Rapid One-Shot Acquisition of Dynamic VR Avatars

Charles Malleson*!, Maggie Kosek'*#, Martin Klaudiny', Ivan Huerta', Jean-Charles Bazin?, Alexander Sorkine-Hornung?,
Mark Mine?, and Kenny Mitchell !4

1Disney Research, UK 2Disney Research, CH

ABSTRACT

We present a system for rapid acquisition of bespoke, animatable,
full-body avatars including face texture and shape. A blendshape
rig with a skeleton is used as a template for customization. Iden-
tity blendshapes are used to customize the body and face shape at
the fitting stage, while animation blendshapes allow the face to be
animated. The subject assumes a T-pose and a single snapshot is
captured using a stereo RGB plus depth sensor rig. Our system
automatically aligns a photo texture and fits the 3D shape of the
face. The body shape is stylized according to body dimensions
estimated from segmented depth. The face identity blendweights
are optimised according to image-based facial landmarks, while a
custom texture map for the face is generated by warping the input
images to a reference texture according to the facial landmarks. The
total capture and processing time is under 10 seconds and the output
is a light-weight, game-engine-ready avatar which is recognizable
as the subject. We demonstrate our system in a VR environment in
which each user sees the other users’ animated avatars through a VR
headset with real-time audio-based facial animation and live body
motion tracking, affording an enhanced level of presence and social
engagement compared to generic avatars.

Keywords: Avatars, Capture, Virtual Reality, Augmented Reality
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Graphics and Realism—Virtual Reality

1 INTRODUCTION

Since high-quality consumer-level VR headsets such as the Ocu-
lus Rift and HTC Vive have become available there has been a
proliferation of novel applications in VR both in terms of immersive
media consumption and interactive applications. Although these
headsets are high-resolution, high frame-rate and low-latency, a
remaining obstacle is how to get the user (subject) to feel truly im-
mersed in the experience. One approach to increasing the perception
of immersion is for the participant to see a representation of them-
selves and the other participants in the virtual world. If this ‘avatar’
tracks their motion and can be recognized as the person it repre-
sents, the VR immersion is significantly enhanced as the experience
becomes less isolating and more social.

In this paper, a system for rapid acquisition of bespoke avatars for
each participant (subject) in a social VR environment is presented.
For each subject, the system automatically customizes a parametric
avatar model to match the captured subject by adjusting its overall
height, body and face shape parameters and generating a custom
face texture (in our application the body is in an astronaut character
suit, thus we do not customize the texture of the body).
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A lightweight capture setup consisting of a stereo DSLR rig along
with a depth sensor is used (Figure 1a). A single snapshot of each
participant in a T-pose is captured and after only a few seconds of
processing time on a standard desktop PC, the avatars are available
in the VR environment (Figure 1b).

The parametric avatar model contains blendshapes for face and
body identity, as well for animation of the face via audio-based
lip animation. Blendweights for the rig are fitted from segmented
depth data and 3D facial landmarks, while a gender classification
on the face image is used to drive a subtle male/female stylization
of the avatar. The custom texture map for the face is generated by
warping the input images to a reference texture according to the
facial landmarks.

(b) VR avatar

Figure 1: Acquisition setup showing subject in the capture pose and
the corresponding output avatar .



The contribution of this paper is a light-weight, fully automatic
system for end-to-end capturing of avatars with minimal hardware
requirements, a simple, instant capture procedure and fast processing
time. The output avatars have custom shape and texture and are
skeleton-rigged ready for input into a game engine, where they can
be animated directly, making them suitable for VR applications in
which recognition and interaction of participants is important.

The remainder of the paper is structured as follows. Section 2
covers related work in the field of VR avatar generation, Section 3
covers our capture hardware setup, Section 4 explains our customiz-
able avatar rig structure and design choices and Section 5 details the
method of fitting our template rig to the captured subject. Finally in
Section 6, results of the approach are presented and are demonstrated
in a representative social VR scenario. The overall pipeline of our
system is shown in Figure 2.

2 RELATED WORK

Our goal is to acquire an animatable, full-body avatar of the subjects
that can then be used in a VR environment (Figure 1). We aim for
a fully automatic end-to-end pipeline (from acquisition to final 3D
model in the VR experience) running in less than 10 seconds. In the
following, we review existing works on this topic.

