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Figure 1: One application of our method is the temporally consistent propagation of scribbles through video volumes. Sparse feature
correspondences from an input video (a) are used to compute optical flow (c). Then, color scribbles (b) are spread in space and time to
compute the final coherent output (d).

Abstract

We present an efficient and simple method for introducing tempo-
ral consistency to a large class of optimization driven image-based
computer graphics problems. Our method extends recent work
in edge-aware filtering, approximating costly global regularization
with a fast iterative joint filtering operation. Using this representa-
tion, we can achieve tremendous efficiency gains both in terms of
memory requirements and running time. This enables us to process
entire shots at once, taking advantage of supporting information
that exists across far away frames, something that is difficult with
existing approaches due to the computational burden of video data.
Our method is able to filter along motion paths using an iterative
approach that simultaneously uses and estimates per-pixel optical
flow vectors. We demonstrate its utility by creating temporally con-
sistent results for a number of applications including optical flow,
disparity estimation, colorization, scribble propagation, sparse data
up-sampling, and visual saliency computation.
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1 Introduction

An important question for many image-based computer graphics
applications is how well do these methods scale to video sequences.
We address a general class of image-based graphics problems that
solve an energy minimization combining data constraints with a
regularization term enforcing smoothness (see Equation 1). Some
important problems of this type are optical flow, disparity estima-
tion, and colorization. For video applications, the temporal conti-
nuity of results is a very important requirement for preventing vis-
ible artifacts. However, many new and promising methods in this
class focus only on single-frame examples, and even the benchmark
Middlebury optical flow dataset (an application specifically dealing
with video) provides only eight frames of video for temporal exam-
ples, and ground truth only for a single frame [Baker et al. 2011].
In contrast, the average shot length of many modern movies and
TV is in the range of four to six seconds. As such, for image-based
methods to be useful in video applications, they must be able to
generate temporally consistent results over sequences on the order
of hundreds of frames.

The main difficulty is that the regularization term enforcing spatial
smoothness creates dependencies between pixels, often resulting in
a large non-convex optimization problem. While single-frame so-
lutions are tractable, the size of the problem increases rapidly with
the inclusion of the temporal dimension, making direct extensions
of these methods to video volumes computationally infeasible.

The main objective of our method is to create a memory and com-
putationally efficient solution that enables practical temporal con-
sistency for long sequences. To achieve this, we trade off accuracy
for efficiency, and solve a simpler approximation of the global opti-
mization. We use well known similarities between these optimiza-
tion problems and nonlinear partial differential equations (PDEs),
where anisotropic diffusion is often used to find solutions. Moti-
vated by the close relationship between anisotropic diffusion and
edge-aware filtering [Durand and Dorsey 2002], our work follows
the recent trend of using image filtering techniques to efficiently
solve or approximate optimization problems [Criminisi et al. 2010;
Rhemann et al. 2011]. Specifically, we separate the data term from
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the regularization term and approximate global smoothness as an
efficient local edge-aware filtering operation.

To realize such a filtering operation, we introduce an extension to
the domain transform [Gastal and Oliveira 2011] that enables edge
preserving filtering to be efficiently computed for video sequences
while correctly following (and simultaneously computing) motion
vectors in an iterative framework.

While our approach solves an approximation of the global opti-
mization, by introducing a temporal smoothness assumption we can
constrain ambiguities that would exist in a single frame and achieve
high quality, temporally consistent results despite the simpler for-
mulation. In addition, when user input must be provided (such as
in the form of scribbles), our temporal continuity assumption can
reduce the required manual effort by propagating this information
both spatially and temporally. Unlike many recent accelerated pro-
cessing methods, our approach is conceptually simple and fast with-
out exploiting GP-GPU parallelism. In addition, it has only a few
intuitive parameters, which we fixed for each application across all
datasets shown in this paper.

To summarize, we present the following main contributions:

• A simple novel approach for approximating a class of energy
minimization problems in image-based graphics using edge-
aware filtering.

