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ABSTRACT
Parameterisation of models is typically generated for a single pose,
the rest pose. When a model deforms, its parameterisation charac-
teristics change, leading to distortions in the appearance of texture-
mapped mesostructure. Such distortions are undesirable when the
represented surface detail is heterogeneous in terms of elasticity
(e.g. texture with skin and bone) as the material looks “rubbery”.
In this paper we introduce a technique that preserves the appearance
of heterogeneous elasticity textures mapped on deforming surfaces
by calculating dense, content-aware parameterisation warps in real-
time. We demonstrate the usefulness of our method in a variety of
scenarios: from application to production-quality assets, to real-
time modelling previews and digital acting.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Re-
alism—Animation; Computer Graphics [Three-Dimensional Graph-
ics and Realism]: [Color, shading, shadowing, and texture]

Keywords
texture mapping, parameterisation distortion, mesh deformation,
position-based dynamics

1. INTRODUCTION
Texture mapping is the process of mapping detail (colour, bump

or displacement) to a surface using a corresponding parameterisa-
tion – the most common case being a 2D parameterisation of a 3D
surface [8]. Some representations have natural parameterisations
(e.g. NURBS), while others, such as polygonal meshes, require
non-trivial methods or manual input to obtain parameterisations.
In the case of polygonal meshes, parameterisations are represented
in the same way as vertices: as piecewise-linear approximations to
continuous functions. Parameterisations are ideally isometric but
that is rarely the case. As such, a standard metric for the quality of
a parameterisation is the distortion introduced by the mapping [17].

In a typical scenario, when creating a 3D model an artist will
model low complexity geometry and paint texture, displacement
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or bump maps according to a specific mesh pose (e.g. a rest po-
sition) to simulate high complexity geometric detail. This data is
stored using the 2D parameterisation. Given the piecewise-linear
nature of the parameterisation, subsequent non-rigid deformation
of such meshes will result in apparent distortions in the mapped de-
tail (e.g. elastic stretching or squashing). While some surfaces may
require this behavior (e.g. skin, rubber), it is preferable to be able
to finely tune the degree of elasticity or restrict certain elements
to remain entirely rigid (e.g. horns, armour elements and scales).
While physical simulations may be employed to approximate this
behavior, these are typically not appropriate for real-time animation
and interactive editing and can be impractically slow for very de-
tailed mesostructure. Even in production workflows where quality
is prioritised over performance, this is still a difficult and relevant
problem ([4, 7]) .Therefore, to reduce this type of distortion, either
the parameterisation needs to be regenerated, or additional detail
maps must be authored for key poses, or the mesh needs to be care-
fully edited so that deformation does not cause rigid texture areas
to deform.

Contributions. In this paper, we introduce a novel method
to reduce visual artifacts caused by the deformation of a parame-
terised surface in a user-controllable way in real-time. This allows a
variety of texture mapped detail to be applied to an animated model
without it undergoing visually undesirable behaviors.

Our main contribution is a real-time parameterisation distortion
matching algorithm, which is guided by user-supplied rigidity maps
and warp masks represented as an additional scalar texture and a
bitmask respectively. The algorithm selectively matches the param-
eterisation distortion of a deformed frame to the one at the rest pose
by warping the parameterisation domain. The effect is that textured
areas selectively preserve their shape and size in rest pose at a vary-
ing degree, depending on their rigidity values. The warp is a grid
deformation in UV space, mapping the domain bijectively onto it-
self. The grid dimensions directly affect the fidelity of the warp:
our method supports any size that can be mapped to GPU mem-
ory (16384x16384 for modern graphics cards). For high-resolution
production models that use several UV tiles (UDIM UV mapping),
the charts in each tile can be individually processed.

