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ABSTRACT
A novel approach for pairing RFID-enabled devices is intro-
duced and evaluated in this work. Two or more devices are
moved simultaneously through the radio field in close prox-
imity of one or more RFID readers. Gesture recognition is
applied to identify the movements of the devices, to mark
them as a pair. This application is of interest for social net-
works and game applications in which play patterns with
RFID-enabled toys are used to establish virtual friendships.
In wireless networking, it can be used for user-friendly asso-
ciation of devices. The approach introduced here works with
off-the-shelf passive RFID tags, as it is software-based and
does not require hardware or protocol modifications. Ev-
ery RFID reader constantly seeks for tags, thus, as soon as
one tag is in its vicinity, the reader reports the presence of
the tag. Such binary information is used to recognize the
movement of tags and to pair them, if the gesture patterns
match each other. We show via experimental evaluation
that this feature can be easily implemented. We determine
the required gesture interval duration and characteristics for
accurate gesture and matching detection.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communication
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Figure 1: Concept art ( c©Disney): RFID toys are
moved on top of three readers. The two RFID iden-
tities are associated with each other and the char-
acters can be paired in an intuitive way.

1. INTRODUCTION
The Internet of Things (IoT) refers to a growing num-

ber of networked devices such as toys, consumer electron-
ics, electricity meters, environment sensors, and home ap-
pliances [1–3]. These devices are often mobile and battery
powered. They are connected using adaptations of net-
work protocols that are already known from today’s Inter-
net of servers, computers, and smartphones. Passive Radio-
Frequency Identification (RFID) is one of the IoT’s early
approaches that are already widely used. Passive RFID
tags are so inexpensive that can be attached to products
like low-complex consumer devices and disposable price tags.
When IoT networks are used, devices need to know infor-
mation about each other (e.g., how to be reached, network
addresses, protocols that the devices can support). Hence,
association and disassociation are required: Before IoT de-
vices can exchange data with each other, they need to dis-
cover their communication partners, establish logical chan-
nels, and set communication routes. Toys might for exam-
ple communicate with each other to synchronize sounds and
game effects, after placed in the same location. In addi-
tion, as part of a toy’s play pattern, it might be desirable
to associate two toys with each other to establish a virtual
friendship and/or trust relationship. This is particularly
interesting for toys that connect to game consoles. An intu-



Figure 2: Concept art ( c©Disney): An RFID wrist-
band and an RFID toy are associated with each
other because of similar gestures.

itive way to form mutual associations can be based on shake
patterns [4]. In case of RFID-enabled devices, the identities
of their RFID tags should be associated with each other.

In this paper, we propose a novel approach for pairing
RFID-enabled devices. We do that by measuring gestures
of RFID toys and matching their motion pattern to estab-
lish association based on the similarity of the patterns. Our
goal is to highlight the simplicity of our proposed method to
pair RFID-enabled devices, with the example application of
enriching toy play patterns. Application scenarios are illus-
trated in Figures 1-3. The pairing of RFID-enabled devices
(toys) is determined by simultaneously moving the devices
together, with one hand, over an RFID reading platform
(see Figure 1). When a tag moves, its motion pattern can
be tracked across an area using a network of RFID read-
ers. This can also be applied to wearable RFID devices (the
wristband in Figure 2 could include an RFID tag, and the
toy would be “labeled” as property of the person with the
specific wristband), or in case of long range active RFID, it
can be applied to devices carried by people walking through
some area of a mall or theme park, as indicated in Fig-
ure 3. Instead of matching shake patterns, the mobility can
be used to form the association: In controlled environments
such as entertainment theme parks, the history of tag loca-
tions can be exploited. This is different to traditional GPS
location tracking, because only the matched location pat-
terns are needed in the network to associate two devices
with each other. The main motivation for using RFID ges-
ture recognition is its low complexity: There is no need for
technology components inside the devices, such as batteries,
accelerometers, or short range radio / infrared equipment.
Passive RFID operates without batteries. In Section 2, the
approach and the testbed for the evaluation are explained.
Section 3 provides the performance evaluation followed by
related work in Section 4 and conclusions in Section 5.