3D face reconstruction  Several methods have been proposed
for performance-based facial animation, i.e., controlling a virtual
character (e.g., a monster’s face) via face tracking from RGBD
sensors [12,51] or monocular videos [15,43], or for reenactment
of another person’s face in a video [48]. In contrast to tracking, we
want to generate an animatable, textured 3D model of the actual
subject’s head and build his/her full-body 3D avatar, as illustrated in
Figure 1b.

The 3D face models of a subject can be obtained in many different
ways. One solution is to use sophisticated setups composed of many
cameras and structured lights, for example like in the digital Emily
project [2] and earlier blue-c [31], but they are not very practical
to deploy with low cost. Moreover to create the facial blendshapes
for later animation of Emily, the actress has to mimic 40 facial
expressions, which is time consuming. In contrast, our method
needs just a single snapshot of the subject acquired by a stereo
DSLR camera.

Other solutions need several images from a moving camera (or
moving subject) [16, 18,27, 28, 34]. However, in addition to ac-
quisition duration, they also require a long processing time, rang-
ing from tens of seconds to tens of minutes. Some of these refer-
ences [16, 18,34] can also generate facial blendshapes/rigs, typically
from different facial expressions. However they require additional ac-
quisition that might be time consuming (e.g. around 10 minutes [16])
and have long processing time (several minutes). In contrast, our
entire pipeline, including both acquisition and processing, runs in
less than 10 seconds.

It is also possible to obtain impressive results from a single shot
acquired by several synchronized cameras or stereo camera sys-
tem [8], but the processing takes several minutes. Other approaches
just need a single image obtained by a single camera: the depth
ambiguity from a single view is constrained by a 3D template or
priors on 3D face shapes learned from a collection of 3D scans.
The seminal work of Blanz and Vetter [11] takes several minutes.
Later methods can run in a few seconds [36], or even in real-time
when the main goal is not accurate 3D reconstruction, for example
in the context of gaze correction in video calls [29]. However none
of these references provide a rigged 3D face model. Our method
uses a stereo color camera and, in addition to short processing time,
also provides an animatable face model that can be used for speech
animation.

Full-body reconstruction  An accurate and efficient approach
to obtain the 3D full-body model of a subject is to use professional
3D body scanners [21]. However they are very expensive, need
long acquisition time (up to minutes), require extensive computing
resources and/or take several minutes of processing.

Some methods have been proposed to acquire dynamic humans
from videos, and thus can be applied at one time instance to acquire a
static 3D model. For example, the recent system of Collet et al. [19]
obtains impressive results but uses 106 synchronized cameras and
the processing time is in the order of several minutes per frame on
a single machine. On the other end of the acquisition spectrum,
Jain et al. [35] propose a method for monocular videos where the
body shape can be manipulated in videos. However it requires few
minutes of manual user interaction. In contrast, we aim for a fully
automatic method.

More related to our context, some methods have been designed
to directly acquire 3D models of humans, for example using RGBD
cameras such as with KinectFusion [40]. However this technique
requires long acquisition time, and the subject must not move. This
constraint can be relaxed using non-rigid alignment [20, 23, 24],
where the subject typically rotates in front of one RGBD camera.
However these techniques still have a relatively long scanning time
(around 30 seconds to 1 minute), and require several minutes [20]
or even hours [23,24] of processing, e.g. due to computationally
expensive non-rigid alignment and bundle adjustment. These refer-
ences return a 3D surface mesh, not a rigged body model. Instead,
our method is fast (less than 10 seconds) and provides a 3D body
model that can then be animated, e.g. with pre-generated motions or
body tracking systems (see results section).

To reduce the processing time, instead of processing a continuous
image sequence, some methods use a limited number of RGBD snap-
shot views where the subject is observed in different orientations,
typically between 4 and 10 selected views [39,46,50,52,53]. The
acquisition still takes around 1-2 minutes and the processing time is
in the order of minutes. Some of these methods provide a parametric
body model but require longer processing time [46,52]. Similarly,
Feng el al. [26] produce good quality reshaping and rig customiza-
tion from scans, again taking minutes of processing, whereas our
requirement is to achieve greater throughput of subjects with acqui-
sition completing in under ten seconds.