• An efficient implementation of this concept, extending ex-
isting work to enable temporal filtering that follows motion
paths, confidence values, and occlusion estimates.

2 Related Work

This paper addresses a generalized method used to solve a wide
array of problems, and a full review of all applications is outside
the scope of the paper. Instead, we present an overview explaining
how our work relates to selected relevant approaches.

Global Optimization Traditionally, image-based data + regular-
ization problems are solved by defining a combined error term and
computing a global minimum. Optical flow is commonly found by
iteratively solving a linear system of equations [Horn and Schunck
1981]. Disparity estimation (stereo) methods often use a similar
error formulation, which is solved with graph cuts, simulated an-
nealing, or other such approaches [Scharstein and Szeliski 2002],
and a closed form solution was presented for colorization [Levin
et al. 2004]. These methods all require optimizing a large number
of free variables, which leads to large memory requirements and
computationally expensive convergence. Both of these problems
are made worse when dealing with large (HD) images and video
sequences. We present a much simpler approximation that allows
us to process long, high resolution video shots.

Optical Flow Implicit computation of optical flow is an integral
part of applications that produce temporally consistent results, as it
is used to model the motion of objects between frames. Many high-
performing modern methods still use some variation of the original
Horn Schunck formulation [Horn and Schunck 1981], incorporat-
ing modified data terms and iterative, pyramid-based solutions [Sun
et al. 2010; Zimmer et al. 2011]. Bilateral filtering has been inte-
grated into an iterative variational framework, replacing the tradi-
tional anisotropic diffusion step [Xiao et al. 2006]. These methods
operate only on neighboring pairs of video frames, are computa-
tionally expensive, and cannot easily enforce temporal continuity, a
main focus of our work.

Other recent efficient methods filter a matching-cost-volume and
select a minimum-error underlying surface to compute discretized

optical flow and disparity estimates [Rhemann et al. 2011]. Like our
approach, these methods also use edge-aware filtering, although for
different purposes. One of their main advantages is that the opti-
cal flow is computed locally, allowing for GPGPU parallelization.
However, constructing cost volumes for full video sequences is im-
practical given the size of the discrete label space. Our approach
allows us to work in-place on the video with lower memory re-
quirements and does not require discretization of the solution space,
which can lead to artifacts.

Temporal Consistency Temporal stability has been recognized
as a significant open problem. Proposed solutions include sliding
windows [Hosni et al. 2011; Volz et al. 2011] and Kalman filter-
ing [Höffken et al. 2011]. With these methods, each output frame
is still computed locally, and greedy decisions can lead to temporal
inconsistencies. In addition, selection of the window size is an im-
portant parameter balancing computational requirements with tem-
poral smoothness. Our approximation avoids this trade-off as we
can process entire video shots.

For colorization, methods have directly solved global optimization
problems on video volumes using pre-computed optical flow to
model frame-to-frame relationships [Levin et al. 2004; Bhat et al.
2010]. These approaches can generate very high quality output, but
are computationally expensive and do not scale well to high resolu-
tion images or long video sequences.

Filtering Common approaches for edge aware filtering use bilat-
eral filter weights [Tomasi and Manduchi 1998], or a local linearity
assumption [He et al. 2010]. Another class of edge-aware filtering
uses weights based on the geodesic-distance [Criminisi et al. 2010;
Gastal and Oliveira 2011], which performs pixel mixing inversely
proportional to the distance over the IR5 (RGBXY ) image man-
ifold, as opposed to the `2 norm (used for bilateral filtering). We
use geodesic-distance filtering, as it more closely approximates the
diffusion-model in an anisotropic heat equation, and as shown in
Figure 7 yields better results for our application. Specifically, we
develop an extension to the domain transform (described in further
detail in Section 3).We chose this method as it is simple, efficient
with large kernel sizes (necessary for our applications), and pro-
poses a separable edge-aware filter.

