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Figure 1: The beam radiance estimate (left) finds all photons along camera rays, which is a performance bottleneck for this CARS scene due
to high volumetric depth complexity and many photons (917K). Our method (right) fits a hierarchical, anisotropic Gaussian mixture model to
the photons and can render this scene faster, and with higher quality using only (4K) Gaussian components. The listed times denote the costs
of the preprocessing stage (including photon tracing and hierarchy construction), as well as the final rendering stage, respectively.

Abstract
State-of-the-art density estimation methods for rendering participating media rely on a dense photon represen-
tation of the radiance distribution within a scene. A critical bottleneck of such kernel-based approaches is the
excessive number of photons that are required in practice to resolve fine illumination details, while controlling
the amount of noise. In this paper, we propose a parametric density estimation technique that represents radiance
using a hierarchical Gaussian mixture. We efficiently obtain the coefficients of this mixture using a progressive
and accelerated form of the Expectation–Maximization algorithm. After this step, we are able to create noise-free
renderings of high-frequency illumination using only a few thousand Gaussian terms, where millions of photons
are traditionally required. Temporal coherence is trivially supported within this framework, and the compact
footprint is also useful in the context of real-time visualization. We demonstrate a hierarchical ray tracing-based
implementation, as well as a fast splatting approach that can interactively render animated volume caustics.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing; I.6.8 [Simulation and Modeling]: Simulation—Monte Carlo

1. Introduction

Light interactions in participating media are responsible for
many subtle but rich lighting effects in fire, water, smoke,
clouds and crepuscular rays. Unfortunately, accurately ren-
dering these effects is very costly. Cerezo et al. [CPP∗05]
provide a comprehensive overview of recent techniques.

Though methods such as (bidirectional) path trac-
ing [LW93, VG94, LW96] or Metropolis light trans-
port [PKK00] are general and provide unbiased solutions, it
is costly to obtain high-quality, noise-free solutions except
in the simplest scenes. The most successful approaches
typically combine photon tracing with a biased Monte Carlo
framework [JC98, WABG06, JZJ08].

Volumetric photon mapping [JC98] traces paths from
light sources and stores “photons” at the vertices of these

paths. A subsequent rendering pass approximates lighting
using density estimation of the photons. The recent beam
radiance estimate (BRE) [JZJ08] for photon mapping fur-
ther accelerates this approach and improves the rendering
quality by accounting for all photons that are located along
a ray query.

However, even with such state-of-the-art optimizations,
photon mapping suffers from a few remaining sources of
inefficiency: 1) complex high-frequency lighting requires an
excessive number of photons, which increases memory de-
mands and leads to slow rendering times; 2) many photons
may be processed which ultimately contribute very little to
the final pixel color (due to subsequent attenuation or small
projected pixel size); and 3) since photons are generated
stochastically, the reconstructed density is prone to flicker-
ing unless many photons are used.
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In this paper, we propose an algorithm that operates on
a new representation of volumetric radiance to efficiently
render images. This representation is compact and expres-
sive, solving the aforementioned problems. Instead of stor-
ing individual photons and performing non-parametric den-
sity estimation [Sil86] during rendering, we progressively fit
a small set of anisotropic Gaussians to the lighting distri-
bution during photon tracing. Since each Gaussian is fit to
the density of a large number of photons, we can accurately
reconstruct complex lighting features during rendering using
a small number (thousands) of Gaussians while providing
better reconstruction than a large number (millions) of pho-
tons. Our framework trivially provides temporal coherence
and, to handle the varying contributions of Gaussians to the
rendered image (due to attenuation and projected pixel size),
we propose a hierarchical approach which provides high-
quality level-of-detail (LOD). Our compact hierarchical rep-
resentation provides direct performance benefits which we
demonstrate both in offline and interactive rendering.

2. Related Work

Photon Mapping. Schjøth and colleagues demonstrated
the benefits of anisotropic density estimation [SFES07,
SSO08] to obtain higher quality surface caustics with pho-
ton mapping. Hachisuka et al. [HOJ08] progressively refine
radiance estimates at fixed measurement points to achieve
convergent bias and variance in a view-dependent manner.
We instead fit to the photon density by progressively refin-
ing both the positions and other parameters of an anisotropic
Gaussian mixture, providing reduced variance and faster
rendering from arbitrary viewpoints. Our work has a number
of similarities to both hierarchical photon mapping represen-
tations [CB04, SJ09a] which provides LOD for final gather,
and photon relaxation [SJ09b] which iteratively moves pho-
ton positions to reduce variance. By using Gaussian mixtures
we obtain both of these benefits while drawing upon a set of
principled and well-established fitting techniques.

Hierarchical and Point-based Rendering. Level-of-
detail for light transport has been used to accelerate the
Radiosity algorithm [HSA91, Sil95] and volume visualiza-
tion [LH91]. Point-based [DYN04] and mesh-less [LZT∗08]
variants allow for more flexible geometric representations
while Lightcuts [WFA∗05, WABG06] provides hierarchical
evaluation of lighting from many pointlights.

Our hierarchical rendering approach is related to hierar-
chical splatting of complex point-sampled geometry [RL00]
and large stellar datasets [HE03, HLE04]; however, we
use an anisotropic Gaussian representation. EWA splat-
ting [ZPvBG02] uses Gaussians to provide improved, alias-
free reconstruction for surface and volume visualization.
While we share similar goals to these approaches, we op-
erate within a parametric density estimation context and
progressively fit the positions and other parameters of
anisotropic Gaussians to the photon density.