2. METHODOLOGY
Our goal is to associate passive RFID tags with each

other by tracking gestures and processing their simultane-
ous movements. To achieve tags’ association, we use multi-
ple RFID readers. In this section, we describe the various
elements of our test setup and methodology.

2.1 RFID Tag Type and Binary Information
There are many RFID tags with different characteristics

(i.e., active, semi-active, and passive tags). We are mainly

Figure 3: Concept art ( c©Disney): RFID readers
are used to identify similar motion patterns and pair
devices (an RFID wristband and an RFID toy).

interested in passive tags because they do not need power
supply. Among the passive tags, there are different cate-
gories. Passive backscatter tags operate in the unlicensed
915 MHz Industry, Science, Medical (ISM) frequency spec-
trum. Passive backscatter tags are powered by far-field
propagating waves originated at the reader which can be up
to several meters distant (up to 10-20 m in ideal conditions).
When a backscatter tag receives radio waves, it reflects (or
backscatters) those waves to communicate. Passive induc-
tively coupled tags operate in the 13.56 MHz frequency band
(also called the HF band). The communication range is on
the order of a few centimetres. This is the type of tag that
we use. Power is delivered to the tag and communication
is accomplished via magnetic (i.e., inductive) coupling be-
tween the tag and the reader. Our experimental evaluation
shows that tag pairing and gesture recognition is achiev-
able using the reader’s binary information about the pres-
ence or absence of tags, without ranging information such as
tag distances based on received signal strength. Using sig-
nal strength information would only increase the complexity
and time needed to identify the correct gesture. Therefore,
we decide to use only the binary information of presence or
absence of the tag.

2.2 Testbed
Every RFID reader consists of one evaluation board to-

gether with a multi-protocol contactless reading unit [5].
Figure 4 shows three readers. Each reader continuously
emits a magnetic field oscillating at 13.56 MHz to detect

Figure 4: Testbed: Three independent RFID read-
ers are used to recognize gestures.
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Figure 5: Example motion patterns over the readers.

the presence of tags. An important system parameter is the
interval between two successful tag readings. If the tag is
in the vicinity of the reader, then it communicates its tag
Identity (ID) by changing the electrical load impedance con-
nected to its antenna. Otherwise, if the tag is too far from
the reader, no ID will be received. The interval between
two consecutive readings is dimensioned so that the reader
has the time to decode the tag ID. The power of propagated
waves is constant and enables the detection of tags at dis-
tances of up to 3 cm. We performed several experiments with
different combinations of number of tags and readers. With
one reader, we observe how increasing the number of tags in-
fluences the average delay of tag detection. Since one reader
is not enough to recognize gesture patterns, most of the mea-
surements are carried out with three readers positioned in
a triangular shape (Figure 4). Three is the minimum num-
ber of readers to be able to identify a movement pattern
reliably, since the binary information from only one or two
readers does not provide information about movements that
are more complex than a line.

2.3 Pattern Recognition & Pattern Matching
Pattern recognition takes an input value and assigns a

label to it. In our case, the value is a time series of measure-
ments for a given RFID tag and labels are motion patterns
such as line or circular movements. The tag is moved above
one or multiple readers so that a motion label is assigned to
every tag. In other words, pattern recognition means classi-
fication, which attempts to assign each input value to one of
a given set of classes (i.e., line or circle). Pattern matching,
on the other hand, is about checking a sequence of tokens
(i.e., time series of measurements from two RFID tags) for
the presence of the constituents of some known pattern. In
contrast to pattern recognition, the pattern match usually
has to be exact. Cross-correlation is a common statistical
technique used for pattern matching. It is a measure of sim-
ilarity of two waveforms as a function of a time-lag applied
to one of them. Cross-correlation returns values between −1
and +1, when there is strong positive or negative correla-
tion, respectively. A cross-correlation close to zero means
that there is no correlation between the two functions.