In prior work, edge-aware filtering has been used for sparse data
up-sampling of single frames for depth maps [Kopf et al. 2007;
Yang et al. 2007], laser range data [Dolson et al. 2010], and scrib-
bles [Gastal and Oliveira 2011; Criminisi et al. 2010]. We extend
these ideas to a large class of problems by exploiting their rela-
tionship to global optimization, and tailor our approach to video
volumes, efficiently addressing temporal consistency and yielding
high quality results through the use of temporal smoothness.

3 Method

We address a class of problems that can be solved by minimizing
error functionals of the following form,

E(J) = Edata(J) + λEsmooth(J) (1)

for unknown solution J , where Edata is the application specific
error term, and Esmooth enforces neighborhood smoothness.

The main idea of our method is in order to avoid costly global op-
timization, we split up the data and smoothness terms and solve
them each in series. We do this by first initializing J with appli-
cation specific initial conditions that minimize Edata locally. The
regularization term in the energy minimization (Esmooth) is then
replaced by an efficient edge aware filtering operation on J . In this
sense, smoothness is created as postulated, rather than solved for



with an optimization. Proper formulations of this idea can be tai-
lored to suit a variety of application scenarios which we describe in
Section 4.

Original image Initial J Final flow

ρ Initial confidence G Final confidence

Figure 2: Steps of our method used for solving for optical flow. We
start with sparse initial estimates in J provided by feature matching
(eroded for clarity). We then use our filtering approach to achieve
the final result. The second row shows the occlusion weights ρ,
confidence image G and the filtered confidence image.

We will begin by explaining how our method works for a single
frame, using optical flow as an example application. In this case,
our unknowns J(x, y) are motion vectors, expressed as ~w(x, y) =
(u, v) corresponding to the motion between two images It and It+1

at pixel (x, y). Equation 1 commonly becomes:

Edata(u, v) =
∑
(x,y)

||It(x+ u, y + v)− It+1(x, y)||2 (2)

Esmooth(u, v) =
∑
(x,y)

(||∇uxy||2 + ||∇vxy||2) (3)

where ∇ is the gradient magnitude operator, Edata encodes the
matching cost incurred by ~w, and Esmooth minimizes the total
quadratic variation of the flow gradient.

While replacing global optimization with a local smoothing opera-
tion has been studied before [Criminisi et al. 2010; Rhemann et al.
2011], we find it helpful to quickly go over the mathematical jus-
tification to more clearly define the class of applications that our
method can be applied to. By viewing optical flow as a reaction-
diffusion problem, we can see that Equation 3 is the Dirichlet’s en-
ergy, and minimizing it is equivalent to solving the Laplace equa-
tion −∆~w = 0 given Edata as a boundary condition. This leads to
the following related heat equation

∂ ~w

∂t
= α∆~w (4)

with the Dirac function initial conditions:

~w(x, y) =

{
J(x, y) if ∃(x, y) ∈ J
~0 otherwise

(5)

In the isotropic case, the Green’s function solution to Equation 4
on an infinite interval is simply a Gaussian convolution. As images
form an inhomogeneous medium, the arising nonlinear-PDEs can
be solved by using anisotropic diffusion [Perona and Malik 1990],
which in the discrete setting has been shown to be asymptotically
equivalent to edge aware filtering [Paris et al. 2009]. As such, we
can see that regularization equations of the form of Equation 3 can
be solved with edge-aware filtering, given the right initial condi-
tions (which are determined in the optical flow case, by Equation 2).

We therefore start by initializing J with sparse feature correspon-
dences computed between frames It and It+1 (Equation 5). In
our implementation, we use an out-of-the-box feature matcher from
OpenCV that employs SIFT and Lucas-Kanade features. This pro-
vides accurate ~w vectors in J , but only at locations where reliable
estimates can be found. We then compute an edge-aware filtering
of J to create the final result (see Figure 2).