Parameter Fitting. As opposed to previous global illu-
mination techniques, which have relied primarily on non-
parametric kernel density estimation such as the nearest
neighbor method [Sil86], our technique leverages a large
body of work on parametric density estimation and param-
eter fitting. Instead of performing the density estimation
solely during rendering, we fit anisotropic Gaussians to the
photon density during precomputation.

The use of Gaussians for rendering participating media
is not new [ZHG∗07, ZRL∗08]; however, previous methods
used isotropic Gaussians to approximate the heterogeneous
media density, whereas we fit anisotropic Gaussians to the
radiance distribution. We furthermore support hierarchical
evaluation and leverage the well-established Expectation–
Maximization [DLR∗77] (EM) method specifically tailored
for fitting anisotropic Gaussian mixtures.

While EM has seen recent use in image synthe-
sis [TLQ∗05, HSRG07, PJJ∗11], it has a much richer
history in fields such as machine learning and data mining
where hierarchical techniques [GR05, GNN10] directly
apply to LOD, and incremental techniques [NH98, HG09]
provide parameter fitting within a limited memory footprint
for streaming data. In these fields, however, large Gaussian
mixtures are typically on the order of a few dozen to a
few hundred components and their geometric quality is
often only indirectly reproduced (e.g. color segmenta-
tion/classification). In contrast, to accurately fit volumetric
lighting, we rely on much larger Gaussian mixtures (tens
of thousands), and their fitted parameters directly influence
the quality of the rendered image. To obtain the necessary
quality and performance under these conditions we extend
the accelerated EM method [VNV06].

3. Preliminaries

3.1. Radiative Transport in Participating Media

In the presence of participating media, the light incident at
any point in the scene x (e.g. the camera) from a direction
~ω (e.g. the direction through a pixel) as expressed by the
radiative transport equation [Cha60] is the sum of two terms:

L(x,~ω) = Tr(x↔ xb)Ls(xb,~ω)+Lm(x,~ω,b), (1)

where the first term accounts for the radiance reflected off
surfaces and the second term describes radiance scattered in
the medium. Before reaching x, the radiance from the near-
est surface at a distance b, xb = x− b~ω, is reduced by the
transmittance Tr which describes the percentage of light that
propagates between two points (see Dutre et al. [DBB06] for
details). We summarize our notation in Table 1.

In this paper we are primarily concerned with the media
radiance which integrates the scattered light up to the nearest
surface

Lm(x,~ω,b)=
∫ b

0

∫
Ω4π

σs(xt)Tr(x↔xt) f (θt)L(xt ,~ωt)d~ωt dt. (2)
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Table 1: The notation used in this paper.
Symbol Description

{xi}n
1 Photon positions used in the EM fit

i Index for photons
n Total number of photons

p(x) True probability density of photon positions
p(x|Θ) Probability density of GMM approximating p(x)
g(x|Θs) Gaussian density at x of GM component s

Θs Weight, mean, and covariance matrix (ws,µs,Σs) of component s
Θ Set of all mixture model parameters {Θs}k

1
s Index for GMM components
k Number of GMM components
L(Θ) Log-likelihood function defined in (6)
F(Θ,q) Lower bound on the likelihood function, see (8)

qi(s) Responsibility of point i for GMM component s
qA(s) Responsibility of cell A for GMM component s

nA Number of points xi that fall within A
〈..〉A Average of the quantity .. w.r.t. the points xi ∈ A
Θ̄ j Parameters (w̄ j, µ̄ j, Σ̄s) of GMM pyramid component j
j Index into GMM pyramid nodes

Here σs is the scattering coefficient of the medium, f is the
phase function, cosθt = ~ωt ·~ω, and xt = x− t~ω. This joint in-
tegral along the ray and over the sphere of directions, which
recursively depends on the incident radiance (1), is what
makes rendering participating media so costly.

3.2. Volumetric Photon Mapping and the BRE

Volumetric photon mapping [JC98] accelerates this compu-
tation using a two-stage procedure. First a photon map is
populated by tracing paths from light sources and recording
each scattering event as a “photon.” Then, density estima-
tion is performed over the photons to approximate the media
radiance. To perform this computation efficiently, Jarosz et
al. [JZJ08] proposed the beam radiance estimate, which first
assigns a radius ri to each of the n stored photons (using a
pilot density estimate) and then approximates Equation (2)
as

Lm(x,~ω, s)≈
n

∑
i=1

Ki(xt)Tr(x↔ xi) f (θi)Φi, (3)

where xi, Φi and ~ωi are the position, power and incident di-
rection of photon i respectively, cosθi = ~ωi ·~ω, and Ki is a
2D normalized kernel of radius ri around photon i, evaluated
at xt = x+((xi− x) ·~ω)~ω. We always use i to index photons.
Note that Jarosz et al. [JZJ08] included an additional σs term.
We account for this during photon instead tracing to remain
consistent with other sources [JC98, JNSJ11].

Unfortunately, there are a few common situations where
the BRE is the bottleneck in rendering. Firstly, complex,
high-frequency lighting may require an excessive number of
photons, which increases storage costs and also slows down
the beam query during rendering. Secondly, since the BRE
always finds all photons that intersect the query ray, if the
scene has a large extent, many photons may be processed
which ultimately contribute very little to the final pixel color
(due to subsequent attenuation or projected pixel size). Fig-
ure 1 visualizes the time spent performing the BRE per pixel,
which shows this deficiency. Our approach addresses both of
these problems by expressing the distribution of photons in

the media using a hierarchical, anisotropic Gaussian mix-
ture.

3.3. Gaussian Mixtures

We briefly review Gaussian mixture models (GMMs), maxi-
mum likelihood estimation, and Expectation–Maximization
in terms of our rendering problem.