3. EVALUATION
In this section, we present the performance of the RFID

based pattern matching system. As a first step, we evalu-
ate the performance of one reader with increasing number
of tags. Then, we analyse the reading of three readers in
presence of moving tags. Challenges and limitations of this
type of technology are also discussed. Finally, we perform

Table 1: Average tag detection time interval for
one isolated RFID reader (without interference from
other readers).

number of tags interval[ms] stdev[ms]

1 235.7 2.7
2 416.0 5.3
3 595.9 7.2
4 793.7 82.0

an interpolation-aided cross-correlation analysis to manage
to pair the RFID tag-enabled devices.

3.1 Single Reader
We set the readers to constant emission power and max-

imum scanning speed, that is, the minimum scanning time
interval between readings. We determined that, for the spe-
cific reader that we have used, the minimum interval is about
236 ms. If the tag is stationary above the reader, the inter-
val duration does not depend on the distance between the
reader and the tag (measurements were carried out for tag-
to-reader separation distances of 0, 1, 2, and 3 cm). The
same measurements were repeated with different covers that
surround the tag (i.e., plastic or paper). We found that these
materials do not influence the readability, the range, and the
response time of tags; hence, the technique will not be hin-
dered by the construction materials of many toys and cloth-
ing. When two tags are within the range of the same reader,
the scanning time interval for each tag is about 416 ms. As
expected and as Table 1 indicates, the more the tags in a
reader’s range, the lower the detection frequency for each one
of them. In this table, the average tag detection intervals of
ten thousand independent measurements are indicated.

3.2 Multiple Readers
We now show measurements for the three readers deployed

as shown in Figure 4. Each tag(s) is(are) moved following
the the motion pattern shown in Figure 5. Both tags were
held in one hand and moved at different speeds. In the fol-
lowing, we describe slow and high-speed movements. These
speeds are subjective and defined relative to the minimum
scanning interval of the readers. Figure 6 shows the slow
and fast speed movement of two RFID tags drawing a circle
over the three RFID readers. Figure 7 shows the readings
by all readers as two tags simultaneously draw a line over
them (both line 1 and line 2, as shown in Figure 5). In
Figures 7(a) and 7(b) the line is drawn along the axis of
the reader’s triangle (line 1 in Figure 5). Therefore, only
one of the readers can identify the tags during this type of
movement. In Figures 7(c) and 7(d) the line is drawn along
one side of the triangle, resulting in two readers being able
to identify the tags, in slow and fast speed, respectively.
We see that the slower the speed the higher the chance of
the reader identifying both tags that move simultaneously.
However, the way the tags are held could also result in one
of the tags not being identified.

3.3 Pattern Matching Analysis
The reader software returns a tag ID, a reader ID, and a

time stamp every time that a tag is detected. In a few cases,
some readings are missing as Figures 6 and 7 show. Reasons
for this include the speed of the movement of the tags and
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Figure 6: Readings of two RFID tags as function of
time. The tags are moved in a circle fashion over
three readers deployed as indicated in Figure 4.

the orientation of the tags with respect to the reader an-
tenna. To be compared, each series of tag readings must
have the same length (number of readings); therefore, we
use an interpolation algorithm to achieve this end. We use a
one-dimensional nearest neighbor-based interpolation func-
tion. The nearest neighbor algorithm selects the value of
the nearest point and does not consider the values of neigh-
boring points at all, yielding a piecewise-constant interpola-
tion. With the interpolated series of patterns from the two
tags we can use cross-correlation as described in Section 2.3.
Figures 8 and 9 show the cross-correlation results for move-
ments in Figures 6 and 7, respectively. The high positive
correlation shows that the two patterns are very similar and
therefore the two devices should be paired. So, we see that
cross-correlation can accurately identify that the two tags
moved simultaneously over the same readers. In Figure 9,
again, we see that the correlation results report correctly
that the two tags draw the same line, at the same time.