In order to realize a temporal edge-aware filtering operation, we ex-
tend recent work, called the domain transform [Gastal and Oliveira
2011], which we will briefly describe here, but refer the reader to
the original work for a complete description. Rather than varying
the filter weights based on image content, the signal is transformed
so that it can be filtered by a fixed width Gaussian (a much more ef-
ficient, and importantly separable operation). It is then transformed
back into the original domain, where strong gradients are main-
tained. Intuitively, transformed coordinates are computed for each
pixel such that two pixels belonging to the same object have nearby
coordinates, while pixels that lie on different sides of a strong im-
age gradient are far apart. Figure 3 illustrates this applied to a 1D
signal.

(a) (b) (c) (d)

Figure 3: 1D domain transform example. (a) Input signal, (b)
Transformed x-coordinates, (c) Transformed signal Ĉ, (d) Output
after filtering (c) with a Gaussian and re-mapping it to the original
domain.

In the 2D image case, a series of N 1D iterations is performed,
alternating between X and Y until convergence. We call the dense
filtered solution J ′. We perform a joint domain-transform filtering,
where the transformed coordinates are determined from image I ,
and are then used to filter the solution J .

As the Gaussian kernel is not an interpolation kernel and J may be
sparse, the sum of the kernel weights at each pixel will not necessar-
ily sum to one. A normalization image G is therefore created such
that for each pixel i, Gi = 1 if there is data at i, and Gi = 0 other-
wise. This image is filtered with the same filtering operation as J ,
producing G′, which is the sum of the kernel weights per pixel.The
normalized final result is then computed as J

′′
= J′

G′ .

We now describe our novel extensions to this method.

Temporal Filtering We extend the single frame method to video
volumes by adding an additional pass of the separable box fil-
ter that filters the temporal (T ) dimension. Unlike with spatial
passes, temporal filtering should follow the motion of points be-
tween frames. This prevents incorrectly averaging information
across object boundaries and improves results (Figure 6). To cor-
rectly model motion, our method creates dense estimates of optical
flow, regardless of the final application. We call the vector of pixels
that correspond to the motion of one scene point over time a path.
One such path is shown in Figure 4. Paths are computed by fol-
lowing optical flow vectors at each frame (rounding to the nearest
pixel), and are then filtered after undergoing a 1D domain trans-
form, similar to a row or column in the spatial filtering passes.

Of course, when computing optical flow, this creates a chicken-
and-egg problem; per-pixel motion vectors are required in order to
correctly compute the motion vectors! We resolve this using an
iterative approach that begins with a rough estimate of the flow as



Figure 4: A path (black line connecting pixels) is defined by the
motion vectors at each current frame (blue arrows). Filtering in
the temporal direction happens along these paths; the resulting 1D
vector on the right is iteratively convolved with a box filter in the
transformed domain.

computed by our sparse feature matching and one spatial X and Y
filter pass. This rough estimate provides initial motion vectors for
the first temporal pass, which are then updated in each of the N
iterations (consisting of one X,Y, T pass each).

We use a sliding box filter for efficiency, as only one addition and
subtraction operation is needed for each pixel along the path, re-
gardless of kernel size. However, we must be careful when filtering
the temporal direction, as paths do not create a bijective mapping
from frame to frame (which is different from rows and columns).
This is due to three cases: 1) A path can leave the image boundary,
2) Multiple paths can converge on the same pixel, and 3) A pixel
can have no paths in the previous frame that map to it. To com-
pute unbiased results when filtering temporally, it is important that
at any given frame, every output pixel belongs to exactly one path.
To accomplish this, we begin at the first frame with one path per
pixel and maintain a double-ended queue per-pixel that keeps track
of the box-filter contents as it moves along that path. At each frame
as we move in time and the paths begin to diverge, we find all pixels
that no longer belong to a path (due to 1) or 3)). For these pixels,
we spawn a new path centered at that pixel, and initialize the box
filter by stepping backwards in time by the box-filter radius (in the
transformed domain). In case 1), the path is ended and the sliding
box filter stopped. In case 2) when multiple paths collide, we ran-
domly keep one while cutting the other off at the previous frame.
As the scale of the temporal domain is different, we use different
parameters to control γ and the filter radius, which we call σrt and
σst (all parameters are given in a table at the end of Section 4).