The rest of this paper is organised as follows. We first describe
previous work in related fields of research (sec. 2). We then present
an overview of the method (sec. 3), followed by detailed descrip-
tions of its components: simulation of texture-space warps (sec. 4)
and rendering of the warped textures (sec. 5). We then present the
results (sec. 6) and follow with implementation details (sec. 7) and
conclude our main findings (sec. 8).



(a) Model (b) Rest pose (c) Rigidity map (d) Deformed pose (e) Deformed pose, corrected
texture-space detail

Figure 1: Rigid features on an animated face model. Zoomed-out view of an animated frame (a), authored rigid features shown in (c). The parameterisation
is constant, so deforming from the rest pose (b) to an animation frame (d) compresses the features. Using our parameterisation warps, the shape and scale of
the features are preserved (d).

2. RELATED WORK
In order to prevent parameterisation distortions caused by mesh

deformations, the simplest approach is to control deformations;
several recent shape-aware deformation or skinning methods can be
applied to achieve this goal ([29, 27, 31, 26, 2, 10]). Such methods
typically work with a coarse representation of the mesh and do not
take into account fine-scale information. Therefore, they are com-
plementary to our stated goal, which is to correct the appearance
of fine-scale, texture-mapped heterogeneous data using a given de-
formation. Still, a number of techniques have been developed that
approach mesh deformation from a content-sensitive point of view
and as such, we briefly discuss them below.

Popa et al. [21] approach content-aware deformation by intro-
ducing local bending and shearing stiffnesses as factors in how a
mesh deforms. Given such material information, and transforma-
tions for a number of anchor triangles, they calculate the deforma-
tion of the mesh as a weighted sum or blend of the anchor trans-
formations. The material information is user- or data-driven, pro-
viding additional control on how parts of the mesh deform when
editing it. As the anchor transformations are required to be a com-
bination of rotations and uniform scales, the space of supported
deformations is restricted.

Kraevoy et al. [14] focus on protecting vulnerable parts of a
complex model under global non-uniform scaling. They define a
vulnerability map on a volumetric grid that encloses the object, and
transform the grid while respecting this map. While they estimate
vulnerability based on slippage and normal curvature, the map can
be user-driven. The technique focuses only on a very special defor-
mation case (non-uniform scaling transform), so it’s not applicable
to more complex deformations.

Yang et al. [30] simulate skin sliding by remeshing the surface
based on resampling of its parameter space. They use the Force
Density Method (FDM) to construct embeddings of original and
deformed patches into their parameter domains. As the technique
deforms the actual geometry and force densities are specified on
edges, so the deformed patch needs to be highly tessellated and the
result is dependent on the triangulation, which reduces the flexibil-
ity and applicability of the method.

Müller and Chentanez [19] add wrinkles as fine surface detail to
coarse, deforming surfaces in real-time. Their approach shares sim-
ilarity to ours in terms of running a simulation on a high-resolution
mesh overlaid on the coarse base mesh, but they only simulate
wrinkling for smooth, homogeneous surfaces. In contrast, our method
allows more complex deformations, and for non-homogeneous fine-
scale detail.

Dekkers and Kobbelt [3] achieve content-aware mesh deforma-
tion by using seam carving on dense meshes, but with several lim-
itations. The seam lines which determine the saliency of the mesh

are restricted to ring shapes and require precomputation (no times
are given). In contrast, our technique supports dynamic/animated
saliency maps of any form. The method works with dense triangle
meshes with no parameterisation and modifies the mesh and con-
nectivity, in contrast to our technique that works with coarse quad
meshes and retains the geometry but warps the parameterisation do-
main. Additionally, the technique is not well suited for animation
as temporal coherence artifacts can be observed when applying de-
formation on the handles, while our simulation produces smoothly
changing results.