To reduce the acquisition time, instead of having the user rotating
in front of one camera, several cameras can be used simultaneously,
so that the acquisition is instantaneous (one shot). For example Pliiss
et al. [42] demonstrate a real-time system from 2 RGBD cameras in
the context of 3D tele-presence but output a non-closed 3D surface.
Tong et al. [49] use 3 synchronized RGBD cameras to generate
a body mesh and then compute the skeleton and skin weights [7].
However the processing takes some minutes and the quality of the
face is limited. De Aguiar et al. [22] use a single RGBD camera and
provide a parametric body model. Song et al. [47] most recently use
targeted feature descriptors with silhouettes and a regression scheme
to constrain to the parametric body mode. The processing time of
both these is in the order of a few seconds, but they target body
model stylization. In contrast, our approach aims for a personalized
avatar with realistic face of the subject in combination with body
shape (see Figure 1b).

Taking advantage of parametric models [3-5,33,45], some meth-
ods have been proposed to estimate the 3D body from a single
picture [32,55]. While they can provide exciting results and a de-
formable body model, they require user interaction of some minutes.
Instead, our approach runs in a fully automatic manner.

3 CAPTURE SETUP

Our capture setup was designed to be relatively inexpensive and
easy to assemble and calibrate. The capture hardware comprises a
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Figure 2: Avatar acquisition pipeline.

stereo RGB camera pair as well as a single RGBD sensor (Figure 3).
Two Canon EOS 1200D DSLR cameras are used for the stereo pair,
and the Microsoft Kinect v2 is used for depth sensing (RGB from
the Kinect is not used). The capture setup is designed to handle
subjects ranging in height from 150 to 200 cm (encompassing the
5th to 95th percentile of adult heights [14]) without requiring any
mechanical adjustment. The requirements are to capture the face
head-on, in stereo with high resolution RGB images for avatar face
fitting , and to capture the whole body in the depth map for avatar
body fitting. The Canon EDSDK! is used to trigger the camera
captures and download the images over USB 2, while the Microsoft
Kinect SDK? is used to capture depth maps from the Kinect over
USB 3.

3.1 Layout

The DSLR cameras need to be positioned to capture a face with suffi-
cient resolution across the assumed subject height range as shown in
Figure 3. Also, the input image for face texture fitting should closely
match the reference face view in Figure 4(a) to achieve a satisfying
quality (specifically have no yaw and a small negative pitch to cover
the bottom of the nose). The camera locations minimize deviation
from this ideal viewpoint across the height range. The cameras are
mounted 200 cm from the user in portrait orientation with a vertical
baseline of 25 cm and toed in so that the full head of a user is visible
across the height range (using lenses of focal length 55 mm to obtain
a suitable field of view). Having the camera distance, height and
baseline as described above means that the deviation from the ideal
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Figure 3: Avatar capture hardware configuration. The rectangles de-
pict illumination soft boxes, C1, C; and Kinect are capture devices.

viewpoint is within 6° in at least one of the cameras (see Figure 8).

The depth sensor (Kinect) is positioned at a distance of 190 cm
from the subject so as to cover the whole of the tallest subjects within
the field of view, while the height is chosen such that the device can
be level (so that the subject is viewed head-on).

The face is lit using four Mosaic ‘soft-box’ LED lights positioned
50 cm from the subject, two on either side at 45° to the frontal
view. They should illuminate the face without strong reflections or
shadows and also not obstruct the camera or depth sensor views.

3.2 Calibration

Let C) refer to the top camera and C; to the bottom camera. They
are set to the maximum resolution (3456 x 5184), manual focus,
fixed white balance, exposure, and aperture. The camera models
are obtained using a checkerboard chart calibration [54]. An A3
sized chart was found to offer suitable image coverage at the subject
range, allowing the intrinsics and extrinsics to be calibrated simul-
taneously, producing projection matrices Py and P,, for C; and C,,
respectively. The 18-55 mm lenses used were found not to have
significant distortion at the long end, thus distortion parameters were
not included in the calibration. The standard factory calibration was
used for focal length f; of the Kinect depth map. A background
depth plate Dy, is captured once to enable subsequent segmentation
of each subject for body fitting.