Confidence By extending the role of the normalization image
G, we introduce a simple way to add confidence values to our data
term. As we mentioned before, setting G(x, y) to 1 in the pres-
ence of sparse data yields a normalization image that conveys how
much known data has reached each pixel. To instead assign a con-
fidence weight βi to the sparse feature at pixel i, we set the value
of Gi = βi, and multiply the data image by the same Ji = GiJi
for all pixels i. We write this per-element multiplication as G · J .
Again, we filter both G and G · J and compute the final result as
(G·J)′
G′ . In addition to being used for normalization, the confidence

term correctly encourages higher confidence points to contribute a
greater influence on the final result. This effect is illustrated in Fig-
ure 5.

For optical flow and disparity estimation, we use the feature match-
ing vector difference as a confidence weight, increasing the contri-
bution of the sparse features that had better matches.

Iterative Occlusion Estimates

We also incorporate additional information into the role of the nor-
malization image G, which helps greatly with occlusion regions.
To compute an occlusion likelihood, we estimate both forward and
backwards flows (~wf and ~wb) at each frame, and apply a confidence
penalty (ρ) for each pixel i based on how well the vectors match.

J G (G · J)′ G′ (G·J)′
G′

Figure 5: A demonstration of how our confidence term is applied
to two 1D examples (one each row). The original sparse signal J
is modulated with the confidence G and filtered to produce (G · J)′

(blue = signal, pink = contribution of individual points). G′ is
the filtered confidence image. The final normalized result (G·J)′

G′

is shown with the original signal overlaid. In the bottom row, the
decreased contribution of the middle point is visible due to its lower
confidence value.

None +Temporal +Confidence +Occlusions

Figure 6: Table showing the effect of each processing step intro-
duced. We incrementally add temporal filtering, confidence values,
and flow occlusion estimates to optical flow, and scribble propaga-
tion.

We use a robust penalty function:

ρ = (1− |~wf + ~wb|)θ (6)

where θ is a parameter that controls the shape of the penalty curve.
While computing optical flow, these occlusion estimates ρ change
each iteration (ρ0 to ρN−1), so we update our occlusion weights
based on the flow estimates from the previous iteration. Begin-
ning with sparse data confidence G0 = β, for each iteration n
before filtering, we compute Gn = Gn−1 · ρn−1, and update
Jn = Jn−1 · ρn−1 equivalently. This term has the effect of lower-
ing the confidence in regions where our flow estimates prove unreli-
able. This in turn causes higher confidence spatial temporal neigh-
bors to exert a greater influence on these occlusion regions.

Evaluation We show the improvements gained by each of the
three steps in Figure 6 on several datasets, for the applications of
optical flow (top two) and scribble propagation (bottom). In the
first column, we show the results using the naive solution of a tem-
poral edge aware filter (filtering the temporal dimension straight
through the video volume). We then incrementally add our motion
path adhering temporal filtering, confidence values, and occlusion
estimates. The edge regions in particular are greatly improved, as
are incorrect values that arose due to noise in our initial matching
(such as on the flat background surface in the central row). In the
scribble propagation example, we can see improvements in the out-
line of a frog. We also compare our results to other approaches for



joint-data upsampling in Figure 7, showing that our method out-
performs a bilateral filter [Chen et al. 2007], and a global solution
computed using a locally-linear assumption [Levin et al. 2006]. The
bilateral filter allows flow to spread incorrectly through similarly
colored regions, and the global solution exhibits noise due to the `2
penalization of incorrect feature matches.

Bilateral Filter Global Solve Our Method Ground Truth
RMSE 0.42 RMSE 0.21 RMSE 0.12

Figure 7: A comparison of different methods for propagating
sparse correspondences to compute optical flow. The results shown
here were generated using each authors’ publicly available code,
and choosing parameters that yielded the lowest RMSE between
ground truth and estimated flow vectors (in pixels).