If the deforming mesh cannot be modified or controlled, content-
aware reduction of texture deformation can be achieved by modi-
fying the parameterisation. The majority of existing parameterisa-
tion algorithms focus on generating a parameterisation by minimiz-
ing a global distortion metric (often independent of the data being
mapped) at the rest pose of the mesh [16, 9, 25, 5]. While typically
the distortion reduction can become content-aware by introducing
spatially-varying weights, the per-vertex nature of the optimization
cannot capture the fine-scale texture-mapped details and their vari-
ation in rigidity. More importantly, they do not address the problem
of distortion matching as they address distortion minimization. Fi-
nally, they do not guarantee temporal coherence when applied to
a series of smoothly deforming poses. Below we briefly discuss
methods that take into account content, temporal coherence or dis-
tortion matching.

Falco and Driskill [4] reduce distortion on artist-defined areas
over a mesh under deformation. They regenerate the texture by de-
tecting and correcting the movements of points in relation to feature
centers. However, the rigidity map is binary (not continuous) and
compression is not handled, therefore the method is restricted in its
applications.

Sander et al. [23] minimise a signal-stretch metric that allows
reduction of distortions of any vector-valued function (the signal)
defined over the domain. The metric is non-linear and the process
requires a few minutes per model. While the technique is content-
aware, it does not take into account temporal coherence of the pa-
rameterisation, which is important when considering a deforming
mesh.

Sheffer and De Sturler [24] overlay a 2D uniform Cartesian grid
on the texture parameterisation domain (as a 2D triangle mesh) and
warp the grid so that the warped parameterisation minimises edge
length distortions. While this technique uses an overlaid grid to
warp the parameterisation, it is not content-aware and so ignores
features which should remain rigid or fixed (i.e. non-sliding fea-
tures).

Ptex, by Burley and Lacewell [1], eliminates the need for ex-
plicit parameterisation by using the natural one afforded by subdivi-
sion surface quad-faces and providing anisotropic filtering between



Figure 2: Overview of the method. Given the mesh (rest pose and animation) and texture, we first artistically define the rigidity map and the warp mask. The
rigidity map is used to generate a fine regular grid (at map resolution) that serves as the simulation mesh. Constraints are defined over this simulation mesh,
whose stiffnesses are directly derived from the rigidity map (eq. 7), while the warp mask is used to select a subset of the grid constraints to simulate. The
maps and mesh data are then used by our novel optimization process to hierarchically calculate the warped parameterisation domains (section 4). The warp
is then inverted so that it represents new texture rather than geometry sampling coordinates. The resulting dense, deformed grids can be then used to render
the dynamically warped texture (section 5).

faces. While this eliminates many of the explicit parameterisation
issues, such as distortions and seams, animated meshes still pose
a problem, as the individual quads still deform and distortions are
reintroduced.

Koniaris et al. [13] use distortion control maps on rectangular
areas of a mesh and apply a nonlinear optimisation method over
the rectangular domain. The technique can be used in real-time for
simple distortion control maps, but scales poorly with map com-
plexity.

Jin et al. [11] calculate content-aware parameterisations by min-
imizing a modified Least-Squares Conformal Map (LSCM) energy
metric guided by importance maps. However the parameterisations
take seconds to calculate and animated models are not considered.

Li et al. [15] reduce parameterisation distortions caused by de-
forming geometry using a thin hyperelastic skin simulation ap-
proach. The technique has interactive performance but does not
take into account heterogeneous fine-scale detail.

Grabli et al. [7] re-parameterise UV charts driven by a feature
map so that rigid features undergo a rigid transformation at a de-
formed frame, distributing the distortion to non-rigid areas using
a technique based on Feature Aware Texturing by Gal et al. [6].
The technique can handle challenging cases and high-resolution
textures, but is slow and therefore aimed towards production work-
flows. Temporal coherence is achieved by guiding the re-parameterisation
using positional constraints.

Image retargeting techniques [22, 28, 12] focus on content-aware
resizing of images. This is a very specialised case of our goal, as

the surface and parameterisation of the image plane are trivial, and
the deformation is typically a simple non-uniform scaling trans-
form. Such techniques do not take into account sliding of features
or temporal coherence, as these are not issues in the context of im-
age retargeting.

