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1 Introduction

We recently introduced a multi-view layered holographic rendering algorithm1 which 

combined layer based computation with multi-viewpoint rendering to rapidly  compute full 

parallax holograms with occlusion and view-dependent shading. Layer-based methods should 

be more efficient  than typical point-based methods because of the reduced calculation 

complexity and less amount of data involved. Multi-viewpoint rendering removes parallax 

artifacts and allows for a wider field-of-view, occlusion/disocclusion and view-dependent 

shading in layered holograms. 

To realize real time computation for holographic image displays, both the production of the 

image source and the calculation of holograms from the image source are critical. Our 

previous work proposed the use of a layer-based method to reduce computational load for the 

step of hologram calculation, but did not provide a solution for efficient image source 



production. This work takes advantage of image based rendering from multiple viewpoints 

with angular tiling and an integrated graphics rendering pipeline to produce image sources 

efficiently. Combined with further optimized codes and overall performance of the algorithm, 

the effectiveness of our integrated approach of image source production and hologram 

calculation is demonstrated. 

We will show that a rapid calculation speed of 4.5x106 pixels per second (pps, the number of 

hologram pixels calculated in a second), greater than typical point-based methods, can be 

achieved via such an approach by using a single consumer graphics processing unit (GPU) 

card for the generation of a 3D hologram of a complicated object. The resulting 3D views 

have clear depth cues, occlusion and shading.

The algorithm is also compatible with and takes advantage of our Coarse Integral 

Holographic Display (CIHD)2. An array of layered holograms of different viewpoints and 

with computed attached holographic lenses are angularly  tiled using a single common 

transform lens. Real time rendering will allow us to generate interactive holograms, or 

achieve real time transmission and playback of holographic television on the CIHD.

2. Background review

2.1 Multi-view layered holograms

We proposed an efficient multi-view layer-based holographic algorithm1 to take advantage of 

the computation speed of layer-based hologram generation while using angular multiplexing 

to overcome its limitations of diffusive Lambertian surfaces with limited field of view and 

parallax. 

Our layer based method dissects a 3D point cloud into parallel 2D image layers, then uses a 

Fast Fourier Transform (FFT) of each layer and computed lens (with a focal length 



corresponding to the layer’s depth) to create a diffractive pattern for each layer, which are 

then added together to create a Fourier- Fresnel hologram3. The Ping-Pong method was then 

used to include occlusion effects by  computationally propagating light from the hologram 

plane forward with each plane’s image silhouette acting as an occluder, then propagating the 

resultant light back to the hologram plane. The reconstructed 3D image has depth and 

accommodation cues. Unfortunately, layer-based holograms only support diffusive 

Lambertian surfaces and present a very limited field of view. The gaps between layers 

become apparent when the viewing angle is away from the axis normal to the parallel 2D 

image layers, as shown in Fig. 1.  

Fig. 1 Illustration of slicing and its gap issue.

To overcome these limitations, the layer-based method was extended to use render multiple 

viewpoints, thus handling occlusion/disoclussion, view-dependent lighting, and realigning the 

slicing of layers for each viewpoint.  The multi-view layered holographic rendering algorithm 

was adapted to a CIHD system2 which is illustrated in Fig. 2, where holograms for a 3D 

object viewed at different angles are replayed through a coarse integral imaging system to 

form realistic 3D views through angular tiling.



Fig 2. Illustration of a CIHD system, in which multiple subholograms corresponding to different viewing angles 

are integrated optically to provide a realistic 3D view of the object through angular tiling.

Most holographic rendering algorithms can be considered consisting of two main steps: 

transforming 3D data to an information format which is suitable for hologram calculation, 

and the computation of the holographic diffraction pattern.

For the multi-view layer-based holographic rendering, each view goes through the procedure 

shown in following Fig. 3 and it is repeated for every view.



Fig. 3 Flow chart of the procedure and the resultant data in our previous layer-based method.