4 CusTOMIZABLE AVATAR RIG

Each output avatar is an instance of a template rig which is automati-
cally customized according to the captured subject. This rig consists
of a skeleton-rigged, skinned, textured mesh with blendshapes for
body and face shape customization as well as blendshapes for eye
and mouth animation. Using blendshape allows for efficient anima-
tion and shape adjustment of 3D meshes [37]. The overall size of
the avatar, the body and face shape, and the face texture map are all
estimated by the fitting process (refer to Figure 2).

4.1 Face Texture Map

The face region of the texture map is customised for each subject
with the texture of their face warped to align to the reference texture
(Figure 4a) by the fitting process. The layout of the face texture
map needs to be designed so as to produce a visually pleasing final
result (limiting the appearance of misalignment or stretching on
the rendered mesh). At the same time the texture map needs to
closely resemble an image of the face, so as to limit distortion
caused by the texture warping process. The resulting texture map
(Figure 4) is based on an orthographic projection of an average
reference face [13], but with modifications to improve resolution
for oblique regions surrounding the nose. The aligned face image
is composited into the texture map which includes the inside of
the mouth, with teeth (Figure 4c) using the artist-defined mask,
which defines the face mask of the avatar character (Figure 4b). A
resolution of 1024 x 1024 is used for the person-specific face texture
map. The meshes for the eyes have UVs in the corresponding area of
the face texture map, but with a slight expansion of the texture so as
to allow small amounts of eye animation without eyelids becoming
visible on the edges of the eyeballs. The face texture fitting process
is described in Section 5.1.

4.2 Face Identity Blendshapes

In addition to a personalised texture of the face, the identity of a
person is also significantly influenced by facial shape. We customise
the avatar face geometry using a blendshape rig. The personalised
mesh M is constructed by a linear combination of ny blendshape
meshes Fy as follows: M(w) = Fy+ Y, wi(Fx — Fp), where Fy
is a base mesh and w is a vector of blendweights. In our rig, a
compact set of np = 15 shapes was hand-selected based on those
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Figure 4: Face 2D texture mapping based on an artist-tuned ortho-
graphic projection of an average reference face.

in MakeHuman? to cover the most prominent facial characteristics

while keeping complexity of the rig and fitting process down (see
Figure 5).

Weights of individual blendshapes are typically restricted to the
range [0,1]. This single range has to cover a full variation of a
particular facial characteristic (e.g. eye separation). Therefore, the
bounds 0 and 1 correspond to extreme cases (e.g. the smallest and
largest possible eye separation). For this reason, the base shape
of the rig does not correspond to a representative human face, but
represents extreme facial proportions.
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Figure 5: Face identity blendshapes.

The eyeballs, being separate meshes, require additional blend-
shapes to control their positioning. The blendweights for these are
set equal to their corresponding face shape weights, for example eye
separation changes the distance between the eyes both in the main
mesh and the eyeballs. The face shape fitting process is described in
Section 5.2.

4.3 Face Animation Blendshapes

The face animation blendshapes are geared towards speech anima-
tion of the lower part of the face, but also contain 2 shapes for
animating the eye gaze (horizontal/vertical) and 1 shape for blinking.
In the demo VR application presented in Section 6, an audio-based

3http : //www .makehuman. org

lip sync method (Oculus Lip Sync plugin®) is used. The plugin
detects phonemes in the HMD microphone audio stream, which are
mapped to viseme blendweights to produce the resulting animation.
Thus, the mouth animation blendshapes are based on 15 visemes,
as shown in Figure 6. Note that the viseme blendshapes include
some motion of the upper part of the face in order to make the face
dynamics appear more natural during speech.

Figure 6: Face animation blendshapes (visemes) for audio-based
speech animation.

4.4 Body Ildentity Blendshapes and Skeleton

The base body shape By is a generic slim male of height 200 cm.
The size of the avatar is matched to the size of the subject by scaling
the entire avatar down according to the detected subject height.
A relatively small set of blendshapes B, (m € [1,4]) is combined
according to a blendweight vector v to form the avatar body, making
it more identifiable as the subject. Three of these are related to
the width of upper, middle and lower torso, while the fourth is
a stylization which is applied to subjects detected as female (see
Figure 7). The body is rigged to a skeleton based on the CMU
motion capture skeleton® allowing the body to be animated with
pre-recorded or live motion capture data. A fixed 2048 x 2048 artist-
created texture is used for all avatars. The body fitting process is
described in Section 5.3.