Quantitatively validating temporal optical flow is difficult, as public
ground-truth datasets for long, real world sequences are not read-
ily available. The widely used Middlebury ranking provides short
eight-frame sequences with one frame of ground truth for testing.
However, as noted by previous temporally aware methods [Hosni
et al. 2011; Zimmer et al. 2011] due to capture methodology, these
sequences exhibit large, temporally discontinuous motions that vi-
olate a smoothness assumption. Such prior works therefore avoided
making comparisons to this data with temporal methods. Similarly,
we found that our method visually performed significantly worse
under these conditions than with real-world footage. However, for
comparison, we include the latest Middlebury rankings; at the time
of submission, our method had an average rank of 56.1 in terms of
average endpoint error.

Additionally, we compare our results on real world video datasets
to a number of existing state of the art methods; one that works on
single frames [Zimmer et al. 2011], and two temporal approaches
that use sliding windows, one variational [Volz et al. 2011] and one
cost-volume filtering method [Hosni et al. 2011] (currently ranked
10th, 5th, and 15th in Middlebury evaluation respectively at the
time of submission). We visualize the comparison both with color
coded motion vectors, and then most significantly, by directly view-
ing the result of using optical flow in a typical application, in this
case frame-rate upsampling. These results are shown in the supple-
mental video, and briefly in Figure 8, where we can see that our
approach produces results that are more faithful to the movement,
and less noisy temporally.

An additional advantage of our method is that by using a descriptor-
based feature matcher, we are able to correctly detect small objects
that exhibit large motion, as long as they contain suitable features
for matching. This is something that is traditionally very difficult
to model, as most variational methods linearize the image, meaning
that the result is only valid locally. Long range motion is detected
by computing over a scale-space pyramid, which can cause small
objects to disappear.

4 Applications

We now apply our method, enforcing temporal smoothness on a
number of different applications. In each of the following cases,
we first compute optical flow and then compute the application-
specific result, using the above described filtering approach. Fig-
ure 8 contains a table of results from our method, however we refer
the viewer to the video for better validation of our method.

Disparity Estimation Disparity estimation involves computing
dense correspondences between a rectified pair of stereoscopic im-
ages. For this application, solution Jxy = dxy contains scalar val-
ues that describe the disparity between a stereo image pair Il and
Ir at pixel (x, y). Similar to optical flow, this can be expressed as:

Edata(d) =
∑
(x,y)

||Ir(x+ dxy, y)− Il(x, y)||2

Esmooth(d) =
∑
(x,y)

(||∇dxy||2).

We again sparsely compute an initial J using feature matching be-
tween Il and Ir , and perform our filtering. We evaluate the qual-
ity of our results by comparison to high quality disparity maps
provided with publicly available MPEG test sets [Wildeboer et al.
2010]. One advantage of our approach is that by design our dispari-
ties are well aligned to image edges. This is an important feature in
a number of applications, such as virtual view synthesis and object
insertion, which we show in the accompanying video.

Colorization and Scribble Propagation Another application of
our method is the temporal and spatial propagation of sparse user
input. These pen strokes can be used to colorize videos, represent
high-level labeling, or to provide scene composition cues that are
intuitive to humans, such as depth ordering [Wang et al. 2011]. In
prior work, Edata enforces the given scribble map, and Esmooth
assumes a locally-linear model [Levin et al. 2004], written for pix-
els i and scribbles s as:

Esmooth(s) =
∑
i

||si −
∑

p∈IN(si)

wpisp||

where wpi are the locally linear weights. We initialize Ji = si, and
apply our temporal smoothness assumption to propagate scribbles
at key-frames throughout the video. For colorization, we convert
the RGB image I into YCbCr space and replace the CbCr color
channels with those specified by the propagated user scribbles. The
required number of scribbles depends on the amount of motion in
the scene, as scribbles are only valid while the scene has a similar
composition. We found that in practice, we were able to get con-
vincing results by creating on average one scribble key-frame for
every 20 output frames, which is on par with sample results from
other global optimization approaches.