Given a collection of photons X = {xi}n
1, volumetric pho-

ton mapping corresponds to estimating the underlying prob-
ability distribution p(x). In general, p(x) could be any dis-
tribution obtainable using photon tracing. Photon mapping
estimates this distribution using kernel density estimation,
whereas our approach relies on a GMM. More precisely, we
assume that the underlying probability density can be mod-
eled using a weighted sum of k probability distributions,

p(x)≈ p(x|Θ) =
k

∑
s=1

ws g(x|Θs), (4)

where Θs denotes the parameters for distribution s and
Θ = {Θs}k

1 defines the model parameters for the entire mix-
ture. Each individual component g is a normalized multivari-
ate Gaussian

g(x|Θs) =
exp
(
− 1

2 (x−µs)ᵀΣ−1
s (x−µs)

)
(2π)3/2

√
|Σs|

, (5)

where Θs = (µs,Σs,ws) with mean µs, covariance matrix Σs,
and weighted by ws. We use |·| to denote the determinant
and always use s to index into the Gaussian components.

Since photons are not actually generated using a Gaus-
sian process, (4) is an approximation, but by increasing k
a Gaussian mixture can model any photon distribution with
arbitrary accuracy.

3.4. Maximum Likelihood Estimation

With the assumptions above, our problem is reduced to find-
ing the values of the model parameters Θs for each of the k
Gaussians, which, when plugged into the model (4), are most
likely to generate the photons. More formally, such maximum
likelihood estimators seek the parameters Θ that maximize of
the associated data log-likelihood

L(Θ) =
n

∑
i=1

log (p(xi|Θ)) . (6)

Note that the actual photon density p(x) is not an explicit part
of this formulation; instead, it only enters the problem state-
ment via evaluation of the GMM (4) at the photon positions.

3.5. Expectation Maximization

The popular EM algorithm is an iterative technique for find-
ing such a maximum likelihood parameter estimate. Instead
of maximizing L directly (which is usually intractable), EM
starts with an initial guess of the parameters Θ and modifies
them so that a lower bound F ≤ L is strictly increased in ev-
ery one of its iterations. The bound F is chosen so that its lo-
cal maxima coincide with those of L; hence, it is guaranteed

c© 2011 The Author(s)
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that the algorithm eventually converges to a local maximum
of L.

During the optimization, EM makes use of a series of
discrete distributions qi(s) : {1, . . . ,k} → [0,1] (one for each
photon xi), which specify the associated photon’s “respon-
sibility” towards each GMM component. The lower bound
F(Θ,q) can then be expressed as a function of the parameters
Θ, as well as the auxiliary distributions qi. An intuitive and
general interpretation of the EM-type algorithm can then be
formulated as [NH98]:

E-Step: Given Θ, find q that maximizes F(Θ,q), then
M-Step: Given q, find Θ that maximizes F(Θ,q).

3.6. Accelerated EM

In this paper, we make use of a technique called accelerated
EM [VNV06]. The insight of this approach is to assign the
same distribution qi(s) = qA(s) to all photons xi that fall into
the same cell A of a spatial partition P of R3. P is simply
a subdivision of space where any point lies in exactly one
cell, e.g. the collection of cells of a Voronoi diagram, or a
cut through a kd-tree or octree. This allows rephrasing the
EM algorithm purely in terms of operations over cells (as
opposed to photons).

For the E-step, Verbeek et al. provide a provably-optimal
assignment of the responsibilities:

qA(s)=
ws exp〈logg(x|Θs)〉A

∑
k
a=1 wa exp〈logg(x|Θa)〉A

(7)

where 〈 f (x)〉A denotes the average of a function f over all
photons that fall within cell A. They also give an expression
for the lower bound F as a sum over the partition’s cells:

F(Θ,q) = ∑
A∈P

nA

k

∑
s=1

qA(s)
[

log
p(s)

qA(s)
+ 〈logg(x|Θs)〉A

]
. (8)

The average log-densities in (7) and (8) can be readily com-
puted in closed-form for Gaussian mixtures [VNV06]. For
this, we only need to store the average photon position 〈x〉A
and outer product 〈xxT 〉A within each cell.

The accelerated M-step computes the parameters Θs as
weighted averages over cell statistics:

Θs =(ws,µs,Σs)=
1
n ∑

A∈P
nAqA(s)

(
1,
〈x〉A
ws

,
〈xxᵀ〉A−µsµ

ᵀ
s

ws

)
, (9)

where n denotes the total number of photons and nA speci-
fies the number of photons that fall within cell A. Note that
the terms of Θs need to be computed in sequence to satisfy
interdependencies. A naïve accelerated EM implementation
is shown in Algorithm 1.

Algorithm 1 ACCELERATEDEM-NAÏVE(Θ(0),P)

1 z = 0 // iteration counter
2 repeat
3 Compute the distribution qA(s) for each A ∈ P using (7)
4 Compute Θ(z+1) using Equation (9)
5 z = z+1
6 until

∣∣F(Θ(z),q(z))/F(Θ(z−1),q(z−1))−1
∣∣ < ε

This formulation has several advantages which we will
exploit for photon mapping:

• Compact representation: The photons xi can be dis-
carded, and only a few sufficient statistics of their behav-
ior within each cell A ∈ P must be stored.

• Fast iterations: A small number of statistics succinctly
summarize the photons within a cell. Good results can be
obtained with comparatively few cells, where many pho-
tons would be needed by non-accelerated EM; this allows
for shorter running times.

• Multiresolution fitting: The partition need not necessar-
ily stay the same over the course of the algorithm. Rem-
iniscent of multigrid methods, we can start with a rela-
tively rough partition and refine it later on.

