
Rapid hologram generation utilising layer-based approach and
graphic rendering for realistic 3D image reconstruction by
angular tiling

Jhen-Si Chen1, Daping Chu1, Quinn Smithwick2

1 University of Cambridge, Photonics and Sensors Group, Department of Engineering, 9 JJ Thomson Avenue,
Cambridge, UK, CB3 0FA
2 Disney Research, Glendale, CA, USA, 91201-5020

Abstract: An approach of rapid hologram generation for the realistic 3D image reconstruction based on the
angular tiling concept is proposed, using a new graphic rendering approach integrated with a previously
developed layer-based method for hologram calculation. A 3D object is simplified as layered cross-sectional
images perpendicular to a chosen viewing direction, and our graphics rendering approach allows the
incorporation of clear depth cues, occlusion and shading in the generated holograms for angular tiling. The
combination of these techniques together with parallel computing reduces the computation time of a single-view
hologram for a 3D image of XGA resolution to 176 ms using a single consumer graphics processing unit card.

Keywords: optics, digital holography, 3D images processing

Address all correspondence to: Daping Chu, University of Cambridge, Photonics and Sensors Group,
Department of Engineering, 9 JJ Thomson Avenue, Cambridge UK, CB3 0FA; Tel: +44 (0) 1223 748352; Fax:
+44 (0) 1223 748342; E-mail: dpc31@cam.ac.uk

1 Introduction

We recently introduced a multi-view layered holographic rendering algorithm1 which

combined layer based computation with multi-viewpoint rendering to rapidly compute full

parallax holograms with occlusion and view-dependent shading. Layer-based methods should

be more efficient than typical point-based methods because of the reduced calculation

complexity and less amount of data involved. Multi-viewpoint rendering removes parallax

artifacts and allows for a wider field-of-view, occlusion/disocclusion and view-dependent

shading in layered holograms.

To realize real time computation for holographic image displays, both the production of the

image source and the calculation of holograms from the image source are critical. Our

previous work proposed the use of a layer-based method to reduce computational load for the

step of hologram calculation, but did not provide a solution for efficient image source

production. This work takes advantage of image based rendering from multiple viewpoints

with angular tiling and an integrated graphics rendering pipeline to produce image sources

efficiently. Combined with further optimized codes and overall performance of the algorithm,

the effectiveness of our integrated approach of image source production and hologram

calculation is demonstrated.

We will show that a rapid calculation speed of 4.5x106 pixels per second (pps, the number of

hologram pixels calculated in a second), greater than typical point-based methods, can be

achieved via such an approach by using a single consumer graphics processing unit (GPU)

card for the generation of a 3D hologram of a complicated object. The resulting 3D views

have clear depth cues, occlusion and shading.

The algorithm is also compatible with and takes advantage of our Coarse Integral

Holographic Display (CIHD)2. An array of layered holograms of different viewpoints and

with computed attached holographic lenses are angularly tiled using a single common

transform lens. Real time rendering will allow us to generate interactive holograms, or

achieve real time transmission and playback of holographic television on the CIHD.

2. Background review

2.1 Multi-view layered holograms

We proposed an efficient multi-view layer-based holographic algorithm1 to take advantage of

the computation speed of layer-based hologram generation while using angular multiplexing

to overcome its limitations of diffusive Lambertian surfaces with limited field of view and

parallax.

Our layer based method dissects a 3D point cloud into parallel 2D image layers, then uses a

Fast Fourier Transform (FFT) of each layer and computed lens (with a focal length

corresponding to the layer’s depth) to create a diffractive pattern for each layer, which are

then added together to create a Fourier- Fresnel hologram3. The Ping-Pong method was then

used to include occlusion effects by computationally propagating light from the hologram

plane forward with each plane’s image silhouette acting as an occluder, then propagating the

resultant light back to the hologram plane. The reconstructed 3D image has depth and

accommodation cues. Unfortunately, layer-based holograms only support diffusive

Lambertian surfaces and present a very limited field of view. The gaps between layers

become apparent when the viewing angle is away from the axis normal to the parallel 2D

image layers, as shown in Fig. 1.