Depth Upsampling Depth sensors often provide information
that has lower spatial resolution, missing data due to parallax be-
tween sensors, and is temporally noisy. We address all of these
issues by enforcing edge-aware spatial and temporal smoothness
on the depth data. We tested our method by initializing J with the
depth data from a Microsoft Kinect sensor, and filtering this using
the video data to compute our transformed coordinates. The depth
maps are shown before and after upsampling in Figure 8. We can
see that our method fills in unknown areas adhering to image edges,
and produces temporally consistent results for the entire sequences.

Saliency Determining visual saliency is a very important com-
ponent of many image-based graphics operations. Efficient meth-
ods exist that estimate importance by analyzing the frequency spec-
trum [Guo et al. 2008]. We use this method to compute per-frame
saliency l, initializing with J(x, y) = l(x, y), and then introduce
our temporal smoothness, producing a cleaned, stable output. We
validate our saliency by using it for the application of video retar-
geting, where the aspect ratio of a video is modified while preserv-
ing the appearance of visually significant objects. In this case, the



temporal stability of the saliency map is very important, as noise
in the map can cause visually distracting wobbling in the final re-
sult. We also demonstrate this effect in the video using a per-frame
retargeting method based on Krähenbühl et al. [2009].

We use the following parameter values for all datasets:

Application σs σr σst σrt N θ

Flow 2000 .4 5 .1 4 5
Disparity Estimation 2000 .3 5 .1 4 5
Scribble Propagation 1000 .3 5 .1 4 5

Depth upsampling 1000 .1 5 .1 4 5
Saliency 20 1.5 15 .2 4 5

5 Performance

An important benefit of our method is that it is computationally sim-
ple. In addition, the processing steps are mainly independent and
the memory accesses mainly local, so it scales well to multi-core or
hardware implementations. We provide all timing information for
a HD 720p sequence on a desktop computer (Core i7 920 2.67GHz
(4 cores) CPU and 12GB of memory), ignoring file IO time.

First, we load the video sequence and compute spatial transformed
coordinates, which stay fixed for the sequence. This takes 3.6ms
per frame.

Spatial filtering is implemented as a sliding box filter. For opti-
cal flow, six data channels per pixel (forward and backwards flow
(u, v) and normalization channels G) are processed, this takes
35ms per frame. Temporal filtering also is performed with a sliding
box filter, but in this case motion paths must be followed. These
paths change every iteration, requiring the coordinate transform
along a path to be recomputed on-the-fly. To filter a path, the slid-
ing box filter stores a double-ended queue of entries, which avoids
us from having to re-follow flow vectors as the box translates. We
implemented this as a ring buffer that allows for quick push front
and pop back operations. Additional special cases have to be han-
dled when paths begin and end, due to the cases mentioned in Sec-
tion 3. When a new paths is created, a sliding box filter is initialized
around the current pixel, reconstructing the path backwards in time.
This adds a small number of operations, but happens only for a few
pixels in the video video (around 2.3%). While rows and columns
can be trivially parallelized, filtering paths requires additional syn-
chronization. We used an atomic check-and-set to ensure that when
multiple paths converge, only one thread continues and the other
ends. Temporal filtering requires a larger memory footprint to store
path queues, and more random access patterns in memory. As such
it is slower than the spatial passes, taking 96ms per frame.

Finally, after everyXY T iteration, we update the confidence maps.
This requires Equation 6 to be evaluated per pixel, which takes
20.7ms per frame.

In total, our proposed spatio-temporal filtering requires approxi-
mately 151.6ms per frame per iteration for HD video. For N = 4
iterations, and a shot consisting of 100 frames of 720p material, we
can perform all filtering operations on six data channels (comput-
ing forward and backward flow) in 65.2 seconds; 0.652 seconds per
frame.

Our method additionally requires computing sparse (forward and
backward) feature correspondences. We do this for all frames in
parallel, using an out-of-the-box OpenCV solution that required
145.43ms on average per frame.

We compare our method to publicly available timing information
from the existing state-of-the-art optical flow methods that we val-
idate against. Times reported are for the task of computing eight

frames of optical flow on a Middlebury sequence (640x480 resolu-
tion).