4. Overview of our Algorithm

In the remainder of this paper we apply the concepts of
accelerated EM to the problem of rendering participating
media using photon tracing. At a high-level, our approach
replaces individual photons in the BRE with multivariate
Gaussians which are fit to the photons using EM. Since a
Gaussian is fit to a large collection of photons, each term is
inherently less noisy and more expressive than an individ-
ual photon. This provides high quality reconstruction using
a relatively low number of terms, which results in faster ren-
dering at the expense of a slightly longer view-independent
precomputation stage.

Our method extends accelerated EM from Section 3.6 in
three simple but important ways. We firstly introduce spar-
sity into the algorithm to obtain asymptotically faster per-
formance. Secondly, we incorporate progressive refinement
by incrementally shooting photons, updating statistics in the
partitions, and refining the EM fit. This elegantly allows
memory-bounded fitting of extremely large collections of
photons while simultaneously providing an automatic stop-
ping criterion for photon tracing. We call this process pro-
gressive EM. We believe this extension could also find ap-
plicability in data mining for incremental fitting of streaming
data. Lastly, we build a full GMM pyramid which allows us
to incorporate hierarchical LOD during rendering.

This algorithm is divided into four key steps (see Fig-
ure 2):

1. Photon tracing: Trace photons within the scene (just like
in photon mapping), storing the resulting statistics in the
partition P, then discard the photons.

Build
Hierarchy

Render

converged?

no

yes

seed with converged GMM from previous frame

Progressive EM

M

E

Shoot More
Photons

Refine
Cut

Initial
Guess

Shoot
Photons

Figure 2: The program flow of our approach.
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(a) Target density (b) Initial cut (c) Initial GMM (d) Final cut (e) Final GMM

Figure 3: As a simple two-dimensional application of our method, we fit a 1024-term GMM to an image-based target density function (a). Our
method starts with a coarse initial cut (b) and GMM parameters (c) and refines them until convergence (d and e).

2. Progressive GMM fitting: Apply progressive EM (Sec-
tion 5) to the statistics in P. Should the stored statistics
be too noisy, repeat step 1 by shooting more photons, up-
dating statistics, and continue refining the GMM fit.

3. Level-of-Detail: Construct a full LOD pyramid of
GMMs with decreasingly many components (Section 6).

4. Hierarchical Rendering: For each ray, hierarchically
prune the LOD pyramid to the set of Gaussians with
sufficient contribution according to a conservative error
heuristic (Section 7).

We focus on practical considerations for implementing these
steps in the following sections and omit details for the first
stage since it is identical to standard photon mapping.

5. Progressive GMM Fitting

Our progressive EM algorithm is outlined in Algorithm 2.
The core of the approach is based on accelerated EM, but
we introduce sparsity to lines 4–5, progressively update the
statistics (line 8), and use a more efficient cut refinement
procedure (line 10).

Algorithm 2 PROGRESSIVEEM(Θ(0),P)

1 z = 0 // iteration counter
2 repeat
3 repeat
4 Compute the distr. qA(s) for all A ∈ P using (7)
5 Compute Θ(z+1) using Equation (9)
6 z = z+1
7 until

∣∣F(Θ(z),q(z))/F(Θ(z−1),q(z−1))−1
∣∣ < ε

8 if Equation (10) indicates an unsatisfactory fit
9 Shoot more photons and update statistics

10 Expand cut along 50% “best” nodes according to F (8)
11 until the relative change in the expanded F drops < ε

5.1. Partition Construction

Our algorithm assumes the availability of a partition P. To
obtain a spatial partition of R3, we follow an approach sim-
ilar to the one taken by Verbeek et al.: we create an entire
family of possible partitions by constructing a balanced kd-
tree over the photon positions, where each leaf and inner
node is augmented with the aforementioned sufficient statis-
tics; this can be done in O(n logn) time. Any cut through the
tree then forms a valid partition. To ensure that the tree fits in

memory, we use a moderate number of photons (n = 128 · k)
and create a leaf node once the number of photons in a sub-
tree drops below 5. After this step, all memory associated
with the photons can be released, and only the hierarchy re-
mains.

We initialize the cut to the level of the kd-tree where the
number of cells equals eight times the number of GMM
components (we found this to be a good compromise in
terms of the total running time).

5.2. Progressive Update and Cut Refinement

After running E- and M-steps until convergence, we check
the effective number of photons that contribute to GMM
component s:

neff(s) = ∑
A∈P

nAqA(s). (10)

If any Gaussian is fit to fewer than 64 photons, we deem
these statistics to be unreliable, so we shoot more photons,
and progressively update the statistics. Shooting more pho-
tons reduces the variance of the statistics, converging to the
proper average of these quantities within each cell in the
limit.

After this step, we use a greedy criterion to push down
the partition cut. This entails removing nodes and replacing
them by their children in the kd-tree. Verbeek et al. proposed
expanding the cut by one node in each outer iteration, but
we found that this results in slow convergence. Instead, we
determine the most suitable set of nodes by computing the
increase in F (8) for each possible replacement and execute
the top 50% of them. We repeat this entire procedure until
fitting parameters converge. Figure 3 illustrates this proce-
dure on an image-based density function. The progressive
EM iterations and cut refinement, as well as the computa-
tion of Equation 10, can all be done efficiently using ideas
discussed in the next section.

5.3. Exploiting Sparsity

Unfortunately, the complexity of this algorithm renders it
impractical for large-scale problem instances, which are the
main focus of this paper. In particular, although the com-
putation of (7) and (9) no longer depends on the number
of photons, the cost is linear in the product of |P| and k.
To obtain a reasonable fit, the final cut will usually satisfy

c© 2011 The Author(s)
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|P|= c · k, for some constant c > 1, hence the running time is
in O(k2).