Fig. 1 Illustration of slicing and its gap issue.

To overcome these limitations, the layer-based method was extended to use render multiple

viewpoints, thus handling occlusion/disoclussion, view-dependent lighting, and realigning the

slicing of layers for each viewpoint. The multi-view layered holographic rendering algorithm

was adapted to a CIHD system2 which is illustrated in Fig. 2, where holograms for a 3D

object viewed at different angles are replayed through a coarse integral imaging system to

form realistic 3D views through angular tiling.

Fig 2. Illustration of a CIHD system, in which multiple subholograms corresponding to different viewing angles

are integrated optically to provide a realistic 3D view of the object through angular tiling.

Most holographic rendering algorithms can be considered consisting of two main steps:

transforming 3D data to an information format which is suitable for hologram calculation,

and the computation of the holographic diffraction pattern.

For the multi-view layer-based holographic rendering, each view goes through the procedure

shown in following Fig. 3 and it is repeated for every view.

Fig. 3 Flow chart of the procedure and the resultant data in our previous layer-based method.

Using this procedure, we were able to calculate a hologram of 900x900 pixels, for a 3D

dragon of 36k points (with normals) of 30 layers, in 3.41 seconds. The speed was about

2.3x105 pixels per second (pps), in comparison with 1.7x103 pps (481.9 seconds) when using

a point-based algorithm. pps is the number of pixels of a hologram calculated in a second,

and is a better measure of the computational speed than the number of rendered 3D points per

second, since it can be applied regardless of the rendering technique or source data format.

However, the method to transform 3D data to an information format for hologram calculation

was not optimized. For each view, the points were transformed and sorted to define the

layers. We used point-by-point ray-tracing to calculate the shading and occlusion for the

layer-based method, which was not efficient and even took more time than that of hologram

calculation itself. The overall time needed is 3.4 seconds, among which 1.2 seconds (i.e.

6.75x105 pps) on hologram computation and 2.2 seconds (i.e. 3.68x105 pps) on rendering,

data transformation and other processes.

2.2 Multi-view image based holograms

Instead of decomposing a 3D model itself into physical elements (points, polygons, or layers)

for the 3D image hologram generation, multi-view image-based methods decompose 3D

views of the model into 2D images from different viewing angles. This method is widely

used in holographic stereograms4-8, in which the hologram is composed of an array of

“hogels”9, with each hogel being a collection of diffraction gratings modulated by

corresponding 2D image pixels thus steering them to their respective viewing zones.

Holographic stereograms are capable of occlusion, view-dependent lighting, and support a

large number of view zones providing smooth parallax and large 3D depth reconstruction, but

with the disadvantage of lack of accommodation cues.

The Diffraction Specific Coherent Panoramagram (DSCP)10,11 method reintroduced the

accommodation cue into the holographic stereograms. The method used wavefront elements

(wafels) that could control the direction and curvature of the wavefront at each element to

controllably steer and focus the multiple 2D view images pixel by pixel into their view zones.

The method requires an image of the view and its corresponding depth map for each

viewpoint. The efficiency of these methods comes from the discretization of the hologram in

space (hogel/wafel resolution) and frequency (viewpoints), and their ability to be parallelized

and computed on GPUs 9,10.

Multi-view image-based methods require a suitable holographic replay system (ideally with

full parallax) to angularly tile their multiple 3D views with small fields of view together

properly. Optical angular tiling is used to join several adjacent views of narrow viewing angle

images to form a continuous and wide view image. It has been applied on holographic

stereogram displays, coarse integral imaging displays12, 13, angular viewpoints system14, 15,

and CIHD.

3. Approach

In this paper, we propose the use of a graphics rendering approach, similar to the DCSP

method, integrated with the layer-based method, to significantly reduce the time spent on

providing suitable information for hologram calculation. We use computer-generated imagery

(CGI) color and depth renderings of the 3D model from different viewpoints to provide view-

dependent lighting, occlusion/disocclusion handling, and layer slicing.