Gal et al. [6] introduce a content-aware image warping technique
that allows arbitrary 2D warps instead of just non-uniform scaling.
As such, it can be used for 2D texture mapping with some lim-
ited uses in 3D. They use a binary feature mask to specify salient
features and calculate a deformed mapping so that such features
undergo a similarity transformation. However, our approach and
goals differ in two main ways: (1) we are required to generalise to
arbitrary surface deformations in 3D space, (2) we are required to
account for sliding of features and temporal coherence.

In production and in practice, in order to reduce texture space
distortion variations in sensitive regions of an animated mesh, artists
need to manually add vertices, tightly bounding the rigid area and
making sure that it does not distort under deformation. For exam-
ple, for rigged models, the regions around joints are the most prone
to distortions, so additional vertices may be placed. When the de-
formation is known, additional vertices can be placed appropriately
so that deformation is spread to areas that do not contain any salient
rigid features. The problem remains when the deformation is un-
known or varying so much that adding and manually animating ver-
tices becomes impractical. Procedurally generated detail, static or
animated, provides an even greater challenge as the location of the
additional vertices cannot be easily determined.



3. OVERVIEW
Our method effectively generates parameterisation warps in real-

time given the geometry in the current and rest poses in addition to
a user-specified rigidity map and a warp mask (see figure 2). The
warps are calculated using a solver that is based on the Position-
Based Dynamics (PBD) framework by Müller et al. [20]; we define
a warp energy (sec. 3.1) as a scalar non-linear constraint function
fit for minimization using PBD.

To aid clarity of exposition, we outline our notation here. The
parameterisation is expressed as a bidirectional mapping between
3D and 2D space: fO and fD map the 2D unit square to rest and
deformed pose 3D coordinates accordingly (R2→ R3), while f−1

O
and f−1

D perform the inverse mapping. W is a function that warps
the unit square bijectively onto itself.

The rigidity map R stores continuous values in the range [0,1]:
a value of 0 represents infinitely elastic material, whereas 1 repre-
sents an as-rigid-as-possible material. Indexing a grid X is written
as Xi, j. Linear sampling of the domain of a function X is written as
X(s, t). If the function is represented as a grid of values, sampling
interpolates the points linearly.

The warp mask M simply specifies areas that can or cannot warp
(using values 1 and 0 respectively). For example, areas in texture
space that are on or outside chart borders should not warp. Addi-
tionally, this mask can be used to control sliding by masking out
curves that act as barriers, for example preventing sliding across
creases or other high-curvature areas of a mesh.

3.1 Parameterisation distortion matching
Our goal is to match the parameterisation distortion in the de-

formed frame to the one in the rest pose, weighted by rigidity (rigid
areas should match better than non-rigid). For an infitesimally short
parameterisation segment p0 p1, this “matching” energy is calcu-
lated as follows:

`org(pi, p j) = || fO(p j)− fO(pi)||
`def(pi, p j) = || fD(W (p j))− fD(W (pi))||

Ematch(pi, p j) = max
p∈pi,p j

(R(p))(`def(pi, p j)− `org(pi, p j)) (1)

where fO, fD the parameterisations for the original and deformed
poses R2 → R3, R(p) the scalar rigidity for a point p and W our
warping function: R2 → R2. The rigidity of a segment pi, p j is
calculated as the maximum of the two endpoints.

We minimise this energy over the whole re-parameterisation do-
main as follows:

Etotal = ∑
pi p j∈V

Ematch(pi, p j) (2)

where V is the the set of segments of a 2D, 8-connected regular grid
that covers the whole parameterisation domain.

The warp is represented by a regular grid of values in R2 and
maps the unit square bijectively onto itself in a piecewise-linear
manner.