5 AVATAR CUSTOMISATION

Given the customisable avatar rig template construction, we now
follow to describe the process of rapid customisation from a single
shot capture. The avatar customisation process begins with the
capture of an input snapshot S = {I{,,D}, where I}, I and D are
the camera RGB images and Kinect depth map, respectively. Upon
capture of S, a fully automatic process of generating the face texture
and fitting the face and body shape is performed before the custom
avatar is passed to the VR application.

5.1 Face Texture Generation

Using OpenFace [6], two sets of 2D facial landmarks {p; ;} and
{p2,;} are detected in images I; and L (where i € [1,1];1 = 68).
These comprise points on the main facial features(mouth, nose, eyes,
eyebrows) as well as the contour of the face (see Figure 9). Using
the camera projection matrices P; and P,, the corresponding 2D
points in {p; ;} and {p,;} are triangulated to produce a set of 3D
landmarks {q;}.

Next, one of the images /; and /> needs to be selected for texture
generation. This is determined based on a head pose with respect

4https ://developer3.oculus.com/downloads/audio/1.0.
1-beta/Oculus_OVRLipSync_for_Unity_5/
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Figure 7: Body skeleton and identity blendshapes.

to each camera viewpoint. The head pose is defined by three 3D
landmarks selected from {q;} which correspond to outer corners
of the eyes and base of the nose. The ideal viewing direction for
the texture capture is computed based on the head pose as shown in
Figure 8. The best camera C}, is selected according to how close the
viewpoint aligns with the ideal viewing direction for the face.

—— Ideal viewing direction
s Head pose
——  C, viewing direction Ly landmarks

—— C, viewing direction

200 - -

175 ==

150 --

Figure 8: Selection of the best camera Cj, for face texturing. Note
that it is the angle between the face direction and camera viewpoint
which determines the image used, not the position of the face in the
frame. Thus, it is possible to have a short subject textured from the
top camera if they tilt their head upwards when captured.

The image [;, from the camera Cj, is warped to the reference face
texture I, ¢ (see Figure 4). This is based on the image 2D landmarks
{Pp»,i} and the landmarks {p,.s;} which are detected from I, s using
the same process. Image warping using the original 68 landmarks
alone was found to produce undesirable artefacts in some cases
(e.g. distortions between eyebrow landmarks causing wavy looking
eyebrows). To mitigate this, auxiliary points are introduced between
the original detections to further constrain the warping. Two points
are inserted along the line between consecutive landmarks on each
contour (e.g. eyebrow, eye) resulting in 178 points altogether (see
Figure 9).

Moving least squares (MLS) image warping [44] is used to warp
Iy to I, based on the augmented sets of {p_;} and {p.y,;}. These
landmarks operate as source and target control points, while im-
age information is smoothly interpolated among them to produce
a warped face image I,,4peq- The output texture map Iy is then

It
++++++++

Figure 9: The set of original facial landmarks as detected by Open-
Face (red) and the augmented set of points among them (blue).

generated by composing I, peq into I ¢ using a pre-defined mask
L,qsk that specifies the face region in the texture map:

Lrex = Lyask - Iwarped + (1 - Imask) : Iref (D

Finally, specular highlights in eyes resulting from the lighting
rig are removed from the texture. This is to avoid having baked-in
highlights attached to the eyeballs as they are moving in the VR
experience. Instead, reflections in the eyes are rendered at runtime
in the game engine based on the virtual environment and eye motion.
The highlight removal is performed using in-painting [10] inside
a ROI of the texture /., defined by the relevant eye landmarks in
{Prey,i}- The specularity mask for in-painting is created by intensity
thresholding and morphological dilation as shown in Figure 10.

(a) Raw eye texture

(b) High-light mask in eye (c) In-painted eye texture
region of interest

Figure 10: Specular highlight removal from eye texture by in-
painting.