In addition to the cross-correlation, we decided to also
employ a simple payoff function counting the mismatched
reader IDs for the two tags. Its advantage compared to the
correlation function is that it is much simpler and straight-
forward to implement in a low level driver, and much faster
to run as well. With this we aim to show that even a very
simple function can accurately implement the device pairing
functionality.

Table 2: Payoff function and the cross-correlation
results for circular movement (Figure 6).

Scenario Payoff Cross-Correlation

Slow clockwise 0.0714 0.9374
Slow counterclockwise 0 1

Fast clockwise 0.1 0.9782
Fast counterclockwise 0.1 0.9782
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Figure 7: Readings of two RFID tags as function of
time. The tags are moved drawing a line over three
readers deployed as indicated in Figure 4.

payoff =
number of mismatched readings

number of total readings
(1)

Using this methodology we can get the results shown in
Tables 2 and 3. The payoff function is normalized by the
number of samples (the payoff range is [0, 1]), where a value
closer to zero (few mismatches) indicates that the vectors
match. The higher this metric the more different the two
vectors. The cross-correlation value shown in the Tables 2
and 3 is the maximum absolute value (peak) of the cross-
correlation vector plotted in Figure 8 and Figure 9. Com-
paring the same results for the line and circular movement
(Tables 2 and 3) we observe that both the payoff and cross-
correlation can correctly pair the RFID-enabled devices.

3.4 Identifying Movement Orientations
In order to only pair the appropriate devices, we need

to also be able to differentiate not only between types of
movement (e.g., circle) but also between different orienta-
tion (e.g., clockwise–counterclockwise). We therefore decide
to use opposite direction tags and see if the cross-correlation
and payoff function would pair the two tags. Figure 10
depicts the cross-correlation coefficient results comparable
to Figure 8, showing that the movement pattern of differ-
ent orientation tags cannot be correlated, independently of
their speed. Similarly, the payoff metric results (payoff at
slow speed: 0.6682, and at fast speed: 0.775) report values

Table 3: Payoff function and the cross-correlation
results for line movement (Figure 7).

Scenario Payoff Cross-Correlation

Slow speed, line 1 0 1
Fast speed, line 1 0 1
Slow speed, line 2 0.2308 0.9631
Fast speed, line 2 0.1875 0.9713
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(a) Slow speed, both tags
moved clockwise.
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(b) Fast speed, both tags
moved clockwise.
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(c) Slow speed, both tags
moved counterclockwise.
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(d) Fast speed, both tags
moved counterclockwise.

Figure 8: Cross-correlation of the two tags’ interpo-
lated signals as function of the number of samples.
Results for the circular movement.

higher than 0.5, indicating correctly that the two movement
patterns should not be paired.

3.5 Optimal Time Interval
The results presented so far were computed using data col-

lected over a ten second interval. We now examine further
the optimal time interval needed in order to accurately pair
two RFID tags. We examine the maximum cross-correlation
coefficient and the payoff metric for various durations of the
same movement. We show results for different measurement
durations from 3 s to 30 s with increments of three seconds
(3, 6, . . . , 30 s). Figures 11 and 12 show the performance
of both metrics for the circle and line movements, respec-
tively. We remark that with simpler movements (e.g., line),
devices are paired with higher accuracy. Faster moving de-
vices can still be correctly identified and paired but with less
certainty for both simple and more complicated movements
(e.g., circle). Finally, we also notice that after a certain
time threshold (e.g., fifteen seconds) the accuracy of the
metrics deteriorates, suggesting that more measurements do
not necessarily improve the performance. This could be be-
cause more time allows more errors. If only a few readings
are missed then the interpolation mechanism could correct
the errors, whereas if multiple measurements are missing it
is more difficult for the interpolation mechanism to correct
the errors. We can see that the ten second interval used in
Section 3.3 is a reasonable choice. The differences noticed
compared to Tables 3 and 2 are because we only use ten of
the thirty seconds of collected data.