4. SIMULATION: EXTENDED POSITION
BASED DYNAMICS

We use the PBD framework to effectively solve an optimization
problem, as it offers several characteristics beneficial to our goal.
First, it provides control over positions, which is necessary in order
to fix points on the deformation grid. This control over positions
allows control of sliding at a fine-scale: we can trivially define parts
of the domain to be more difficult to move than others. PBD also

easily handles non-linear energy functions, which is again neces-
sary as our distortion metric (eq. 1) is non-linear. Finally, PBD
can be easily adapted to support level-of-detail using a hierarchical
version of the algorithm. Its abstract, framework nature allows a
variety of applications, such as the ones we develop in this paper.

The PBD simulation mesh is a 2D, 8-connected regular grid,
finely tessellated so that it captures the rigidity variation on the sur-
face (grid dimensions being equal to rigidity map resolution). The
rest state of the grid covers the unit square and is used as the initial
–identity– warp configuration. In the next section we overview the
PBD process and describe how it is used to generate the warps.

4.1 PBD process
Similar to Müller et al. [20], a single PBD simulation iteration is

composed of the following steps:

1. Velocity damping: Used to eliminate oscillations caused by
the integration step.

2. Calculation of estimated positions: Uses an explicit Euler
integration step to predict the new positions.

3. Constraint projection: Manipulates the estimated posi-
tions so that they satisfy given constraints using Gauss-Seidel
type iterations.

4. Regularization: We introduce this step to adaptively regu-
larise the estimated positions.

5. Integration: Moves positions to optimised estimates and
updates velocities accordingly.

In our approach, we concentrate specifically on novelly adapt-
ing the constraints and constraint projection of the PBD algorithm
and introduce a new regularization step immediately after the con-
straint projection. Finally, given the fine tessellation of the grid
we use in PBD, we propose a hierarchical strategy for optimiza-
tion that improves convergence and therefore overall performance
of simulation.

4.2 Constraints and constraint projection
As described, one of our main technical novelties with respect

to the PBD algorithm is adapting its constraints to our problem do-
main needs. PBD constraints are scalar functions. We only use
a distance constraint, with cardinality of 2 and a type of equal-
ity. Therefore we define a constraint function that depends on two
points and that has to be satisfied exactly; the constraint function is
identical to equation 1:

C(pi, p j) = Ematch(pi, p j) (3)

where the constraint pairs pi, p j are all the edges in the 8-connected
grid; the set V in equation 2. For an N×N grid, they are:

Vhorz = pi, j, pi+1, j , ∀i ∈ [1,N−1], j ∈ [1,N]

Vvert = pi, j, pi, j+1 , ∀i ∈ [1,N], j ∈ [1,N−1]
Vshear0 = pi, j, pi+1, j+1 , ∀i ∈ [1,N−1], j ∈ [1,N−1]
Vshear1 = pi+1, j, pi, j+1 , ∀i ∈ [1,N−1], j ∈ [1,N−1]

We calculate the corrected estimated positions according to Müller
et al. [20], but we add a few extra steps in the process.

First, before any calculations take place, we check if any of the
constraints is immovable (by reading the warp mask), or if both are
completely non-rigid. In any of these two cases, the constraint is
not projected.



After (and if) the points are projected, we rotate the constraint
segment around its center by a user-defined percentage towards its
original orientation: one of 0◦ (Vhorz), 45◦ (Vshear0), 90◦ (Vvert) or
135◦ (Vshear1). As the parameterisation domain is bounded, re-
ducing rotations will prevent large angular distortions especially
in non-rigid regions. We also use this “orientation preservation”
parameter in cases of extreme compression, as it prevents the sim-
ulation mesh from folding.

Finally, to prevent constraints overshooting, we limit the max-
imum correction length by limiting each constraint point to the
bounding box derived from their 8-neighborhood.

4.3 Regularization
As non-rigid constraints are not moved during the projection

step, this can result in abrupt changes in non-rigid areas near bound-
aries to rigid areas. While we can always apply projection by set-
ting a minimum rigidity value to non-rigid constraints, this will
most likely result in the whole domain warping, rigid or not, which
leads to undesirable global sliding.