3.1 Rendering

Graphics rendering using 2D perspective projection is capable of creating images of 3D data

with specific lighting and occlusion cues for a given viewing direction. OpenGL is a common

standard application programming interface (API)16 for graphics rendering. It can render a 3D

polygon model into 2D perspective projection images of different viewing angles with

shading and occlusion information (Fig. 4 (top)) and the corresponding depth maps (Fig. 4

(middle-top)). For each view, the 3D model is rendered and divided into N layers on the

depth grid using the depth map of that direction. Here for simplicity we use equally spaced

grid. For more complicated applications, uneven spacing can be used.

Fig. 4. 2D rendering of a 3D dragon in different viewing angles as image projections (top), their depth map

(middle) and the layers for one view (bottom) used in this work for angular tiling. Each layer has a

corresponding sub-hologram with an attached lens. These sub-hologram are added to form a combined

hologram for one view. 2D projection includes the information of occlusion, shading and texture, and the label

in each sub-hologram represents its designated viewing angle. For each view, the colour image is sliced by using

thresholded depth maps as masks.

OpenGL quickly and efficiently renders each view with view transformation, depth sorting

and occlusion, shading and texture, and rasterization together in one pass, giving us a view’s

color and depth images. We can use OpenGL’s pipeline performed in parallel on a GPU,

instead of the multiple custom subroutines in our previous algorithm with multiple data types

performed sequentially on the CPU. For instance, previous separate routines for view

transformation, per point lighting and texture computations, and layered point splatting all for

a dense 3D point cloud with attached normals are all replaced with the standard OpenGL

color image render of a standard polygon model. Layer slicing via ray-tracing (point-based)

and occlusion handling via the Ping-Pong method (image-based wavefront propagation) can

be replaced by masking the OpenGL’s rendered color image with thresholded depth maps.

Transparent objects can be handled as well, but it requires multiple passes since depth maps

only encode the front-most surface. For simplicity, we handle opaque-objects in this work.

Compared to what was used in our previous work, this rendering approach differs in the

following ways: (1) using computer-generated imagery (CGI) rendering to replace lighting

per point with interpolated lighting per vertex, (2) using CGI depth-sorting and occlusion to

replace Ping-Pong method, (3) using CGI depth rendering to replace ray-tracing calculation,

which is based on CPU computing, for producing the layer slicing, and (4) using CGI

rendering support rasterization of polygon 3D models to remove the need for point splatting

of dense 3D point clouds to fill-in spaces between points.

3.2 Integration of different attributes for a 3D image

To combine the techniques mentioned above and integrate different attributes for a 3D image

to display, data rendering and hologram calculation are carried out in the following order: (1)

define spatial coordinates and normal vector directions of a 3D model, fix a lighting

direction, and select a viewing direction; (2) render the 3D object and its depth map to

compose the 3D data for the chosen viewing direction; (3) perform a corresponding sorting/

slicing on the 3D data using the depth map (using thresholded depth maps to mask the colour

image and produce each layer); (4) calculate the sub-hologram for each layer by combining

the FFT of the sliced 2D image and a pre-computed holographic lens pattern of the

corresponding focus depth. Note that the phase pattern of a holographic lens is identical to a

blazed Fresnel zone plate; (5) stack up all the sub-hologram for different layers together to

produce the final hologram for that viewing direction. Therefore it contains the information

of all N layers, each of which has its own holographic lens; (6) repeat steps (1)-(5) for

another viewing direction. This procedure is summarised in Fig. 5, and it is applied to every

viewing directions included in the reconstruction. It should be mentioned that for hologram

calculations, “combine” means to perform element to element matrix multiplication and

“stack up” means element to element matrix addition.

Our layer-based method is implemented using MATLAB with GPUmat17 for GPU parallel

calculation, and Psychtoolbox18 which allows MATLAB communicating with OpenGL for

graphics rendering. Psychtoolbox in MATLAB is used to call OpenGL to conduct the graphic

rendering, then pass the rendered image and depth map back to MATLAB, and then call

GPUmat to parallel compute the final hologram using the layer-based method. Hardware and

API information in use are provided in Table 1. In this paper, a hologram for a chosen 3D

model of a dragon19 (36k vertices and 68k polygonal faces) is calculated using the layer-

based approach (in 30 layers).