4. RELATED WORK
The concept of intuitively associating devices with the

help of matching shaking patterns was originally reported
in [4], where the use of accelerometers instead of RFID-
based gesture recognition is proposed. Most of the existing
research activity in RFID-related gesture or motion recogni-
tion is based on a non-real-time approach: Data is collected
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(a) Slow speed, both tags
moved along line 1.
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(b) Fast speed, both tags
moved along line 1.
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(c) Slow speed, both tags
moved along line 2.
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(d) Fast speed, both tags
moved along line 2.

Figure 9: Cross-correlation of the two tags’ interpo-
lated signals as function of the number of samples.
Results for the line movement.

first and then processed off-line. In many cases, RFID data
is combined with readings from other wireless sensors or ac-
celerometers [7–15]. Various types of RFID tags have been
used. Some are active tags that require a battery [7–9, 11].
Others use passive tags and accelerometers [12, 13]. Our
work focuses on 13.56 MHz passive tags without accelerom-
eters. Different types of gestures (e.g., hand movement or
preparing coffee) can be detected using a hierarchical model
combining measurements of two RFID devices with the read-
ings of three accelerometers and one location sensor, as re-
ported in [10]. In [16], motion pattern tracking using passive
RFID tags is proposed and analyzed.
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(a) Slow, counterclockwise
tags 1 & 2.
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(b) Fast, clockwise tag 1,
counterclockwise tag 2.

5 10 15
0

0.2

0.4

0.6

0.8

1

C
ro

s
s
−

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

Samples

(c) Slow, counterclockwise
tag 1, clockwise tag 2.
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(d) Fast, counterclockwise
tag 1, clockwise tag 2.

Figure 10: Cross-correlation and payoff metrics as
function of measurement duration (3-30 s). The tags
draw circles moving in opposite directions.
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Figure 11: Cross-correlation and payoff metrics as
function of measurement duration (3-30 s). Results
for circular movement.

The focus of that contribution is on a complex scenario
with multiple readers located at known positions and mul-
tiple tags. In [17], it is proposed to use RFID for real-time
tracking the movement of people who need assistance while
getting up from bed, to provide an alarm system in case
the person falls.This medical application makes use of real
time gesture recognition with multiple tags, but does not
require any match detection. The work in [11] describes
a system that recognizes gestures by comparing real-time
measurements to an initial training set. Once the training
set is available, real-time data is resampled to match the
sample size of the training set for comparison. In addition,
the detection precision is refined using accelerometers. One
potential future approach is to pair passive RFID tags by
having them directly communicate with each other, as al-
ready demonstrated in [18] for short distances.

5. CONCLUSION
A novel way for pairing RFID-enabled devices is intro-

duced. The proposed approach is simple and does not rely
on additional technology (accelerometers or device-to-device
radio communication). Instead of relying on dedicated com-
munication like infrared or radio communication together
with an authentication mechanism (touching, pin numbers),
we employ gesture recognition to identify the movement pat-
tern of devices, and pair them. It is shown in this paper
that the proposed idea can be easily realized. The required
gesture interval duration and the characteristics for accu-
rate pattern matching are discussed in this paper. Intuitive
user-friendly approaches as described in this paper will be
a contribution to the acceptance of the Internet of Things.
Because of its simplicity and ease of use, associating de-
vices with the help of gesture recognition might be seen as
a secure-enough low-cost way for establishing networks of
consumer devices (e.g., toys). When designing such net-
works, security and user experience demands such as ease
of use and convenience should be considered. The presented
method addresses both concerns by offering an association
in an intuitive and user-friendly way.
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