To work around the complexity issue, our fitting pipeline
exploits the inherent sparsity of this problem: due to the ex-
ponential falloff in g, it is reasonable to expect that a cell
A ∈ P will excert little influence on a distant Gaussian com-
ponent s. In the context of accelerated EM, this means that
the value of qA(s) will be negligible. We may thus want to
skip such cell-GMM component pairs in the calculation of
(9) or (10).

There is one caveat to the previous idea: suppose that
a cell A ∈ P is located relatively far away from all of the
GMM components. Although the numerator in qA(s) (7) will
be very small in this case, qA(s) will nonetheless exert a sig-
nificant influence on distant GMM components due to the
normalization term in its denominator. This means that a
pruning criterion cannot be based on spatial distance alone.

Our method therefore proceeds in two stages: first, we de-
termine the normalization term in the denominator of qA(s)
(7) for each cell A ∈ P. Following this, we recompute the
GMM parameters Θ and effective photon counts neff(s) using
Equation (9) and (10). All of these steps exploit sparsity and
obey a user-specified relative error tolerance τ, such that the
algorithm becomes faster and more approximate with higher
τ and degenerates to the O(n2) approach when τ = 0. Specif-
ically, we loosely bound qA as a function of spatial distance
and drop Gaussian-cell pairs with the help of a bounding vol-
ume hierarchy when this does not cause the result to exceed
the specified error bound. All our results use τ = 10−4.

5.4. Initial Guess and Temporal Coherence

EM requires an initial guess which is iteratively refined.
Since EM will, in general, only converge to a local maxi-
mum of L, the starting parameters are an important factor in
the final quality of the EM fit.

For still images we obtain an initial guess by extracting
a suitably-sized horizontal cut through the partition kd-tree.
Each cell in this cut already stores the sufficient statistics
that are needed to analytically fit a Gaussian to its contents,
hence this step takes negligible time.

For animations we could apply the same procedure for
each frame independently. However, like any photon map-
ping method, the stochastic positions of photons can intro-
duce temporal flicking. We can achieve significantly better
quality by seeding EM with the converged GMM param-
eters from the previous frame (a similar idea was used by
Zhou et al. [ZRL∗08] for temporally coherent non-linear op-
timization). This optional step does introduce dependence
between frames, but we found it to be worthwhile since it
completely eliminated temporal flicker in our results. Fur-
thermore, since the previous frame is often a remarkably
good match to the current lighting, this significantly reduces
the computation time needed for fitting (for instance, fitting

the BUMPYSPHERE animation is 4.35× faster compared to
frame-independent initialization).

6. Level-of-Detail Construction

To render the GMM at various levels of detail, we wish to
construct a hierarchical representation of the Gaussian mix-
ture. In our approach, the leaves are the components of our
GMM, interior levels approximate the GMM using decreas-
ing numbers of Gaussian components, up to the root which
expresses the entire distribution as a single Gaussian. Note
that we cannot simply compute a multi-resolution represen-
tation (where each level of the tree is an independent GMM
with 2l components). Since we will dynamically select sub-
sets of this tree for rendering, there needs to be a proper
nesting between the levels of the hierarchy such that a node
is a representative for its entire subtree.

To accomplish this efficiently, we apply a modified ver-
sion of Walter et al.’s heap-based agglomerative clustering
algorithm [WBKP08] as shown in Algorithm 3. We denote
nodes of the GMM pyramid as Θ̄ and index a specific node
as Θ̄ j. We initialize the leaves of the pyramid (line 1) to the
Gaussian mixture, {Θs}k

1, constructed in Section 5. To form
the next higher level, we start with a heap of all minimum
Gaussian distances in the current level (lines 6–8) and then
merge (and remove) the two “most similar” Gaussians until
no Gaussians are left in the heap (lines 9–15). Repeating this
entire process log2 k times creates a full binary tree.

Algorithm 3 CONSTRUCTGAUSSIANPYRAMID(Θ = {Θs}k
1)

1 Θ̄ = Θ // construct tree starting with leaf nodes
2 level = log2 k
3 while level > 0 // loop until we reach the root
4 Θ̄′ = ∅ // initialize next level to empty set
5 H = ∅ // initialize min-heap to empty set
6 for each Gaussian j1 ∈ Θ̄

7 Find closest Gaussian j2 to j1 according to (11).
8 Insert edge ( j1, j2) into H.
9 while H 6= ∅

10 Pop an edge e from the heap
11 if neither endpoint of e has been previously merged
12 Merge the two Gaussians of e according to

Equations (12–14) and insert into Θ̄′

13 for all vertices j1 connected to either end of e
14 Find the closest Gaussian j2 to j1.
15 Insert edge ( j1, j2) into H.
16 Θ̄ = Θ̄′

17 level = level−1
18 return Θ̄

We calculate the distance between Gaussians using a sym-
metric dissimilarity function

d( j1, j2) = w j1 ·w j2 ·min(DKL(Θ̄ j1‖ Θ̄ j2 ),DKL(Θ̄ j2‖Θ̄ j1 )), (11)
where DKL is the Kullback-Leibler divergence between com-
ponent j1 and j2, and takes on a simple analytical form in the
case of multivariate Gaussians [GNN10]. Kullback-Leibler
divergence is a fundamental statistical measure of relative
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(a) Hierarchy used
in (b) - (e)

(b) Intersect bounding box (c) Criterion 1: small
projected size

(d) Criterion 2: low
transmittance

(e) Otherwise: recurse

1
2

31

2 3
Tr < ɛTr

1

1
1

Ω(r)

Ω1(r)

Figure 4: We (a) traverse our hierarchy of Gaussians from top to bottom, (b) intersecting the current node’s AABB. We then (c) test the solid
angle of the representative and also check the extinction (d) before traversing down the tree.

entropy between two distributions and has been used exten-
sively for clustering Gaussian distributions [GR05,GNN10].

