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Fig. 1. Using our new system, a player is able to manipulate a virtual puppet using a smartphone. The character responds compellingly and in real-time to the
user motions, so that is stays at all times at a fixed distance from the phone.

Video games enable the representation and control of characters that can
agilely evolve in virtual environments. However, the detached character
interaction they propose – often using a push-button metaphor – is far
from the satisfactory feeling of grasping and moving physical toys. In this
paper, we propose a new interaction metaphor that reduces the gap between
physical toys and virtual characters. The user moves a smartphone around,
and a puppet that responds in real time to the manipulations is seen through
the screen. The virtual character moves in order to follow the user gestures,
as if it was attached to the phone via a rigid stick. This yields a natural
interaction, similar to moving a physical toy, and the puppet now feels alive
because its movements are augmented with compelling animations. Using
the smartphone, our method ties together the control of the character and
camera into a single interaction mechanism. We validate our system by
presenting an application in Augmented Reality.

CCS Concepts: • Human-centered computing → Interactive systems
and tools; • Computing methodologies→ Animation;

Additional Key Words and Phrases: Character control, Interaction, Puppet,
Smartphone

Authors’ addresses: Raphael Anderegg, ETH Zürich; Loïc Ciccone, ETH Zürich; Robert
W. Sumner, Disney Research Zürich, ETH Zürich.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2018/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Raphael Anderegg, Loïc Ciccone, and Robert W. Sumner. 2018. PuppetPhone:
Puppeteering Virtual Characters Using a Smartphone. 1, 1 (September 2018),
6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
When playing with toys, people cherish grasping them and manip-
ulating them freely. They imagine characters, create stories and
solve quests by moving the toys around and putting them in diverse
situations. The major frustrating aspect is that the handled physi-
cal puppets are inanimate; they follow the player’s gestures like a
lifeless and unconscious ragdoll. The player’s imagination then has
to fill the secondary motions with compelling animations like walk
cycles, jumps and kicks.
Playing in virtual worlds tackles this shortcoming because full

character animations can be achieved from little inputs. Usually
in video games, the player simply presses a button to trigger a
predefined action. However, this makes the interactionmore abstract
and it lacks the satisfactory feeling of grasping the character and
physically moving it.
Recent years have seen the appearance of diverse control de-

vices such as Kinect, Wii controllers, Vive controllers, Leap Motion
and powerful smartphones. Each of them is able to track 3D move-
ments to a certain extent, which opens the door to new interaction
metaphors. Even if many applications have then been introduced,
like mimicking movements and grabbing virtual objects, little work
has been done to retrieve or enhance the particular feeling of ma-
nipulating a puppet.
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In our work, we introduce an enhanced puppet interaction sys-
tem, where a virtual character accompanies the user’s gestures in a
compelling manner. The player uses a smartphone to observe, grasp
and move the virtual puppet, whose movements are beautified with
detailed animations. The character reacts in real time to the user’s
motions, similar to a physical puppet, with the difference that it now
looks alive. We achieve this by interpreting the user’s manipulations,
with respect to the current character’s state and the neighbouring
environment, into a weighted combination of predefined animations
(see Section 3). Our system requires a minimal amount of provided
animations, that we adapt to different environments and character
dimensions. We illustrate our system in an Augmented Reality appli-
cation in Section 4, where the player can grasp and move a character
to make it, among other actions, walk, jump, pick up objects and
even create controllable snowmen of any dimensions.