Fig. 5 Flow chart of the procedure and the produced data in our improved layer-based method

Table 1 List of the hardware and software in use.

Hardware

CPU Intel Core i3 560 3.33 GHz

Hardware
GPU

NVIDIA GeForce GTX 460 SE

Hardware
GPU

CUDA Cores: 288Hardware
GPU

Graphic Clock 650 MHz
Hardware

GPU

Memory Bandwidth 108.8 GB/sec

API
MATLABMATLAB R2011b

API
Library

GPUmat V.027API
Library

Psychtoolbox 3.010

4 Results

4.1 Calculation speed

It took 176 ms to generate a sub-hologram of Extended Graphics Array (XGA) resolution

(1,024x768 pixels) for the dragon on the computer specified in Table 1, which was equivalent

to a calculation speed of 4.47 x 106 pps. The calculation was performed on a single

commodity consumer gaming graphics card (NVIDIA GeForce GTX 460SE). The

computation time includes that for rendering 3D data, sorting/slicing using depth maps,

generating a hologram and binarization. Within the 176 ms, 86 ms was spent on layer-based

calculation (Fourier-Fresnel hologram), 56 ms was spent on exchanging data between CPU

memory and GPU memory, 16 ms was spent on conducting sorting according the depth map,

10 ms was spent on rendering, and 8 ms was spent on binarization, as shown in Table 2.

Compared to the algorithms in Section 2.1, the speed of hologram calculation here (i.e.

9.14x106 pps) is 13.54 times faster and the speed of rendering, data transferring, etc., (i.e.

8.74x106 pps) is 23.75 times faster. The improvement comes from the implementation of the

new procedure and optimised codes.

Table 2 Time spent on each step.

Rendering
CPU-GPU

data
transferring

Sorting / Slicing Main hologram
calculation Binarization Total

Cost time 10 ms 56 ms 16 ms 86 ms 8 ms 176 ms
Percentage ~ 6 % ~32% ~9% ~49% ~4% 100%

*Note: The calculation time is averaged from the multiple calculations of multiple views. Different complexity

of content needs different rendering time. In our case, the 3D dragon with 36k vertices (68k polygons) costs us

about 10 ms. this number can be less for a simpler content, or much more for an extremely complicated scene.

4.2 Holographic results

In order to show the reconstructed image from a hologram generated using the above

approach, a binary hologram of the dragon for a single view was calculated and loaded on a

digital micro mirror device (DMD) which has a XGA resolution and 13.68 μm pixel pitch.

The main focus of this work is the algorithm and its speed, so we only present a single view

projection here to show the accommodation cue of the holographic image and its practical

image quality. Its detailed optical system will be reported in a future work. The results are

shown in Fig. 6, where Fig. 6(a) is the graphic rendering and Figs. 6(b)-(d) the results when

the holographic image is projected on a diffusive screen. The reason of doing so is to

compensate the small viewing angle of a single view. Please note that, Fig. 6(b) is the

reconstructed image with a single layer while Figs. 6(c) and 6(d) are the results of the same

computed hologram with 30 layers and a depth range of about 50 mm with the diffusive

screen being placed at different locations.

Fig. 6 Target and reconstructed holographic images for the single view on a diffusive screen, (a) target image

as rendered by CG, (b) holographic reconstruction of the target image with a single plane (all data points are

assigned on the same depth plane where the diffusive screen is), and (c) and (d) holographic reconstructions

with depth information with the diffusive screen at different depths, around the head and the tail, respectively.

5. Discussions

5.1 Advantages

We accomplished an integrated rendering structure which previously took multiple steps: 3D

transformation, view-dependent lighting, occlusion/disocclusion, and layer dissection. The

CG pipeline is efficient and optimized with dedicated hardware acceleration on GPUs using

standard models and interfaces, as compared to hand coded algorithms using non-standard

models (3D point cloud with included normals and colors).