Using this procedure, we were able to calculate a hologram of 900x900 pixels, for a 3D 

dragon of 36k points (with normals) of 30 layers, in 3.41 seconds. The speed was about 

2.3x105 pixels per second (pps), in comparison with 1.7x103 pps (481.9 seconds) when using 

a point-based algorithm. pps is the number of pixels of a hologram calculated in a second, 

and is a better measure of the computational speed than the number of rendered 3D points per 

second, since it can be applied regardless of the rendering technique or source data format.

However, the method to transform 3D data to an information format for hologram calculation 

was not optimized. For each view, the points were transformed and sorted to define the 

layers. We used point-by-point ray-tracing to calculate the shading and occlusion for the 



layer-based method, which was not efficient and even took more time than that of hologram 

calculation itself. The overall time needed is 3.4 seconds, among which 1.2 seconds (i.e. 

6.75x105 pps) on hologram computation and 2.2 seconds (i.e. 3.68x105 pps) on rendering, 

data transformation and other processes.

2.2 Multi-view image based holograms

Instead of decomposing a 3D model itself into physical elements (points, polygons, or layers) 

for the 3D image hologram generation, multi-view image-based methods decompose 3D 

views of the model into 2D images from different viewing angles. This method is widely 

used in holographic stereograms4-8, in which the hologram is composed of an array of 

“hogels”9, with each hogel being a collection of diffraction gratings modulated by 

corresponding 2D image pixels thus steering them to their respective viewing zones.  

Holographic stereograms are capable of occlusion, view-dependent lighting, and support a 

large number of view zones providing smooth parallax and large 3D depth reconstruction, but 

with the disadvantage of lack of accommodation cues. 

The Diffraction Specific Coherent Panoramagram (DSCP)10,11 method reintroduced the 

accommodation cue into the holographic stereograms. The method used wavefront elements 

(wafels) that could control the direction and curvature of the wavefront at each element to 

controllably steer and focus the multiple 2D view images pixel by pixel into their view zones. 

The method requires an image of the view and its corresponding depth map for each 

viewpoint. The efficiency of these methods comes from the discretization of the hologram in 

space (hogel/wafel resolution) and frequency (viewpoints), and their ability  to be parallelized 

and computed on GPUs 9,10.



Multi-view image-based methods require a suitable holographic replay  system (ideally  with 

full parallax) to angularly tile their multiple 3D views with small fields of view together 

properly. Optical angular tiling is used to join several adjacent views of narrow viewing angle 

images to form a continuous and wide view image. It has been applied on holographic 

stereogram displays, coarse integral imaging displays12, 13, angular viewpoints system14, 15, 

and CIHD.

3. Approach

In this paper, we propose the use of a graphics rendering approach, similar to the DCSP 

method, integrated with the layer-based method, to significantly reduce the time spent on 

providing suitable information for hologram calculation. We use computer-generated imagery 

(CGI) color and depth renderings of the 3D model from different viewpoints to provide view-

dependent lighting, occlusion/disocclusion handling, and layer slicing.

3.1   Rendering

Graphics rendering using 2D perspective projection is capable of creating images of 3D data 

with specific lighting and occlusion cues for a given viewing direction. OpenGL is a common 

standard application programming interface (API)16 for graphics rendering. It can render a 3D 

polygon model into 2D perspective projection images of different viewing angles with 

shading and occlusion information (Fig. 4 (top)) and the corresponding depth maps (Fig. 4 

(middle-top)). For each view, the 3D model is rendered and divided into N layers on the 

depth grid using the depth map of that direction. Here for simplicity we use equally spaced 

grid. For more complicated applications, uneven spacing can be used.



Fig. 4. 2D rendering of a 3D dragon in different viewing angles as image projections (top),  their depth map 

(middle) and the layers for one view (bottom) used in this work for angular tiling. Each layer has a 

corresponding sub-hologram with an attached lens. These sub-hologram are added to form a combined 

hologram for one view.  2D projection includes the information of occlusion,  shading and texture, and the label 

in each sub-hologram represents its designated viewing angle. For each view, the colour image is sliced by using 

thresholded depth maps as masks. 