To merge Gaussians Θ̄ j1 and Θ̄ j2 into Θ̄ j, we analytically
fit parameters as follows [GR05]:

w̄ j = w̄ j1 + w̄ j2 , (12)

µ̄ j = w̄−1
j (w̄ j1 µ̄ j1 + w̄ j2 µ̄ j2 ) , (13)

Σ̄ j = w̄−1
j ∑
k∈{ j1 , j2}

w̄k
(
Σ̄k +(µ̄k− µ̄ j)(µ̄k− µ̄ j)

ᵀ) . (14)

This procedure eventually forms a full binary tree that we
use for hierarchical pruning during rendering.

7. Rendering

During rendering, for a given query ray passing through the
medium, we are interested in approximating the medium ra-
diance (2) using our GMM. If we ignored the hierarchy con-
structed in the last section, we could directly adapt the beam
radiance estimate (3) by replacing photons xi and kernels Ki

with the components g(x|Θs) of our Gaussian mixture.

All the Gaussian terms, in theory, contribute to the media
radiance along a query ray, but in reality some components
may contribute very little (due to distance to the ray, signifi-
cant attenuation, or small projected solid angle). The hierar-
chy constructed in the last section allows us to efficiently
incorporate LOD. The main idea behind our approach is
to traverse the GMM pyramid top-down and hierarchically
prune the traversal when the interior nodes are deemed a
reasonable approximation for their subtree. To facilitate this
hierarchical pruning, we augment the GMM pyramid with
an axis-aligned bounding-box (AABB) hierarchy (BBH).

7.1. Bounding-Box Hierarchy Construction

We spatially bound each Gaussian by computing the distance
at which its remaining energy is a small percentage of the
total energy of the Gaussian mixture. This truncates each
anisotropic Gaussian to an ellipsoid. We initialize the bound-
ing box of each node to tightly fit its truncated Gaussian.
We then complete the BBH by propagating the bounding-
box information up the tree: each node’s bounding box is
unioned with the bounding box of its two child nodes. This
construction can be performed efficiently in O(k logk) using
two sweeps of the Gaussian pyramid.

7.2. Hierarchical Traversal

For fast hierarchical rendering, we prune entire subtrees of
the GMM pyramid during ray traversal by accounting for the
expected contribution of each Gaussian to the rendered im-
age. For a given query ray r, we start at the root. At each node
we decide between three possible outcomes: 1) the entire
subtree can be skipped, 2) the subtree can be well approxi-
mated by adding the contribution of the current node to the
BRE, or 3) we need to descend further.

We first intersect the ray with the bounding box of the
node. If there is no hit, we skip the entire subtree. Otherwise,
we compute the projected solid angle of the node’s bounding
sphere Ω j(r) and compare it to the solid angle of a pixel of
the ray Ω(r). If Ω j(r) < εΩ Ω(r), for a user-specified thresh-
old εΩ, we evaluate the contribution of the node’s Gaussian.
If this test fails, we additionally compute the transmittance
between the origin of the ray and the first hit point with the
bounding box, Tr(r,Θ j). If this is less than a user-specified
constant, εTr , we evaluate the node’s Gaussian. Only if all
these tests fail do we descend further down the BBH. These
cases are illustrated in Figure 4 and outlined in Algorithm 4.

Algorithm 4 HIERARCHICALBRE(r,Θ j)

1 if r does not intersect AABB(Θ j)

2 return 0
3 if (Ω j(r) < εΩ Ω(r)) or (Tr(r,Θ j) < εTr )

4 return Gaussian contribution using Equation (15)
5 return HIERARCHICALBRE(r,Θ2 j) +

HIERARCHICALBRE(r,Θ2 j+1)

To evaluate the contribution of a Gaussian, we need to
integrate it along r(t) = x+ t~ω while accounting for transmit-
tance.

L j
m(x,~ω,b) =

1
4π

w̄ j

∫ b

0
g(r(t)|Θ̄ j)Tr(x↔ r(t)) dt. (15)

This corresponds to a single summand in (3) for isotropic
scattering (we discuss anisotropic scattering in Section 9).
As in Equation (3), neither σs nor the albedo are used here
because we account for these terms during photon tracing.

For homogeneous media, the integral in Equation (15) ac-
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Beam Radiance Estimation [Jarosz et al. 2008] Our Method

3.6M Photons (133 + 344 = 477 s) Per-Pixel Render-time 16K Gaussian fit (226 + 100 = 326 s) Per-Pixel Render-time
Figure 5: In the MUSEUM scene, the high volumetric depth complexity and large number of photons (3.1M) makes the BRE (left) inefficient.
Our method addresses these problems by using a hierarchical, anisotropic Gaussian mixture with only 16K Gaussian components.

cepts the closed-form solution:∫ b

a
g(r(t)|Θ̄ j)e−σt t dt =C0

[
erf
(

C3 +2C2b
2
√

C2

)
−

erf
(

C3 +2C2a
2
√

C2

)]
, (16)

where the constants C0 through C3 are:

C0 =

exp
(

C2
3

4C2
−C1

)
(2π)

3
2

√∣∣Σ̄ j
∣∣ , C1 =

1
2
(x− µ̄ j)

ᵀ
Σ̄
−1
j (x− µ̄ j)−σt b,

C2 =
1
2
~ωᵀ

Σ̄
−1
j ~ω, C3 = ~ωᵀ

Σ̄
−1
j (x− µ̄ j)+σt . (17)

Though we don’t currently support this in our implemen-
tation, for heterogeneous media we could take an approach
similar to the BRE and compute this integral numerically
using ray marching.