2 RELATED WORK
Interaction metaphors. Interacting with virtual characters re-

quires a correspondence between user commands and characters’
actions. Most often in video games, the interaction consists in a
push-button approach, where the user hits a button or a point on
the screen to trigger a specific action (e.g. ’Move there’, ’Jump’, ’Kick’,
’Shoot here’, etc.). Research works have explored more sophisticated
interaction methods to specify character movements and displace-
ments using sketch abstractions [Guay et al. 2015; Thorne et al.
2004], point trajectories [Jeon et al. 2010; Lee et al. 2002; Min et al.
2009], or finger performances on a touch-sensitive surface [Lock-
wood and Singh 2012]. However, these methods do not permit an
interactive control since the curves or contact points need to be
entirely specified before the character can move.
Another approach to interactively manipulate a virtual character
is to mimic the motion, usually using a full body motion-capture
suit. However, even if many works aimed to reduce the number of
sensors required when performing the motion [Chai and Hodgins
2005; Kim et al. 2012; Liu et al. 2011; Oore et al. 2002; Shiratori and
Hodgins 2008; Tautges et al. 2011], this approach requires special-
ized devices that casual users rarely possess. In contrast, our method
solely needs a smartphone, which many individuals already own.
It makes our tool accessible by a very large audience, and only in-
volves a single hand to be operated. Other works aim to interactively
animate virtual characters using abstract gestures [Cui and Mousas
2018; Rhodin et al. 2015]. In those techniques, user movements are
linked to specific actions of the character, which make it possible
to animate any type of character using different devices and body
parts. However the interaction is very abstract and unnatural, in
contrast to our grasping metaphor.

Smartphone as a control device. Smartphones are very pow-
erful computing devices that comprise a large variety of sensors –
multi-touch screen, cameras, accelerometer, gyroscope, etc. – which
provide a lot of information about their manipulation, and in par-
ticular their displacement. The gesturing of smartphones has been
explored in several domains of computer graphics to model simple
3D shapes [Vinayak et al. 2016] and edit animations [Lockwood and
Singh 2016]. Despite that, a large majority of mobile applications

only take benefit of the tactile screen to drive a virtual character, us-
ing a push-button approach as described above. Very fewworks have
taken advantage of the displacement information to reconstruct a
motion, using a single [Haegwang et al. 2014] or several [Pascu et al.
2013] smartphones, but none of them allows to move the character
in a puppeteering manner as we do. Closer to our work, Willis et
al. [2011] propose to attach a handheld projection system and ani-
mate a character in the virtual world as one moves its projection on
a wall. Unfortunately, their technique only allows displacements in
2D (on the wall) and simplistic animations.

Interactive motion generation. Most video games use under-
constrained interfaces. In that case, full character animations can
be generated using motion data-bases [Arikan and Forsyth 2002;
Holden et al. 2017, 2016; Min and Chai 2012], physical simula-
tions [Coros et al. 2010; Geijtenbeek et al. 2013; Laszlo et al. 2000; Yin
et al. 2007] or even both [Geijtenbeek et al. 2012; Liu et al. 2010; Zor-
dan et al. 2014]. Cases where the interface is not underconstrained
are when the character has a very simple configuration, when the
manipulation is not interactive – e.g. layered approach [Ciccone
et al. 2017; Dontcheva et al. 2003; Neff et al. 2007] – or when the user
is using an input device with a large number of degrees of freedom
– e.g. motion capture suit [Song et al. 2017] –, none of which is our
case. In our system, we opt for a database approach. We require
very few preexisting motions, and we compose blended ones on the
fly using a technique based on the inverse distance weighting.

3 APPROACH

3.1 MotionStick
We propose a new interaction principle, the MotionStick, that works
as an extension of theMotionBeam introduced by Willis et al. [2011].
A user manipulates a smartphone that has information about it’s
orientation, position and movement in space. By looking at the
virtual environment through the screen, they can point the phone
towards an object and grab it by holding down the touchscreen.
The object is then fixed to the end of an invisible MotionStick, as
represented in Fig. 2, and will react appropriately to any movement
of the smartphone caused by the user. While being held this way,
the distance and relative rotation to the phone is maintained, giving
this control scheme a very responsive and direct feel. In some cases
these constraints can be relaxed, especially to handle collisions. For
example, if the grabbed object is pushed into the floor, the length
of the MotionStick is shortened appropriately in order to prevent it
from phasing through the floor.