Method Time per output frame Total for 8 frames

[Rhemann et al. 2011] 55 seconds 7.3 minutes 1

[Zimmer et al. 2011] 620 seconds 1.4 hours
[Volz et al. 2011] 40 minutes 5.4 hours

Our method 625 ms 5 seconds
1 We note that in the video, we compare to a more recent temporal, GPU-accelerated
follow-up of this work [Hosni et al. 2011]. While its timings for optical flow have not
been made public, the paper reports 41ms computing one frame of disparity estimation
on a 400x300 image.

Our method does not use sliding windows, and takes only 5 sec-
onds on a standard CPU for the 8 frames, 3.2 seconds for initial
feature matching and 1.8 second for our proposed spatial-temporal
filtering. Please see the video for a comparison of result quality.

Our method is also efficient in terms of memory usage, requiring
order O(N) memory, where N is the number of pixels in the video
volume. This allows long sequences to be computed simultane-
ously. Processing 400 frames of 640x480 video, or 140 frames of
1280x720 video requires 8.83 GB memory with our naive imple-
mentation. However, as most computational steps are trivially par-
allelizable, longer videos could easily be supported by swapping
images.

6 Conclusion

In summary, we have presented a simple and efficient approach for
approximating global smoothness over video sequences using tem-
poral edge-aware filtering. Our method is robust and achieves stable
results over a variety of datasets using a fixed set of parameters per
application. By introducing a temporal smoothness assumption, we
have shown that it is possible to obtain good results for difficult
image-based computer graphics problems such as optical flow and
disparity estimation by just using a feature matcher and filter in
place of costly global minimization.

Our method has not been fully optimized for speed, and further
performance gains could be made by exploiting GPU parallelism.
Recent work describes significant performance gains computing
summed area tables on the GPU, which is a large component of
our computation [Nehab et al. 2011].

Of course, our approach is not without limitations. Primarily, we
have decided to trade accuracy for computational efficiency, in the
process greatly simplifying the problem that we are solving. One
consequence of this is our dependence on having sufficient initial
conditions; it is possible that objects can remain undetected when
there are not enough image features to match between frames. To
alleviate this, we tuned the parameters of our feature matcher to find
as many features as possible, even when this creates a number of
bad matches, as our filtering approach suffers more from the lack of
data than from the presence of outliers (incorrect matches), which
are largely filtered out by spatial and temporal neighbors.

Our method also shares similar limitations to most image-based
computer graphics approaches in that it can fail when important ob-
ject boundaries are not well represented by image edges. However,
in applications with very sparse input such as scribble propagation,
greedy mistakes can cause data to incorrectly bleed across bound-
aries, something that would be avoided in a true global solution. As
a result, when compared to prior scribble propagation work, our
method requires scribbles to be more localized at object bound-
aries; this is a trade-off for our efficiency gains. This effect can
be seen in the supplementary video, where we perform colorization
using scribbles from a prior global approach [Levin et al. 2004]),



and show a comparison between our result and theirs. One possi-
ble solution could be to user interaction where the more important
object edges are highlighted and the confusing texture edges are
suppressed. As our method can provide interactive rates for single
key-frames and fast results for video sequences, this kind of inter-
action could greatly improve the results with minimal overhead.

Despite these limitations, it is our hope that this approach will open
the door for the practical application of many existing and future
image-based computer graphics techniques to video data.
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Figure 8: Here we present a table of our results. Optical flow is compared to a high ranking (10th in the Middlebury evaluation at time
of submission) per-frame method (†) [Zimmer et al. 2011]. Sparse depth data from a Microsoft Kinect is filtered to remove temporal noise
and fill unknown regions. Scribble propagation is computed over 35 frames of video, with the two input scribbles used shown inset. Our
two-view disparity estimation is compared to official reference depth maps provided by the MPEG group for testing (?) [Wildeboer et al.
2010], computed using three input camera views. Finally, we show three images from a per-frame visual saliency method, and then our
temporally stable results. Please see the included video for a better visualization of these applications.