8. Implementation and Results

We implemented our hierarchical GMM rendering approach
in a Monte Carlo ray tracer and also implemented the BRE
in the same system to facilitate comparison. All timings are
captured on a dual-core Intel Core i7 2.80GHz CPU with 6
GB memory and an NVIDIA GeForce GT240.

8.1. GPU Splatting

In addition to the general hierarchical ray tracing solution
described in Section 7.2, we have also implemented a GPU
splatting approach which allows us to interactively preview
arbitrary levels of the GMM mixture.

Each Gaussian component is rendered as an elliptical splat
corresponding to the screen-space projection of the truncated
Gaussian ellipsoid. Each splat is rendered as a triangle strip
and Equation (15) is evaluated in a fragment shader with ad-
ditive blending. This gives correct results for homogeneous
media. While our GPU implementation ignores surface in-
teractions, it nonetheless provides a useful tool to interac-
tively preview the media radiance (refer to the video).

8.2. Results

Parameters and rendering statistics for all scenes are listed in
Table 2. Note that the preprocessing costs listed for the BRE
and progressive EM methods include the time spent tracing
photons.

In Figure 1 and 5 we highlight the problems that our
approach addresses. Both the CARS and MUSEUM scenes
contains several light sources and have a relatively large
depth-extent. We show a rendering with the BRE, and with
our approach, as well as visualizations of the rendering
time spent in each pixel. With the BRE, regions of the im-
age that contain large concentrations of photons take longer
to render, even if these photons contribute little to the fi-
nal pixel color. Our hierarchical rendering technique solves
this problem by detecting and pruning such low contri-
bution subtrees in the GMM pyramid. The resulting im-
ages are higher quality and render faster. Furthermore, since
our pre-computation is view-independent, fly-through ani-
mations render very quickly once the Gaussian mixture is
constructed.

Figure 6 shows a progression of renderings of the
BUMPYSPHERE scene with increasing numbers of Gaussian
components. Though our compact GMM representation
uses only a few thousand Gaussian components (ranging
from 1K to 64K) we are able to faithfully capture high-
frequency caustic structures because we progressively fit
to a large number of photons (up to 18 million). We also
show BRE results which use all the available photons
during rendering. Each BRE result takes longer to render
than the corresponding GMM rendering (between 7.8 and
9.2× slower for the rendering pass, and 1.2 to 6.0× slower
including the precomputation stage). Since the BRE uses
isotropic density estimation, even with all the photons it
produces both noisier and blurrier results. Our anisotropic
GMM fitting procedure acts like an intelligent noise-
reduction and sharpening filter that automatically finds
structures in the underlying density in a way not possible
with on-the-fly density estimation.

Figure 7 shows the OCEAN and SPHERECAUSTIC scenes
depicting detailed volume caustics. These high-frequency
structures are difficult to reconstruct even when using
over 4M isotropic photon points with the BRE, while our
anisotropic fitting process produces slightly better results
1.2× and 1.6× faster using only 16K Gaussian components.

The accompanying video shows animations for the
BUMPYSPHERE and OCEAN scenes using both the offline
renderer and the GPU splatting approach. The videos also
highlight the benefit of our temporal coherence as compared
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All 294K photons BRE

(6+126 = 132 s)

All 1.0M photons BRE

(23+192 = 215 s)

All 4.7M photons BRE

(109+337 = 446 s)

All 18M photons BRE

(507+609 = 1116 s)

1K Gaussians Our Method

(7+15 = 22 s)

4K Gaussians Our Method

(35+24 = 59 s)

16K Gaussians Our Method

(184+39 = 223 s)

64K Gaussians Our Method

(868+66 = 934 s)

Figure 6: BUMPYSPHERE renderings using our method (bottom) and corresponding BRE renderings (top) using all photons in the Gaussian
fit. As before, the listed times correspond to the preprocessing and rendering stages, respectively.

to the BRE. When animated, we also obtain increased
performance since the previous frame is a closer match to
the converged solution and less EM iterations are required.
The total fitting time for the BUMPYSPHERE animation is
4.35× lower using the temporally coherent method.

9. Discussion and Future Work

Anisotropic Media. A significant limitation of our current
implementation is that we only handle isotropic media. We
believe our general methodology, however, could be natu-
rally extended to handle this case by additionally storing
directional information during fitting. One option is to per-
form the fitting procedure entirely in a 5D spatio-directional
domain where each component is the tensor product of a spa-
tial Gaussian and a von Mises-Fischer distribution. Another
possibility would be to treat the two domains separately and
fit von Mises-Fischer distributions to the directional statis-
tics under the support of each 3D Gaussian in a similar
fashion to previous multi-resolution methods for surface re-
flectance [TLQ∗05, HSRG07].

Performance, Quality, and Scalability. Our render pass
is considerably faster than the BRE due to the reduced
number of terms and hierarchical pruning during traversal.
Yet, we are able to obtain higher quality results with such
few terms since our Gaussians are anisotropic and inher-
ently less noisy than individual photons. Even including pre-
computation, our total time to render is faster than the BRE
for the scenes we tried. Furthermore, since our fitting is
view-independent, we provide an even greater performance
benefit for walk-throughs of static or pre-scripted lighting.