Fig. 2. Using the MotionStick metaphor, a virtual character is manipulated
as if it was attached to the end of an imaginary stick fixed to the smartphone.
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This interaction metaphor, similar to a physical reach extender,
yields a natural interaction with virtual objects. The very light user
interface, simply consisting of pointing with a smartphone, makes
it very easy to learn and use. Moreover, regardless of this simplicity,
it provides the user with a fine and expressive control on the virtual
space. This will be showcased in section 4 with our implementation
prototype, where our application does not require any additional
user input interface.

When moving a virtual object around, it has the ability to react
in more ways than just updating its position and rotation according
to the state of the MotionStick. In the following subsections, we
will describe a method that enables an object to come to life by
animating it in accordance to the way it is moved. From here on
out, we will use a terminology corresponding to a humanoid (e.g.
walking, crouching); however, note that our system is adaptable to
any type of animated object, such as quadrupeds and cars.

3.2 State Machine
We use a state machine to determine how the virtual character is
animated to react in real time to the user movements. For example,
in one state the character stands on the ground but as soon as the
user flicks the character up it switches to the jump state. Each state
is defined by its internal logic, root position, configuration of the
character animation and the IK state. The context of the state ma-
chine consists of the environment – i.e. the ground and other objects
surrounding the character – and the user inputs – i.e. movements of
the MotionStick. One state is the active state and at every time-step
its logic updates the state of the character animation based on the
context. Events can be defined that trigger a state change and thus
another state becomes the active one, changing the behaviour of
the animated character.

The MotionStick metaphor does not restrict the manipulation
of the object by the user. That is why the system controlling the
character has to be prepared for any input, even when no predefined
animation is appropriate. Our system handles such unexpected in-
puts by having a default state that is activated when such a situation
arises. A fitting default state would be to turn the character into a
ragdoll. It is for example necessary when a character that has no
jump momentum is held in the air; instead of having a character
with an inappropriate jumping animation in the air, the user would
instead be holding a physically simulated ragdoll.

Unpredictable user inputs also mean that animations with a high
degree of interaction with the world have to be adapted (e.g. the
character picks up an object from different directions and poses).
In these cases, we use inverse kinematics to adapt animations to
the given situation. For example, when the character picks up an
object, its hands are moved close to the object independent of the
underlying animation.

3.3 Animation Blending
One challenge when animating a character with MotionStick is
that the input movement is very continuous. Therefore, contrary to
interfaces with a push-button metaphor, we cannot simply play a

limited set of preexisting animation clips. For example, if animations
are defined for Walking and Running states, it is unclear which one
to choose when the manipulation speed is just between the two.
The solution we choose is to use animation blending. There exists
different algorithms for blending animation clips – e.g. linear, cubic,
etc. – and our method can be used with any of them; we will thus
treat the blending algorithm as a black box.

Fig. 3. An example of a blend-space graph with the predefined animation
clips idle(0,1),walking(0.5,1), running(1,1), idle crouching(0,0) and walking
crouching(1,0). In green is the desired blended animation with parameters
pvel = 0.2 and pheiдht = 0.73.

Our system requires a small database of animations, that can be
used to blend together new ones. Each provided animation i has
N blend parameters pi, j ∈ [0, 1], that are used to place it in the
N -dimensional blend space – we call that point pi = (pi,1, ...,pi,N ).
Given a new point p in that space, the blending algorithm returns
a new animation that is a combination of the neighbouring ones.
Fig. 3 gives a blend space example where five animation clips are
predefined – idle, walking, running, crouching idle and crouching
walking – and each of them has two blend parameters – correspond-
ing to the root velocity and the crouching height. The challenge is
then to map the values from the user input ui (i.e. the smartphone’s
position, orientation, speed, etc.) to the blending parameters p(ui ).

Most mappings are linear, which makes the computation of p(ui )
straightforward. For example, the height of the smartphone uheiдht
is mapped linearly to the crouching height: p(uheiдht ) = (uheiдht −
a) ∗ 1/(b − a) (clamped to [0, 1]). However, other mappings are non-
linear, in particular the smartphone velocity uvel . This is especially
important because an inexact mapping would produce the wrong
animation and result in foot sliding artifacts. We solve this by creat-
ing a lookup table and make it continuous using inverse distance
weighting.