There are a number of significant advantages of using such a rendering approach. (1) Only

the visible 2D data with occlusion, shading and texture information are kept for each view

and they can be calculated easily. This is largely contributed by the back-face culling and

depth sorting used in OpenGL which makes the occlusion cue rendering efficient and reduces

the necessary object data to be taken into account for the specific view. (2) Depth information

is associated with each 2D image only; (3) only a finite number of views are used which are

sufficient to provide a smooth 3D viewing effect and directional shading updates; (4)

standardized and optimized graphics pipeline (GPU acceleration) is used, which is

compatible with standard polygon models, shaders and other advanced CGI techniques

(ambient occlusion, normal mapping20, morph target animation, etc.) (5) Since only colour

and corresponding depth maps from different viewpoints are required, the layered hologram

may be computed from live imagery such as captured using a color+depth camera (e.g.

Kinect camera).

5.2 Performance Comparison

In our example, the speed of computing the hologram of the 3D dragon was equivalent to a

calculation speed of 0.45 x 107 pps and about 19.4 times faster in overall time than that of our

previous work. This is mainly due to the use of the new graphics rendering structure which

significantly reduces the amount of computation needed to produce 3D data with the desired

cues. As a means of comparison, we look at the calculation speed of various holographic

rendering approaches implemented on GPUs.

Recently, Song, et.al achieved a 60 ms calculation time for a high definition (HD) resolution

hologram with 4 graphics processing units (GPUs) (NVidia GTX 590)21. This performance is

equal to a speed of 4 x 107 pixels per second (pps). Other research by Nakada, et.al calculated

a hologram of 6,400 x 3,072 pixels also in 60 ms using 12 GPUs (NVidia GTX 480)22. This is

equal to a speed of 3 x 108 pps. Both studies use approximately 3,000 points to represent their

3D models, which may not be sufficient for a large and complicated object. Obviously the

number of elements used in the decomposition has a significant effect on the overall

computation time. For example, if the same point density (the number of points divided by

the number of the hologram pixels) as that in Ref. [21] was used in Ref. [22], the equivalent

computation speed of the latter would decrease by one order to 3 x 107 pps.

Apart from these two examples, a speed of 2 x 107 pps was achieved also using a point-based

method with 3 GPUs (NVidia GTX 285) and the help of the split look-up table (LUT)

method23. In comparison, a polygon-based method by Matsushima had achieved a speed of 3

x 105 pps without using GPU24. Another polygon-based work25 by Hosoyachi calculated a 3D

model of 1,000 polygons in 3 seconds using a GPU (NVidia GTX 480), which is equal to a

speed of 1 x 106 pps. In addition, Tsang, et.al achieved 1.7 x 107 pps in hologram calculation

using the wave-front record plane (WRP) method with a GPU (NVidia GTX 580) and their

specialized algorithm26. However, WRP is not a general method, and can only be used for

objects with shallow depth.

Overall, the calculation speed for holograms generation at present is in the order of 105~107

pps, and can be increased to the order of 108 pps by using multiple GPUs for the limited

number of basic elements. Introduction of shading and occlusion will further complicate the

situation. Therefore, the practical speed to calculate a complicated 3D objects with shading

and occlusion may well be much less than 107 pps even if multiple GPUs are used.

We have computed the hologram of a complicated 3D dragon with occlusion and shading

effects at a calculation speed equivalent to 0.45 x 107 pps. Using a single GPU of consumer

grade, we achieved the speeds comparable to those of multiple GPUs solutions. We believe

that with a high-performance GPGPU/GPU or a combination of several mid-range consumer

GPUs, the calculation speed reported here can easily be further improved by at least another

order.

6. Conclusions

The approach proposed above combines a new graphic rendering method for 3D image data

production which is integrated into a layer-based method of hologram calculation for angular

tiling. It was implemented on a normal computer with a consumer graphic card to show its

fast computation speed in generating a hologram with necessary depth cues.

The demonstrated calculation speed can be further improved by using a high-end GPU or

even multiple devices. Furthermore, the GPUmat used in this work doesn’t support parameter

optimization. Therefore, programing in C/C++ with CUDA can further speed up the

algorithm. In addition, the use of the sparse FFT27, 28 may also help. This algorithm was

implemented on GPU recently29 and its performance was shown to be more efficient than of

the cuFFT library30 in CUDA.

