exam-
ple, presented in [17], are able to minimize the errors signif-
icantly. This method, however, still requires more than 700
images to be acquired and thus is still not practical, espe-
cially if the data has be calculated and stored for each indi-
vidual pixel. To further reduce the number of color samples
while nevertheless being able to achieve high quality com-
pensation results, we apply TPS interpolation [7], which
guarantees a smooth transition while interpolating between
the known projected and captured sample points.

2.1. Prerequisites

For image acquisition, a camera device is required whose
image sensor has to be able to capture the whole dynamic
range of the projector without clipping. If this precondition
is satisfied, no further calibration is required. As with other
camera based calibration algorithms, a color channel adjust-
ment should be carried out to adjust the projector’s white
point to match the desired perceived impression of the hu-
man observer 1. It should be noted that, like in any camera
based photometric projector compensation technique, the
resulting quality largely depends on the camera used.

2.2. Color Mapping Method

Instead of assuming a linear color relationship described
by a per-pixel matrix multiplication, we define it by a color
mapping function:

c∗c = f (c∗in) (1)

transforming the input colors c∗in into the compensation col-
ors c∗c required to generate the desired intensities of c∗in
on the camera’s image plane (∗ denotes all three rgb color
channels). Our algorithm uses TPS interpolation to define

1To accurately achieve desired color values independent of the camera
settings used, a color calibration using a color checker chart can be applied
beforehand, but this is not required for the algorithm to work.

this function. To gather the required parameters, the color
space of the projector is sparsely sampled in a regular man-
ner. While this regularity does not have to be strict, it should
sample the extremes as well as the interior of the full rgb
color cube evenly. This is achieved by generating colors
with n increasing intensity levels from 0 to 255 in all three
color channels as well as their combinations which leads to
n3 color samples. If knowledge about the rough shape of
the projector response curve exists, the samples can be ad-
justed accordingly. For our algorithm, we used either n = 4
or 5 (cf. section 4 for an error analysis). These samples are
sequentially projected and captured by the camera.
After acquisition, the input colors and the corresponding
captured images are used to compute the weights for each
per-pixel interpolation function:

f (c∗in) =
N∑
i=1

ω∗
i ϕ (‖c∗in − c∗i ‖)+

ω∗
N+1+

N+4∑
i=N+2

ω∗
i ·

 crin, i = N + 2
cgin, i = N + 3
cbin, i = N + 4

(2)

where c∗in is the input color sample, N is the number of
captured color samples, ω∗

i a series of N + 4 weighting
coefficients per color channel, ‖·‖ the distance in Euclidean
space, c∗i the captured reference color samples, and ϕ is
chosen to be the TPS RBF:

ϕ (d) =

{
0, d = 0

d2 log d, otherwise
(3)

which minimizes the integral of the squared second deriva-
tive of f (c∗in) and thus is well suited to generate a smooth
color mapping. d is the Euclidean distance of the normal-
ized sample color c∗in to the normalized reference colors c∗i .
The per-pixel computation of ω∗

i has to be carried out only
once per projector-camera setup and is calculated as de-
scribed in Donato et al. [6]. To reduce the influence of out-
liers in the measurement resulting from noise and sampling,
a small regularization term is added to the thin plate spline
weights computation as proposed in the same paper. Dur-
ing run-time, equation 2 has to be evaluated once for each
surface point to calculate the projector pixel intensities for
the compensation image.

2.2.1 Photometric Compensation

Having computed the weighting factors for each pixel, arbi-
trary input images can be transformed from the camera’s
into the projector’s color space by computing the color
transformation using equation 2. While this, in theory, ac-
curately approximates the desired color values, errors might
occur because of out-of-gamut clipping which might arise



Figure 2. Another result of the proposed method: (a): input
image; (e): highly non-uniform projection surface (illuminated
white); (b): captured projection of (a) onto (e); (c): compensa-
tion without adjustments shows significant clipping errors. (d):
reduced clipping errors after applying the global optimization step.
(f-h): geometrically warped projection images generating camera
images (b-d).

from too bright or low rgb values that cannot be reproduced
on dark or colorful surface pigments or on grounds of am-
bient illumination. To avoid this, the input image can be
globally adjusted by adapting the overall brightness and sat-
uration such that the color values required for the compen-
sation still can be generated by the projector. As already
described in [2] an adaptive, spatially varying adjustment
of the input image, however, has the potential to increase
the overall perceived image quality even further, especially
if the surface contains high spatially reflectance variations
as the one shown in figures 1 and 2.

2.2.2 Global Optimization

Two main factors influence the occurrence of regional clip-
ping errors: on the one hand they depend on the local re-
flection properties of the surface, while on the other hand
the intensities of the image content are crucial. While the
former is static, the latter can be reduced by optimizing the
input colors and slightly changing the content similar to the
approaches presented in [2, 9]. We smoothly adapt the lu-
minance of the input colors by a spatially varying scaler p
to avoid clipping. To achieve this goal, a non-linear opti-
mization is applied to the input image minimizing the sum
of the following per-pixel errors:

• Saturation error, occurring due to limited maximum
projector brightness and will generate perceived image
artifacts:

errsat(x, y) =

{
(c∗c(x, y)− 1.0)

2
, c∗c(x, y) > 1.0

0, else
(4)

• Intensity error, resulting from an intensity reduction at
the current pixel which will reduce the image bright-
ness (an increase in intensity is accepted):

errint(x, y) =

{
(1.0− p(x, y))

2
, p(x, y) < 1.0

0, else
(5)

• Gradient variation error resulting from the spatially
varying intensity adjustments leading to potentially
visible local intensity variations:

errgrad(x, y) = (p(x, y)− p(x− 1, y))
2
+

(p(x, y)− p(x+ 1, y))
2
+

(p(x, y)− p(x, y − 1))
2
+

(p(x, y)− p(x, y + 1))
2

(6)