We fill our lookup table by choosing a set of probe points p∗k in
the blend space with a high enough density (e.g in a grid). The user
properties u∗k of these probe points can automatically be measured
by blending the corresponding animation and then measuring its
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properties, for example the movement velocity. With that, when a
user provides new input values u, the corresponding blend parame-
ters are computed using inverse distance weighting:

p(u) =


∑
k
wk (u)p∗k∑
k
wk (u)

, if d(u,u∗k ) , 0 for all i

p∗k , if d(u,u∗k ) = 0 for some i
(1)

with
wk (u) =

1
d(u,u∗k )

q (2)

where d is the euclidean distance between two points and q ∈R+ is
the power parameter – in our implementation we used q = 7. A high
q leads to a "sharper" resolution because only the points very close
tou, but also needs a higher density of probe points to prevent jerky
transitions. In Fig. 4, we show the lookup table obtained from the
example in Fig. 3. Notice that the border, defined by all animation
clips with pvel = 1, is not a straight line. This demonstrates that
the mapping of the velocity parameter is non-linear.

Fig. 4. The generated lookup graph used in our implementation, with a user
input that has to be projected to be inside the area of well defined blend
parameters. The blend parameter for velocity pvel is encoded in the red
color channel of the probe points, ranging from 0 to 1.

There is the corner case where the user input u is outside of
the defined area of possible animations – e.g. the user moves the
character so fast that no animation can be blended to match that
velocity. To tackle that, we first project u onto the border of the set
of feasible configurations, obtaining u ′. In higher dimensions, the
border would be a multi-dimensional mesh. In the case of movement
velocity, we then speed up the animation by a factor uvel

u′
vel

in order
to achieve a motion with the desired velocity.

4 APPLICATION
We demonstrate our system by developing an Augmented Real-
ity application running on iPhone X. It was implemented using
Unity with the libraries Vuforia (for the AR), FinalIK (for inverse
kinematics) and PuppetMaster (for interpolating between ragdoll
simulation and static animation). The ARKit framework allows Vu-
foria to use the computational power of the iPhone X to enable
robust markerless AR tracking. For blending between animations,

we used the native animation framework of Unity. We hereafter
describe the characteristics of our prototype and how they relate to
the challenges described in Section 3. Please refer to Fig. 6 or the
accompanying video to observe the principle features.

Our implementation uses only 7 animation clips: idle, walking,
running, idle crouched, walking crouched, get-up and mid-jump. All
other animations are a combination of animation blending, ragdoll
simulation and IK. For example, rolling a snowball is made possible
by taking the crouched animation and then placing the hands on
the surface of the snowball. The user inputs include the position,
velocity and orientation of the smartphone in space. Additionally,
we use the touchscreen as a single button to grab the puppet with the
MotionStick metaphor. No other buttons or inputs are used which
makes the interface extremely easy to learn. The environment of
our state machine contains the distance of the puppet to the ground
and the set of manipulable objects nearby.

Fig. 5. The state machine used in our implementation. Arrows indicate our
events that switch to a new active state.

Please refer to Fig. 5 for our state machine. The ragdoll state
is used in any situation where the user would force an undesired
situation. E.g. when the jumping arc would be too unrealistic. The
walking and crouched animations are generated with our animation
blending method discussed in Section 3.3. This lets the character
react to any user movement with a suitable blended animation. More
details about the jump state are given in the following paragraph.
Please refer to the accompanying video from the timestamp 00:41.