GMMs are also an attractive low-memory representation

BRE (73 + 195 = 268 s)BRE (73 + 195 = 268 s) Our Method (178 + 40 = 218 s)Our Method (178 + 40 = 218 s)

BRE (89 + 638 = 727 s)BRE (89 + 638 = 727 s) Our Method (330 + 127 = 457 s)Our Method (330 + 127 = 457 s)

Figure 7: The OCEAN and SPHERECAUSTIC scenes comparing the
BRE with 2M photons to our method with 16K Gaussians.

for volumetric lighting: For instance, a 4096-term GMM re-
quires only 240 kilobytes of storage.

Though our pre-computation stage is slightly slower, the
statistics in Table 2 indicate that progressive EM is actually
quite competitive (in speed and scalability) with the pre-
computation needed for the BRE. Nonetheless, our fitting
does incur a performance penalty which may not be war-
ranted in situations where other aspects of our algorithm are
not beneficial (e.g. in very low-frequency illumination, or
scenes with a small depth extent).

Fitting to Other Representations. Recently, Jarosz et
al. [JNSJ11] proposed the photon beams method which per-
forms density estimation over photon path segments instead

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



W. Jakob, C. Regg, and W. Jarosz / Progressive Expectation–Maximization for Hierarchical Volumetric Photon Mapping

Table 2: Parameters and performance statistics for the scenes used in this paper. For BRE the preprocess includes photon tracing, kd-tree and
BBH construction, and radius estimation. For our method this includes progressive photon shooting, GMM fitting, and hierarchy construction.

BRE [Jarosz et al. 2008] Our Method

Scene k n |P| EM iter. Preprocess Render Total Preprocess Render Total

CARS 4K 917,504 87,615 12 13.48 s 268.20 s 281.69 s 54.43 s 71.21 s (3.8×) 125.64 s (2.2×)

MUSEUM 16K 3,670,016 381,602 10 133.90 s 343.95 s 477.89 s 225.73 s 100.39 s (3.4×) 326.12 s (1.7×)

BUMPYSPHERE 1K 294,912 30,264 19 5.73 s 126.35 s 132.08 s 6.81 s 15.19 s (8.3×) 22.00 s (6.0×)
BUMPYSPHERE 4K 1,085,621 121,910 19 23.46 s 192.30 s 215.76 s 35.13 s 24.52 s (7.8×) 59.65 s (3.6×)
BUMPYSPHERE 16K 4,718,592 489,602 20 109.30 s 337.42 s 446.72 s 184.06 s 39.35 s (8.6×) 223.41 s (2.0×)
BUMPYSPHERE 64K 18,874,368 1,961,891 19 507.30 s 609.25 s 1116.55 s 868.48 s 66.03 s (9.2×) 934.51 s (1.2×)

OCEAN 16K 4,718,592 485,339 18 73.47 s 195.46 s 268.93 s 178.25 s 40.67 s (4.8×) 218.92 s (1.2×)

SPHERECAUSTIC 16K 4,194,304 458,366 11 89.55 s 638.39 s 727.90 s 329.83 s 127.30 s (5.0×) 457.13 s (1.6×)

of photon points. They showed that this results in improved
rendering quality compared to the BRE. Their method shares
similar goals to ours (more compact representation, and
higher quality reconstruction); however, their benefits is ac-
tually orthogonal to ours. Our Gaussian fitting pipeline could
be applied in the context of photon beams as well as photon
points. A straightforward combination could update statis-
tics in all partition cells intersected by a photon beam. This
could significantly improve the quality of the statistics (and
the EM fit) compared to photon points. We believe that in
homogeneous media the statistical contributions of a beam
could be evaluated analytically and plan to investigate this
in future work. Another, more ambitious, avenue would be
to develop a fitting procedure analogous to EM which op-
erates more explicitly on photon beams, by clustering into
higher-dimensional density distributions such as blurred 2D
line segments.

Convergence and Automatic Termination. Though the
name of our progressive EM algorithm is inspired by pro-
gressive photon mapping (PPM) [HOJ08] there are im-
portant differences. Our method progressively fits a Gaus-
sian mixture to photon statistics whereas PPM progressively
refines radiance estimates by updating statistics at fixed
measurement points. Our Gaussian components could be
roughly interpreted as “measurement points” which not only
adapt in intensity, but also location, to the underlying pho-
ton density. However, whereas PPM provides guarantees for
convergence of both bias and noise, our solution eliminates
noise in the limit but is always biased since we use a fixed
number of Gaussian terms. An interesting possibility for fu-
ture work would be to progressively split Gaussian terms
when sufficient statistics indicate a single Gaussian cannot
represent the underlying distribution, or to automatically de-
duce the required number of Gaussian terms.

Automatic termination by specifying a desired error in
the image has been investigated previously in the context
of PPM [HJJ10]. While our progressive EM algorithm also
provides an automatic stopping criterion for shooting pho-
tons, this tolerance does not have an intuitive relation to the
error in the image, but rather describes the convergence of
the GMM fit to the underlying density distribution. Error is

fairly well understood in the context of kernel-based density
estimation used in photon mapping. A more rigorous inves-
tigation of the error and bias introduced by our method is an
interesting avenue of future work.

10. Conclusion

We have presented a progressive, hierarchical method for
rendering participating media. Our approach can be viewed
as a variant of volumetric photon mapping which replaces
the usual on-the-fly non-parametric density estimate with
a parametric density model based on a Gaussian mixture
fit to the photons. The fitting is done using a sparse and
progressive form of the accelerated EM algorithm. We con-
struct a hierarchical representation which is used to provide
estimates of scattered radiance at appropriate scales during
rendering. Our approach shows improved quality and tem-
poral coherence as compared to the BRE and also supports
interactive preview using splatting.
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