OpenGL quickly and efficiently renders each view with view transformation, depth sorting 

and occlusion, shading and texture, and rasterization together in one pass, giving us a view’s 

color and depth images. We can use OpenGL’s pipeline performed in parallel on a GPU, 

instead of the multiple custom subroutines in our previous algorithm with multiple data types 

performed sequentially  on the CPU. For instance, previous separate routines for view 

transformation, per point lighting and texture computations, and layered point splatting all for 



a dense 3D point cloud with attached normals are all replaced with the standard OpenGL 

color image render of a standard polygon model. Layer slicing via ray-tracing (point-based) 

and occlusion handling via the Ping-Pong method (image-based wavefront propagation) can 

be replaced by masking the OpenGL’s rendered color image with thresholded depth maps. 

Transparent  objects can be handled as well, but it requires multiple passes since depth maps 

only encode the front-most surface. For simplicity, we handle opaque-objects in this work.

Compared to what was used in our previous work, this rendering approach differs in the 

following ways: (1) using computer-generated imagery (CGI) rendering to replace lighting 

per point with interpolated lighting per vertex, (2) using CGI depth-sorting and occlusion to 

replace Ping-Pong method, (3) using CGI depth rendering to replace ray-tracing calculation, 

which is based on CPU computing, for producing the layer slicing, and (4) using CGI 

rendering support rasterization of polygon 3D models to remove the need for point splatting 

of dense 3D point clouds to fill-in spaces between points. 

3.2   Integration of different attributes for a 3D image

To combine the techniques mentioned above and integrate different attributes for a 3D image 

to display, data rendering and hologram calculation are carried out in the following order: (1)  

define spatial coordinates and normal vector directions of a 3D model, fix a lighting 

direction, and select a viewing direction; (2) render the 3D object and its depth map to 

compose the 3D data for the chosen viewing direction; (3) perform a corresponding sorting/

slicing on the 3D data using the depth map (using thresholded depth maps to mask the colour 

image and produce each layer); (4) calculate the sub-hologram for each layer by combining 

the FFT of the sliced 2D image and a pre-computed holographic lens pattern of the 

corresponding focus depth. Note that the phase pattern of a holographic lens is identical to a 



blazed Fresnel zone plate; (5) stack up all the sub-hologram for different layers together to 

produce the final hologram for that viewing direction. Therefore it contains the information 

of all N layers, each of which has its own holographic lens; (6) repeat  steps (1)-(5) for 

another viewing direction. This procedure is summarised in Fig. 5, and it is applied to every 

viewing directions included in the reconstruction. It should be mentioned that  for hologram 

calculations, “combine” means to perform element to element matrix multiplication and 

“stack up” means element to element matrix addition.

Our layer-based method is implemented using MATLAB with GPUmat17 for GPU parallel 

calculation, and Psychtoolbox18 which allows MATLAB communicating with OpenGL for 

graphics rendering. Psychtoolbox in MATLAB is used to call OpenGL to conduct the graphic 

rendering, then pass the rendered image and depth map back to MATLAB, and then call 

GPUmat to parallel compute the final hologram using the layer-based method. Hardware and 

API information in use are provided in Table 1. In this paper, a hologram for a chosen 3D 

model of a dragon19 (36k vertices and 68k polygonal faces) is calculated using the layer-

based approach (in 30 layers). 



Fig. 5 Flow chart of the procedure and the produced data in our improved layer-based method

Table 1   List of the hardware and software in use.