5.2 Face Shape Fitting

Face shape fitting is achieved through optimization of the
blendweight vector w which controls face identity blendshapes. As
a one-time pre-process, a correspondence is manually established be-
tween 68 detected landmarks and vertices on the face base mesh Fj.
Let M;(w) denote the i-th landmark position on the mesh blended
with blendweights w. The face shape optimization aims to minimise
the Euclidean distance between the 3D detected landmarks {q;}
and the corresponding blended vertices {M;(w)} aligned by a rigid
transform (R,t). The optimisation is performed in the camera co-
ordinate system established during the setup calibration. Note that
the rigid transform is optimised to compensate for a head pose and
a difference between camera and rig coordinate systems, but is not
used as an output.

In practice, the outer face contour points are relatively uncon-
strained compared to the inner landmarks such as eyes. Their de-
tected locations slide along the chin depending on the viewpoint.



For this reason, triangulated 3D positions of the outer landmarks
drift in depth (along z-axis). This leads to large 3D distances to the
fitted rig vertices, therefore we use only x-y Euclidean distance for
these points. This is achieved by a scaling matrix S; = diag(1,1,1)
for inner landmarks, and S; = diag(0.5,0.5,0) for outer landmarks.
The energy function for shape fitting is defined as follows,

!
E(w,R,t) =Y [[Si (q; — (R-M;(w) + 1)) 3. @)
=

This energy is minimised subject to 0 < wy < 1,Vk € [1,nF] using
the Levenberg Marquardt algorithm in the Ceres library [1]. Au-
tomatic differentiation turns the problem to a sequence of linear
solves until a defined tolerance of 1e~ !0 or maximum number of 50
iterations are reached.

The interpupillary distance (IPD) is also estimated directly from
the 3D eye landmarks. This is used in the VR application to set the
lens separation on the HMD to match the user.

5.3 Body Shape Fitting

The body shape customization is achieved using three types of input:
the depth map D, face image I, and 3D facial landmarks {q;}. The
depth map is used to obtain the height of the subject and approximate
metric body proportions used to set the weights v of the body identity
blendshapes. The face image is also utilised to detect the subject
gender to stylize their body.

5.3.1 Depth-Based Fitting

Upon capture of the subject in a T-pose, a segmented depth map
Dy, is produced by performing background subtraction on D using
the background plate Dy, and D (subject to depth noise tolerance
of 5cm). The average subject depth dj,,;, is then computed. Next, a
silhouette is extracted from Dy,,;, by thresholding non-zero depths
and performing morphological operations to remove noise artefacts
(see Figure 11).

Given the silhouette and subject depth dg,;, an in-plane metric
body dimension x,, is determined using the corresponding pixel
distance x,;; and the depth sensor focal length fy:

Xm = dsubxpix/fd (3)

The subject height Ay, is estimated by taking the distance between
the top and the bottom of the silhouette in the depth map. The
body blendweights v,, for the blendshapes Bigboned, Pear and
Reversepear of figure 7 (indexed m = 1,2,3) are determined ac-
cording to the ratio of torso width in certain regions, and the overall
height. The torso is split into height regions defined in proportion
to the detected silhouette (see Figure 11). Each region is scanned
row-by-row and in the case of more than one segment of silhouette
in a row (e.g. due to blobs of noise or the arms), the largest segment
of silhouette is assumed to be the torso. The torso widths for all rows
are sorted in the region and a single body dimension x,, is taken as a
percentile of the detected widths (50th, 90th and 50th, form =1,2,3,
respectively). Taking the percentiles makes the measurements more
robust to outliers caused by silhouette noise or loose clothing. The
ratio of x,, to the body height Ay, is used to determine the values of
blendweight vector v as follows

xm/hsub — a0 ) )

vy, = clamp (
am —ap
where a,, is a ratio of the body dimension m to the avatar height
for the corresponding blendshape B,, and likewise a( for the base
shape By. The function clamp() clamps the output to [0, 1] to ensure
that the resulting avatar body is within the range of the modelled
blendshapes. Note that the range of the body identity blendshapes
is somewhat limited - for instance subjects with a very large body

mass index value will have avatars with a moderate value. This body
shape fitting is thus more of an artistic stylization of the person. On
the other hand the face blendshapes have a wide range allowing more
geometrically accurate fitting across a wide range of face shapes and
ensuring that the avatar is recognizable as the subject.

0.27
0.35
0.46
0.57
1.00

Figure 11: Body shape customization from a silhouette extracted
from depth map Dy,,j,.