To prevent this issue and locally improve the warp smoothness,
we introduce a regularization step after the constraint projection
where the estimates are blended with a low-pass filtered version of
themselves using weights dependent on rigidity:

bi, j = Mi, j((1−Ri, j)+Ri, js) (4)

p′i, j = (1−bi, j)pi, j +bi, jKG(pi, j) (5)

where i, j are grid coordinates, Ri, j,Mi, j are the rigidity and mask
values at those coordinates, s is a global smoothing factor for as-
rigid-as-possible areas, bi, j is a blending factor for the low-pass fil-
tered point and KG is a 3×3 Gaussian smoothing kernel. The above
equation has the effect of smoothing movable non-rigid points near
boundaries to rigid areas to create a smooth transition between the
original parameterisation and calculated warps.

4.4 Efficient Hierarchical PBD
Regular PBD on a finely tessellated grid converges slowly to-

wards a good solution, as it takes many iterations for local effects
to propagate. To counter this, a hierarchy can be used to calculate
the warp in a multi-scale manner. Such a hierarchy allows con-
vergence in real-time, as only a few iterations are needed. Müller
suggested a hierarchical version of PBD [18], but it did not work
well for our problem domain, as the restriction step destabilised the
simulation. Below, we describe a simple new efficient hierarchical
approach that exploits the regular structure of the simulation grid.

Given a simulation grid with 2N × 2M cells, successively lower
resolution grids can be constructed by reducing the dimension by
half: 2N−k× 2M−k ∀ k < min(N,M). As the grid has a power-of-
two resolution, vertices of all grid levels share the same fine grid:

pi, j,` = p2(k−`)i,2(k−`) j,k (6)

where i, j are fine 2D grid coordinates and k, ` are hierarchy levels
(k > `), higher being coarser. Constraints for the coarse levels are
generated implicitly using equation 6.

The only step that differs from the non-hierarchical version is
the constraint projection. At this step, we first simulate the coarsest
grid. The results are propagated to the vertices of the next finer
level via interpolation and the finer level vertices are smoothed.
The process repeats (simulation, propagation, smoothing) until the
finest grid has run the simulation.

While the 2D points of the grid are reused for all hierarchy levels,
we explicitly construct hierarchies for the rigidity map and warp

mask as a preprocess:

Ri. j,k+1 = KG(Ri, j,k) (7)

Mi, j,k+1 = min
x∈[−1,1],y∈[−1,1]

(Mi+x, j+y,k) (8)

where k,k + 1 are hierarchy levels of increasing coarseness, R is
the rigidity map, M is the warp mask and KG is a 3× 3 Gaussian
smoothing kernel.

One drawback of the hierarchy is that in coarser levels, constraint
segments in the parameterisation do not usually map to object-
space lines anymore, but curves. As such, we need to apply cor-
rections more conservatively in coarser hierarchy levels.

5. RENDERING
The resulting warps are 2D dense grids that modify the 2D co-

ordinates used to sample geometry, using the original coordinates
to sample textures. As this is not a typical scenario, the warp typ-
ically needs to be inverted (W−1) using any scattered interpolation
method; We use a piecewise-linear method by rasterizing triangles
on a dense grid using the warped coordinates as positions and carry-
ing the original coordinates as rasterised data. The inversion always
exists as the warp is bijective. After the inversion is calculated, the
warped UV coordinates are calculated in the following way:

uv′ =W−1(uv) (9)

where eq. 9 evaluates the warp using a “UV redirection” texture.