Hardware

CPU Intel Core i3 560 3.33 GHz

Hardware
GPU

NVIDIA GeForce GTX 460 SE

Hardware
GPU

CUDA Cores: 288Hardware
GPU

Graphic Clock 650 MHz
Hardware

GPU

Memory Bandwidth 108.8 GB/sec

API
MATLABMATLAB R2011b 

API
Library

GPUmat V.027API
Library

Psychtoolbox 3.010

4 Results

4.1  Calculation speed

It took 176 ms to generate a sub-hologram of Extended Graphics Array  (XGA) resolution 

(1,024x768 pixels) for the dragon on the computer specified in Table 1, which was equivalent 

to a calculation speed of 4.47 x 106 pps. The calculation was performed on a single 



commodity consumer gaming graphics card (NVIDIA GeForce GTX 460SE). The 

computation time includes that  for rendering 3D data, sorting/slicing using depth maps, 

generating a hologram and binarization. Within the 176 ms, 86 ms was spent on layer-based 

calculation (Fourier-Fresnel hologram), 56 ms was spent on exchanging data between CPU 

memory and GPU memory, 16 ms was spent on conducting sorting according the depth map, 

10 ms was spent on rendering, and 8 ms was spent on binarization, as shown in Table 2. 

Compared to the algorithms in Section 2.1, the speed of hologram calculation here (i.e. 

9.14x106 pps) is 13.54 times faster and the speed of rendering, data transferring, etc., (i.e. 

8.74x106 pps) is 23.75 times faster. The improvement comes from the implementation of the 

new procedure and optimised codes.

Table 2    Time spent on each step.

Rendering
CPU-GPU 

data 
transferring

Sorting / Slicing Main hologram 
calculation Binarization Total

Cost time 10 ms 56 ms 16 ms 86 ms 8 ms 176 ms
Percentage ~ 6 % ~32% ~9% ~49%  ~4% 100%

*Note: The calculation time is averaged from the multiple calculations of multiple views. Different complexity 

of content needs different rendering time. In our case, the 3D dragon with 36k vertices (68k polygons) costs us 

about 10 ms. this number can be less for a simpler content, or much more for an extremely complicated scene.

4.2  Holographic results

In order to show the reconstructed image from a hologram generated using the above 

approach, a binary hologram of the dragon for a single view was calculated and loaded on a 

digital micro mirror device (DMD) which has a XGA resolution and 13.68 μm pixel pitch. 

The main focus of this work is the algorithm and its speed, so we only present a single view 

projection here to show the accommodation cue of the holographic image and its practical 

image quality. Its detailed optical system will be reported in a future work. The results are 

shown in Fig. 6, where Fig. 6(a) is the graphic rendering and Figs. 6(b)-(d) the results when 



the holographic image is projected on a diffusive screen. The reason of doing so is to 

compensate the small viewing angle of a single view. Please note that, Fig. 6(b) is the 

reconstructed image with a single layer while Figs. 6(c) and 6(d) are the results of the same 

computed hologram with 30 layers and a depth range of about 50 mm with the diffusive 

screen being placed at different locations.

Fig. 6 Target and reconstructed holographic images for the single view on a diffusive screen, (a) target image 

as rendered by CG, (b) holographic reconstruction of the target image with a single plane (all data points are 

assigned on the same depth plane where the diffusive screen is), and (c) and (d) holographic reconstructions 

with depth information with the diffusive screen at different depths, around the head and the tail, respectively.

5. Discussions

5.1 Advantages

We accomplished an integrated rendering structure which previously  took multiple steps: 3D 

transformation, view-dependent lighting, occlusion/disocclusion, and layer dissection. The 

CG pipeline is efficient and optimized with dedicated hardware acceleration on GPUs using 

standard models and interfaces, as compared to hand coded algorithms using non-standard 

models (3D point cloud with included normals and colors). 



There are a number of significant advantages of using such a rendering approach. (1) Only 

the visible 2D data with occlusion, shading and texture information are kept for each view 

and they  can be calculated easily. This is largely contributed by the back-face culling and 

depth sorting used in OpenGL which makes the occlusion cue rendering efficient and reduces 

the necessary object data to be taken into account for the specific view. (2) Depth information 

is associated with each 2D image only; (3) only a finite number of views are used which are 

sufficient to provide a smooth 3D viewing effect and directional shading updates; (4) 

standardized and optimized graphics pipeline (GPU acceleration) is used, which is 

compatible with standard polygon models, shaders and other advanced CGI techniques 

(ambient occlusion, normal mapping20, morph target animation, etc.) (5) Since only colour 

and corresponding depth maps from different viewpoints are required, the layered hologram 

may be computed from live imagery such as captured using a color+depth camera (e.g. 