Acknowledgments

This research was performed through a joint collaboration project between the University of

Cambridge and Disney Research through the CAPE consortium. JSC and DPC would like to

thank the UK Engineering and Physical Sciences Research Council (EPSRC) for the support

through the Platform Grant in Liquid Crystal Photonics. JSC also want to thank Taiwan

Education Ministry for their funding to his study in Cambridge.

References

1. J.-S. Chen, Q. Smithwick, and D. Chu, "Implementation of shading effect for reconstruction of

smooth layer-based 3D holographic images", Proc. SPIE 86480R–86480R-9 (2013) [doi:

10.1117/12.2004704].

2. Q. Smithwick, J.-S. Chen, and D. Chu, "A Coarse Integral Holographic Display," SID

Symposium Digest of Technical Papers 44, 310–313 (2013) [doi:10.1002/j.

2168-0159.2013.tb06208.x]

3. D. Abookasis and J. Rosen, ‘Three types of computer-generated hologram synthesized from

multiple angular viewpoints of a three-dimensional scene’, Appl. Opt., vol. 45, no. 25, pp.

6533–6538, Sep. 2006. [doi:10.1364/AO.45.006533]

4. S. A. Benton and V. M. Bove Jr, “Holographic Imaging”, John Wiley & Sons, Hoboken, New

Jersey, (2008).

5. M. Lucente, "Diffraction-Specific Fringe Computation for Electro-Holography," Doctoral

Thesis Dissertation, Massachusetts Institute of Technology Department of Electrical

Engineering and Computer Science (1994).

6. W. Plesniak, M. Halle, J. Bove, J. Barabas, and R. Pappu, "Reconfigurable image projection

holograms", Opt. Eng 45, 115801–115801 (2006) [doi:10.1117/1.2390678]

7. H. Kang, T. Yamaguchi, and H. Yoshikawa, "Accurate phase-added stereogram to improve the

coherent stereogram", Appl. Opt. 47, D44–D54 (2008) [doi:10.1364/AO.47.000D44]

8. Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove Jr, "Real-time shader rendering

of holographic stereograms", Proc. SPIE 7233, p. 723302, (2009) [doi:10.1117/12.808999]

9. M. Lucente, ‘Diffraction-Specific Fringe Computation for Electro-Holography, Chapter 4”,

Cambridge MA, USA: Massachusetts Institute of Technology Department of Electrical

Engineering and Computer Science, 1994., pp. 45-75.

10. Q. Y. J. Smithwick, J. Barabas, D. E. Smalley, and V. M. Bove, Jr., "Interactive holographic

stereograms with accommodation cues", Proc. SPIE 7233, 723302-1–723302-12 (2009) [doi:

10.1117/12.840526]

http://dx.doi.org/10.1117/12.2004704
http://dx.doi.org/10.1117/12.2004704
http://dx.doi.org/10.1117/12.2004704
http://dx.doi.org/10.1117/12.2004704
http://dx.doi.org/10.1002/j.2168-0159.2013.tb06208.x
http://dx.doi.org/10.1002/j.2168-0159.2013.tb06208.x
http://dx.doi.org/10.1002/j.2168-0159.2013.tb06208.x
http://dx.doi.org/10.1002/j.2168-0159.2013.tb06208.x
http://dx.doi.org/10.1364/AO.45.006533
http://dx.doi.org/10.1364/AO.45.006533
http://dx.doi.org/10.1117/1.2390678
http://dx.doi.org/10.1117/1.2390678
http://dx.doi.org/10.1364/AO.47.000D44
http://dx.doi.org/10.1364/AO.47.000D44
http://dx.doi.org/10.1117/12.808999
http://dx.doi.org/10.1117/12.808999
http://dx.doi.org/10.1117/12.840526
http://dx.doi.org/10.1117/12.840526
http://dx.doi.org/10.1117/12.840526
http://dx.doi.org/10.1117/12.840526