Independent weights are applied to these errors to generate
an acceptable tradeoff between the image degradation from
clipping errors as well as global and smooth local luminance
reduction in the final error term:

err =
width−1∑

x=0

height−1∑
y=0

ωsat · errsat(x, y)+

ωgrad · errgrad(x, y)+
ωint · errint(x, y)

(7)

We used error weights of wsat = 200, wgrad = 1, and
wint = 50 for our setup.
To speed up the optimization process, the optimization is
only applied to a sub-sampled input image. This is applied
such that only the darkest value in each image rectangle
defining one pixel in the low-resolution representation is
stored for the compensation data calculation, while only the
brightest value is stored for the input image. This ensures
that the worst case is considered during the optimization
step. Currently we use a sub-sampling of 40 × 30 pixels
which seemed to be a good trade-off in terms of accuracy
as well as computation time for our test setups. Note that
this sub-sampling should be adjusted depending on the spa-
tial frequency of the surface texture. To solve this relatively
large number of variables in a reasonable amount of time,
a bound constrained optimization not requiring derivatives
was applied [16]. After computation, the result is smoothly
up-sampled into its original resolution and used to adjust
the luminance of the image used as input for equation 2.

3. Experimental Setup
Different projector-camera pairs projecting onto multi-

colored surfaces were used for evaluation. The ambient il-
lumination was kept at a low and constant level. Results for



three different setups are shown in figures 1,2, and 5.
Hardware The method was tested using a LCD and
a single-chip DLP projector 2 with activated brilliant
color[12] processing and a manually adjusted white point.
For image acquisition, a Canon DSLR 3 was used. We cap-
tured JPEG images instead of RAW since our method does
not require linearized images. Camera noise and color shifts
from sequential DLP processing were minimized by averag-
ing 8 images of each projection. For computation, a state-
of-the art PC was used 4

Geometric Calibration The mapping between projector
and camera pixels was generated via a robust structured
light scan based on gray codes with additional line shift pat-
terns adapted from [10].
Implementation We implemented the algorithm in C++
with OpenMP based parallelization. For acceleration, the
compensation was written using a GLSL fragment program
as well. While it requires a large amount of GPU memory,
it enables a significant speedup achieving real-time process-
ing. Computation including image download took ∼ 40ms
(compared to 7s in the CPU version) for a 1080p input im-
age, which is sufficient for video playback.

4. Quality Comparison
We compared our method to the one presented in [3],

which was applied by assuming the color spaces of the de-
vices to be sRGB. While the camera used actually generates
images encoded in this color profile, the DLP projector’s
response curve was not described accurately by this pro-
file. A comparison is given in figure 3. While the method
mentioned also compensates for the majority of the errors
occurring, it’s visibly apparent that the nonlinear method is
able to more closely reproduce the desired colors if no ac-
curate device calibration data is available.

2LCD: Epson TW3200, DLP: BenQ W1100
3Canon EOS 600D
4Intel i7 3930, 32GB RAM, Nvidia Geforce 670

Figure 3. Comparison to the method presented in [3] assuming
a sRGB response of the devices. The absence of an accurate rep-
resentation of the sRGB color space in the current settings of the
DLP projector reduces the compensation quality in (a,d) compared
to our approach (c,f). The input images are shown in (b) and (e).
The surface of figures 1 and 2 has been used for the comparison.

Figure 4. Compensation accuracy with respect to the number of
samples used to compute the TPS weights: The diagram shows the
average ∆E∗

00 [18] of the two sample image series shown on the
left. While there is a clear quality improvement between 43 and
53 samples, the extension to 63 samples only marginally improves
the result, while requiring almost twice as many images.

5. Summary and Conclusion
In this paper we showed that a high quality photometric

compensation can be carried out without the need of any ra-
diometric device pre-calibration. By projecting and captur-
ing a reasonable number of images 5 a non-linear color map-
ping can be generated which enables an accurately com-
pensated projection even on strongly textured surfaces. The
proposed method offers several advantages compared to ex-
isting methods:

• Linearization errors resulting from inaccurate or noisy
radiometric calibration don’t influence the compensa-
tion quality

• The algorithm is able to compensate for the complex,
multi-primary processing of many single-chip DLP
projectors

• No further calibration hardware is required which
makes the compensation straightforward to deploy

The overall memory requirement, however, is significantly
higher compared to linear mapping algorithms. In our sys-
tem, we require up to 254 ∗ 3 floating point values for each
pixel which, depending on the resolution, requires several
gigabytes of memory. While this is not a serious problem
on modern computers, the GPU implementation might suf-
fer from this requirement on hardware with limited VRAM.
We could, however, show that current consumer level GPUs
are able to process this data in real-time. A comparison with
other existing methods as well as a thorough analysis on the
optimum tradeoff between input samples and compensation
accuracy as presented in figure 4 is part of our further inves-
tigations. While the compensation is calculated in real-time,
the global optimization takes, depending on the setup, five
to 30 minutes to converge. An optimized GPGPU based

5currently we use up to 125 images for the data acquisition



Figure 5. Additional samples of the proposed method using difference setups. The upper row (a-d) shows the desired input images, the
bottom row (e-h) the captured projections. In (i-k) the surfaces are shown under white projector illumination: In (a) a home cinema LCD
projector is used, in (b-d) a DLP projector is used projecting from the right hand side.

non-linear optimization might even be able to achieve in-
teractive frame rates including the content-dependent opti-
mization. Adding local chrominance adaptation as well as
content preservation in image regions darker than the ambi-
ent illumination to the optimization is another area of future
research.
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