The head size blendweight, initially set during the face fitting
stage is updated according to the detected height, such that it main-
tains its metric size once the body is scaled down according to the
detected height.

5.3.2 Gender Stylization

Although the general shape of subject is well represented by the
three blendshapes fitted from depth above, an additional stylization
is applied to subtly modify the avatar to make it more gender spe-
cific. Because this gender blendshape is a stylization rather than
representing the true geometry of the subject, the blendweight is
based on the detected gender rather than the depth map. The Female
blendweight of the rig is set continuously according to the output
of a gender classification on the face image. A Fisherfaces classi-
fier [9] is pre-trained using a subset of gender-labelled images from
an existing database [25]. The full database - which includes all
ages, occlusions, challenging lighting and viewpoints - was filtered
to include only frontal images of adults which represent the condi-
tions in our scenario. Note that the images in the training dataset as
well as the images for runtime classification need to be pre scaled
and aligned so that the eyes are in the same location in all images.
This is achieved by a similarity transform of each image based on
OpenFace landmark detections. The output of the classifier is a gen-
der class g € {0,1} (male/female) as well as a distance ¢y € [0,0)
indicating the classification confidence (larger distance means lower
confidence). The Female body blendweight v, is set according to
the confidence:

V4 =g maX(Cmax —Cg, 0)/Cmax) 5)

where cjqy is the empirically chosen as 70. Thus, female classifi-
cations made with a high confidence trigger the female blendshape
fully. But as the confidence decreases, the blendshape is applied
more conservatively. In our avatar stylisation, it is preferable to have
a false negative (more neutral/male body shape for a female) than a
false positive (feminine body shape for a male).

6 RESULTS
6.1 Avatar Fitting

To evaluate the proposed approach, we performed the capture
and fitting procedure with 12 subjects (9 male and 3 female). Input,
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Figure 12: Comparison of the fitted avatar face shape without inclu-
sion of a helmet, obtained using our method (left) and with dense
static meshes obtained using photometric stereo [30] (centre). We
also show the face texture with generic 50% values for the shape
weights (right).
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intermediate and output data for a subset of these is presented in
Figure 13 while the full set of avatars is shown in the supplementary
video.

For numerical verification of the IPD and height estimation com-
ponents, the height and IPD of 12 subjects were manually measured.
The heights ranged between 154 and 185 cm, while the IPDs ranged
between 55 and 69 mm. The mean error in the automatically esti-
mated height was 1.4 cm (std. 1.2 cm, max. 2.4 cm). The mean
error in the estimated IPD was 1.6 mm (std. 1.2 mm, max. 4.2 mm)
This level of accuracy results in the correct relative heights between
avatars in VR. It is also useful to have a good height estimate as
input for body tracking purposes. The accuracy of the estimated IPD
allows to effectively set the lenses on the HMD and in the rendered
VR world as described in Section 6.2.

A breakdown of the avatar acquisition timing on our hardware is
shown in Table 1. The timings are for unoptimized single threaded
C++ code running on an Intel Core 17 3.7 GHz CPU. The entire
pipeline from snapshot to fitted avatar takes under 10 s. Apart from
capture and file I/O, the most time intensive tasks are landmark
detection and face shape fitting. It would be possible to run the
texture warping/compositing along with the face shape fitting, which
would bring the total time down by approx 1.5 seconds. However,
the processing time is already short enough that it does not introduce
a delay between capturing the subjects and starting the VR session,
since it takes some time for them to put on the VR headset.

We further validate our face shape fitting approach by compar-
ing our output faces with dense static meshes obtained using an
offline active photometric stereo technique [30]. The results for
three subjects are show in Figure 12. For completeness, we also
show the result using our texturing method without face shape fitting
- this demonstrates that customizing the face shape in addition to the
texture results in more recognisable avatars.

6.2 Virtual Reality Demonstration

The Oculus Rift CV1¢ VR headset used in our demo application
features movable lenses to accommodate a range of user IPDs. In
order to provide the most comfortable viewing experience for the
participants, the headset is adjusted according to the detected IPD, as

6https ://www3.oculus.com/en-us/rift/

Task Time (s)  Proportion(%)
Image/depth capture and file I/O 2.1 21.4
Facial landmark detection 3.54 36.1
Face texture warping 0.76 7.8
Face texture composite 0.78 8.0
Face shape fitting 2.38 243
Depth based body fitting 0.14 1.4
Gender detection 0.1 1.0

Total 9.8

Table 1: Avatar acquisition timing

determined by taking the distance between the average 3D landmarks
in the left and right eyes, respectively.