11. J. Barabas, S. Jolly, D. E. Smalley, and V. M. Bove Jr, "Diffraction Specific Coherent

Panoramagrams of Real Scenes", in Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series (2011), Vol. 7957, p. 1. [doi:10.1117/12.873865]

12. H. Kakeya, "Formulation of coarse integral imaging and its applications", Proc. of SPIE 6803,

680317–1-680317–10 (2008) [doi:10.1117/12.766338]

13. H. Kakeya, "Improving image quality of coarse integral volumetric display," Proc. SPIE 7237,

723726-1–723726-9 (2009) [doi:10.1117/12.805469]

14. D. Abookasis and J. Rosen, "Computer-generated holograms of three-dimensional objects

synthesized from their multiple angular viewpoints", J. Opt. Soc. Am. A 20, 1537–1545 (2003)

[doi:10.1364/JOSAA.20.001537]

15. D. Abookasis and J. Rosen, "Three types of computer-generated hologram synthesized from

multiple angular viewpoints of a three-dimensional scene", Appl. Opt. 45, 6533–6538 (2006)

[doi:10.1364/AO.45.006533]

16. "OpenGL - The Industry Standard for High Performance Graphics," http://www.opengl.org/.

17. "GPUmat: GPU toolbox for MATLAB," http://gp-you.org/.

18. "Psychtoolbox Wiki: Psychtoolbox-3," http://psychtoolbox.org/HomePage.

19. "The Stanford 3D Scanning Repository," http://www-graphics.stanford.edu/data/3Dscanrep/.

20. Dave Shreiner, Graham Sellers, John Kessenich, and Bill Licea-Kane, ‘Procedural Texutring’,

in OpenGL-Programming Guid 8th edition- The official guide to learning OpenGL, version 4.3,

8th ed., Addison Wesley, 2013, pp. 411–484.

21. J. Song, J. Park, and J.-I. Park, "Fast calculation of computer-generated holography using

multi-graphic processing units", 2012 IEEE International Symposium on Broadband

Multimedia Systems and Broadcasting (BMSB), pp. 1 –5, (2012) [doi:10.1109/BMSB.

2012.6264286].

22. N. Takada, T. Shimobaba, H. Nakayama, A. Shiraki, N. Okada, M. Oikawa, N. Masuda, and T.

Ito, "Fast high-resolution computer-generated hologram computation using multiple graphics

processing unit cluster system", Appl. Opt. 51, 7303–7307 (2012) [doi:10.1364/AO.51.007303]

http://dx.doi.org/10.1117/12.873865
http://dx.doi.org/10.1117/12.873865
http://dx.doi.org/10.1117/12.766338
http://dx.doi.org/10.1117/12.766338
http://dx.doi.org/10.1117/12.805469
http://dx.doi.org/10.1117/12.805469
http://dx.doi.org/10.1364/JOSAA.20.001537
http://dx.doi.org/10.1364/JOSAA.20.001537
http://dx.doi.org/10.1364/AO.45.006533
http://dx.doi.org/10.1364/AO.45.006533
http://www.opengl.org/
http://www.opengl.org/
http://gp-you.org/
http://gp-you.org/
http://www-graphics.stanford.edu/data/3Dscanrep/
http://www-graphics.stanford.edu/data/3Dscanrep/
http://dx.doi.org/10.1109/BMSB.2012.6264286
http://dx.doi.org/10.1109/BMSB.2012.6264286
http://dx.doi.org/10.1109/BMSB.2012.6264286
http://dx.doi.org/10.1109/BMSB.2012.6264286
http://dx.doi.org/10.1364/AO.51.007303
http://dx.doi.org/10.1364/AO.51.007303

23. Y. Pan, X. Xu, S. Solanki, X. Liang, R. B. A. Tanjung, C. Tan, and T.-C. Chong, "Fast CGH

computation using S-LUT on GPU", Opt. Express 17, 18543–18555 (2009). [doi: 10.1364/OE.