While the user input for making the character jump is simply
to lift up the phone with a high enough velocity, a compelling
jump animation requires to squat before taking off (i.e. Anticipation
principle of animation). Therefore, we force a short delay between
the user movement and the jump in order to build that anticipation.
After that, the character smoothly returns back to the position given
by the MotionStick, which has meanwhile moved along the jump
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Fig. 6. An outline is shown when an object is in focus to be grabbed (left). When pressing down on the touchscreen the character is controlled with the
MotionStick metaphor using smartphone movements. Animations are generated to fit to any given situation and user input.

path. We can estimate the jump path with a 2-dimensional parabola
when looking from the side view. At each frame the parabola is
calculated given the starting position of the jump (x0,y0), the current
position (xt ,yt ) and the current slope of the jump y′t :

y(x) = ax2 + bx + c

where a =
y′t (xt − x0) − yt + y0

(xt − x0)2

b =
y′t (x

2
0 − x2t ) − 2xt (yt − y0)

(xt − x0)2

c =
x2t (y

′
tx0 + y0) − xtx0(y′tx0 + 2y

′
t ) + y

′
tx

2
0

(xt − x0)2

(3)

We use the position of the apex
(
− b
2a ,y(−

b
2a )

)
to animate the char-

acter accordingly. Furthermore, we detect if the jump is not valid,
in which case we switch to the ragdoll state. A jump is considered
invalid if: (1) It rises again after starting the descent (i.e. multiple
apexes), (2) It turns while in air, or (3) It stops in the air. If none
of these cases happen, the character lands back on the ground and
absorbs the shock of the landing by doing a very short crouch.

Fig. 7. Screenshots of our application show the character building a snow-
man, which then itself builds a second snowman.

We propose to showcase our control scheme with a building ex-
perience. Please refer to Fig. 7 for a selection of screenshots or to the
accompanying video from timestamp 01:06. Our application lets the
user build a snowman out of snowballs, that can be rolled to variable
diameters. This snowman then comes to life and can be controlled
just like the original puppet character. Consequently, the snowman
can then also crouch, jump and even build more snowmen. Because
the snowballs making up the snowman have variable sizes, the pro-
portions of the snowman must also be variable. We achieve this by
extending specific bones of the rig, e.g. by adapting the length of the
neck to accommodate for the head size. An example of this setup is
shown in Fig. 8.

However, having an overly elongated bone would result in very
stiff movements. In our case, we resolve this problem by interpolat-
ing the snowball positions between chest and pelvis with a quadratic
bezier curve. The control points are given by the pelvis position,
the chest position, and the point p1 defined as:

p1 =
ppelvis + (1 − b) · pchest + b · pup

2
(4)

where pup is the position of the chest when the snowman is be
standing upright. In our implementation we used a bend factor
b = 0.3.

Fig. 8. Our animation rig (blue) with variable bone lengths and our
smoothed spine (red dotted) on a snowman with a long spine bone.
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5 LIMITATIONS AND FUTURE WORK
The control interface being light, if many different animations and
character behaviors are added to the experience, it might become
unclear what the intent of the user is. For example, gestures corre-
sponding to a punch, a kick, a throw and a headbutt might be too
similar. This can be tackled by introducing more input possibilities
or defining specific user gestures for certain actions, similar to what
Thorne et al. [2004] propose.

As a control device, we chose the smartphone for its versatility, its
prevalence and the unification of controller and camera it provides.
That being said, our method is adaptable to any other device that
tracks position and orientation over time. For example, one could
use a VR system such as HTC Vive or Oculus Rift to grab and
move a character in virtual reality; there, the user could even more
closely interact with the puppet since the MotionStick could be of
length 0. VR systems also support multiple controllers, opening up
possibilities like controlling several puppets at the same time or
having more control on a single puppet. Another direction for future
work would be to implement a multiplayer mode, so that several
smartphones can control different puppets in the same environment
and even interact with each other (e.g. shake hands or fight).

6 CONCLUSION
We have introduced a new interaction metaphor to control virtual
characters. It combines advantages of both real and virtual worlds
by providing a great freedom of motion, similar to the manipulation
of physical toys, while augmenting the character’s responses with
engaging animations. We proposed solutions to the new challenges
emerging from such a flexible interaction system, like the inter-
pretation of users’ gestures, the real-time formation of accurately
timed animations and their adjustment to characters with variable
proportions. We validated our approach with an Augmented Reality
application that allows to create living snowmen of any dimensions.
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