A VR demonstration was created to verify the end-to-end pipeline
from capture to VR application. In the demonstration four subjects
are acquired and enrolled in the VR experience at a time. The sub-
jects were sequentially captured and turned into avatars using the
system. Upon completion of processing, the avatars were automati-
cally loaded into the demonstration application in a popular video
game engine framework, which is run over the Oculus VR headset.

The demonstration shows the avatars as futuristic astronauts in an
alien planet environment, with pre-generated body animation, eye
movement and blinks, with live audio-based speech animation for
the face as well as body animation using the Perception Neuron’
inertial body tracking system (see Figure 15). The supplementary
video for this paper shows three sets of four representative captured
avatars in the VR environment.

7 DISCUSSION AND FURTHER WORK

In this paper, we have presented a system allowing for fast acqui-
sition of custom, animatable avatars using low-cost, easy to setup
hardware. The avatars are of suitable quality for realtime display in
VR applications within 9.8 seconds (Table 1). The careful selection
of acquisition methods which operate on the scale of milliseconds
has been key to achieve an overall fast end-to-end solution.

While the avatars created using the system are compelling, they
lack the high level of detail available from systems which use more
complex hardware setups, longer processing times or manual inter-
action. For example the system does not capture high resolution
details of the face shape such as wrinkles and the detailed profile of
the nose. Future work could consider improving the level of shape
detail while keeping the capture and processing complexity low.

The appearance customization of our avatars is limited to the face.
A generic character texture is used for the body and the ears and
hair are covered by the character headgear (astronaut space suit).
Future work could consider customizing ears, hair and clothing of
the avatar as well expanding the range of applications to those where
the avatar is in their own clothes rather than a character wearing an
suit and headgear.

The audio-based lip-sync animation used in our demo application
cannot detect eye motion or silent facial expression. Our avatars
could however be used with existing full-face tracking systems,
for instance using HMDs with built-in surface strain sensors for
occluded face tracking [38].

The system can fail on subjects with very thick, dark beards, due
to the OpenFace landmark detection failing around the mouth region.
This causes error in the fitted face positions as well as the texture
alignment (Figure 14). While the fitting works correctly with subject
glasses, the glasses appear flush with the texture in the avatar - it
may be possible to automatically remove glasses in the image [41]
for such subjects.

7https ://neuronmocap . com/
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Figure 13: Sample input and captured avatars.

As is common with body fitting methods, results are best when
the clothing is fairly thin and tight-fitting, and body dimensions may
be overestimated with thick or loose-fitting clothing. In practice
over a large number of experimental subjects and a period of weeks,
we found a very high percentage of successful acquisitions on the
first take. By introducing a face capture landmarks preview in under
6 seconds, the advice to the subject for quick re-takes in failure
cases was also accelerated to comfortable operational times. This
addressed further problems with blinking at the wrong time, face
tilted or non-neutral expression, body moving away from T-pose
shape and distance, etc. Multiple participants were pipelined at up to
double rates with parallel processing operations after initial preview
check indicated success.

For the infrequent occasion of an insurmountable case, the space
suit (and related scenarios such as biker, diver, etc.) allowed us to
mist the visor and optionally select from a set of default body shapes
through manual overrides.

For avatars without helmets, we consider in further work to select

from a range of hair styles and colors manually, or through optimiza-
tion where possible of an image-based hair model [17] for rapid
integration into a VR environment. With the same acquired input
data from Figure 13 subjects 1 and 3, we provide a range of views
captured from the runtime without headgear to illustrate the extents
of the face capture data unobstructed (Figure 16).
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Figure 16: Avatars resulting without headgear obstructions. In this example we extend the masked face texture map area and blended with the
average skin tone sampled from photographic face capture. A little texel mapping distortion is visible under the chin before the blended area.
Neither hair nor ear acquisitions are addressed, instead we attach the face rig to a generic head shape as part of the customised body rig.
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