17.018543]

24. K. Matsushima and S. Nakahara, "Extremely high-definition full-parallax computer-generated

hologram created by the polygon-based method", Applied optics 48, 54–63 (2009) [doi:

10.1364/AO.48.000H54]

25. K. Hosoyachi and Y. Sakamoto, "Acceleration of calculation method for CGH with spherical

basic object light by using graphic processing units," Proc. SPIE 82810U–82810U (2012) [doi:

10.1117/12.906629]

26. P. Tsang, W.-K. Cheung, T.-C. Poon, and C. Zhou, "Holographic video at 40 frames per second

for 4-million object points", Opt. Express 19, 15205–15211 (2011) [doi:10.1364/OE.

19.015205]

27. H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Simple and practical algorithm for sparse

Fourier transform", in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’12 (SIAM, 2012), pp. 1183–1194.

28. H. Hassanieh, P. Indyk, D. Katabi, and E. Price, "Nearly Optimal Sparse Fourier Transform",

arXiv:1201.2501 (2012) [doi:10.1145/2213977.2214029]

29. J. Hu, Z. Wang, Q. Qiu, W. Xiao, and D. J. Lilja, "Sparse Fast Fourier Transform on GPUs and

Multi-core CPUs", in 2012 IEEE 24th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD) (2012), pp. 83 –91.[doi:10.1109/SBAC-PAD.

2012.34]

30. "CUFFT  :: CUDA Toolkit Documentation," http://docs.nvidia.com/cuda/cufft/index.htm

http://dx.doi.org/10.1364/AO.48.000H54
http://dx.doi.org/10.1364/AO.48.000H54
http://dx.doi.org/10.1364/AO.48.000H54
http://dx.doi.org/10.1364/AO.48.000H54
http://dx.doi.org/10.1117/12.906629
http://dx.doi.org/10.1117/12.906629
http://dx.doi.org/10.1117/12.906629
http://dx.doi.org/10.1117/12.906629
http://dx.doi.org/10.1364/OE.19.015205
http://dx.doi.org/10.1364/OE.19.015205
http://dx.doi.org/10.1364/OE.19.015205
http://dx.doi.org/10.1364/OE.19.015205
http://dx.doi.org/10.1145/2213977.2214029
http://dx.doi.org/10.1145/2213977.2214029
http://dx.doi.org/10.1109/SBAC-PAD.2012.34
http://dx.doi.org/10.1109/SBAC-PAD.2012.34
http://dx.doi.org/10.1109/SBAC-PAD.2012.34
http://dx.doi.org/10.1109/SBAC-PAD.2012.34
http://docs.nvidia.com/cuda/cufft/index.htm
http://docs.nvidia.com/cuda/cufft/index.htm

Authors’ Biographies

Jhen-Si Chen is a Ph.D. candidate at Engineering Department, University of Cambridge. He
received his Bachelor of Science degree in Physics from National Taiwan University in 2009,
and joined Photonics & Sensors Group at the University of Cambridge in 2010. His research
focuses on algorithm and optics system of holographic 3D displays.

Daping Chu is the Head of the Photonics & Sensors Group and Chairman of the Centre for
Advanced Photonics and Electronics at the University of Cambridge. His current interests
include future display technologies including 2D/3D holography and full color high
brightness trans-reflective displays, GHz/THz tunable dielectrics, energy saving and radiation
control for the built environment, metal oxide materials and transparent electronics, and
printable and flexible electronics and inkjet fabrication.

Quinn Smithwick is a Research Scientist at Disney Research in Glendale, California. His
main research area is novel display technologies with particular emphasis on autostereoscopic
displays and spatial augmented reality environments. He also represents and directs Disney
Research’s fundamental display research with the Centre for Advanced Photonics and
Electronics at the University of Cambridge (UK).

Caption List

Fig. 1 Illustration of slicing and its gap issue.

Fig 2 Illustration of a CIHD system.

Fig. 3 Flow chart of the procedure and the produced data in our previous layer-based method.

Fig. 4 2D rendering of a 3D dragon in different viewing angles.

Fig. 5 Flow chart of the procedure and the produced data in our improved layer-based method.

Fig. 6 Reconstructed holographic image (single view on a scatter).

Table 1 List of the hardware and software in use.

Table 2 Time spent on each step.