Kinect camera).  

5.2 Performance Comparison

In our example, the speed of computing the hologram of the 3D dragon was equivalent to a 

calculation speed of 0.45 x 107 pps and about 19.4 times faster in overall time than that  of our 

previous work.  This is mainly  due to the use of the new graphics rendering structure which 

significantly reduces the amount of computation needed to produce 3D data with the desired 

cues. As a means of comparison, we look at the calculation speed of various holographic 

rendering approaches implemented on GPUs. 

Recently, Song, et.al achieved a 60 ms calculation time for a high definition (HD) resolution 

hologram with 4 graphics processing units (GPUs) (NVidia GTX 590)21. This performance is 

equal to a speed of 4 x 107 pixels per second (pps). Other research by  Nakada, et.al calculated 



a hologram of 6,400 x 3,072 pixels also in 60 ms using 12 GPUs (NVidia GTX 480)22. This is 

equal to a speed of 3 x 108 pps. Both studies use approximately 3,000 points to represent their 

3D models, which may not be sufficient for a large and complicated object. Obviously the 

number of elements used in the decomposition has a significant effect on the overall 

computation time. For example, if the same point density  (the number of points divided by 

the number of the hologram pixels) as that in Ref. [21] was used in Ref. [22], the equivalent 

computation speed of the latter would decrease by one order to 3 x 107 pps. 

Apart from these two examples, a speed of 2 x 107 pps was achieved also using a point-based 

method with 3 GPUs (NVidia GTX 285) and the help of the split look-up table (LUT) 

method23. In comparison, a polygon-based method by Matsushima had achieved a speed of 3 

x 105 pps without using GPU24. Another polygon-based work25 by  Hosoyachi calculated a 3D 

model of 1,000 polygons in 3 seconds using a GPU (NVidia GTX 480), which is equal to a 

speed of 1 x 106 pps. In addition, Tsang, et.al achieved 1.7 x 107 pps in hologram calculation 

using the wave-front record plane (WRP) method with a GPU (NVidia GTX 580) and their 

specialized algorithm26. However, WRP is not a general method, and can only be used for 

objects with shallow depth. 

Overall, the calculation speed for holograms generation at present is in the order of 105~107 

pps, and can be increased to the order of 108 pps by  using multiple GPUs for the limited 

number of basic elements. Introduction of shading and occlusion will further complicate the 

situation. Therefore, the practical speed to calculate a complicated 3D objects with shading 

and occlusion may well be much less than 107 pps even if multiple GPUs are used.

We have computed the hologram of a complicated 3D dragon with occlusion and shading 

effects at a calculation speed equivalent to 0.45 x 107 pps. Using a single GPU of consumer 

grade, we achieved the speeds comparable to those of multiple GPUs solutions. We believe 



that with a high-performance GPGPU/GPU or a combination of several  mid-range consumer 

GPUs, the calculation speed reported here can easily be further improved by at least another 

order.

6. Conclusions

The approach proposed above combines a new graphic rendering method for 3D image data 

production which is integrated into a layer-based method of hologram calculation for angular 

tiling. It was implemented on a normal computer with a consumer graphic card to show its 

fast computation speed in generating a hologram with necessary depth cues. 

The demonstrated calculation speed can be further improved by  using a high-end GPU or 

even multiple devices. Furthermore, the GPUmat used in this work doesn’t support  parameter 

optimization. Therefore, programing in C/C++ with CUDA can further speed up the 

algorithm. In addition, the use of the sparse FFT27, 28 may also help. This algorithm was 

implemented on GPU recently29 and its performance was shown to be more efficient than of 

the cuFFT library30 in CUDA.  
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