Example Simulation Grid Dims Preprocess Warp
Face-0 20482 1.20 14.12
Face-1 40962 4.52 119.31
Face-2 20482 1.17 13.92
Face-3 20482 1.14 14.04

MugJug 20482 1.17 14.05
Blowfish 10242 0.37 3.87

Table 1: Simulation times in milliseconds for various models. From left
to right: (1) example model/animation name, (2) warp grid size, (3) Pre-
processing time to generate rigity and warp mask hierarchies when any of
the two changes and (4) time for simulation of the warp grid hierarchy.
As it can be seen, preprocessing time depends purely on the size of the
simulation grid. Also, it can be observed that above grid resolutions of
20482, performance drops significantly due to VRAM bottleneck.

Figure 3: Comparison of our method with Thin Skin Elastodynamics [15]
(sliding variant). The rest pose is on the left, TSE is in the middle and our
method is on the right. As it can be seen, our method reduces distortions in a
content-aware way, compared to global reduction of distortion in TSE. Our
approach is also more stable in terms of animation; a video comparison is
provided as additional material.

6. RESULTS AND ANALYSIS
In this section our algorithm is evaluated in a number of chal-

lenging cases. It demonstrates behaviour and performance on meshes
of different complexities to highlight the effectiveness of our ap-
proach. We validated the algorithm on a number of models tex-
tured using a unique parameterisation. Experiments are carried
out on an Intel Xeon X5550 CPU and an NVidia GFX Titan GPU.
Figure 7 shows example deformations on our Face, Blowfish and
T-Rex models. In all cases our approach highlights the preserva-
tion of texture shape and structure under deformation. In figure 6,
our example highlights deformation on the MugJug model. In this
case, successive deformations from an interactive editing procedure
would usually distort the texture map. However, our method cor-
rects this, removing the additional artist overhead of re-creating the
texture map in the final approved model.

Figure 5 shows how different features, feature distribution and
rigidity variation affect the warp calculation on a basic deforma-
tion. In extreme compression it can be observed that shape is not
fully preserved. This happens because our method re-parameterises
a bounded domain, therefore it is not possible to expand the fea-
tures in texture space infinitely. Additionally, it can be observed
that compression starts before all of the available non-rigid space
has been used. This is a tradeoff of our method as it enforces stabil-
ity and warp smoothness over using all available non-rigid space.
In this example of severe compression, we apply a heuristic to de-
termine the spatially-varying “orientation preservation” value over
the domain. The heuristic assigns a high value in dense-rigidity ar-
eas (top of texture) and a low value in sparse-rigity areas (bottom
of texture); this has the effect of of better preserving the shape in
sparse areas while preventing compression problems in dense ones.

Example Normal Warp
Rendering Warp inversion Rendering

MugJug 4.44 3.84 4.54
Blowfish 5.71 1.11 5.88

Face0 5.05 3.85 5.32
Face1 5.10 16.05 5.34

Table 2: Rendering times (milliseconds). Columns 2 and 4 display the time
required to render the scene, without and with applying the warp respec-
tively. Column 3 shows the time required to invert the warp.

The T-Rex example (fig. 7, bottom row) shows the application
of our method in a production workflow. In such cases, several
UV tiles can be used for a single model (e.g. UDIM tiles). As
the chart boundaries are constant, we process and remap each tile
independently, therefore scaling to any number of tiles. While our
example uses as a proof of concept a total of six tiles, four out of
which containing rigidity data (2K resolution each), our method
scales to any number of tiles and any hardware-supported tile size.

Our approach was also compared with other standard and state-
of-the-art methods that match or minimise texture distortion under
3D model deformation.

In figure 4 we use the MugJug example to compare our approach
against Koniaris et al. [13], Sheffer and De Sturler’s method [24]
and Mean Value coordinates. In all of these comparisons, our ap-
proach preserves local structure under artistic editing better. This is
especially noticeable in regions undergoing large but local distor-
tions, such as the center of the mug/jug.

In figure 3 we show a comparison against the leading method of
Li et al. [15] using the deforming torus animation dataset. Our ap-
proach reduces distortions introduced by the deformation in salient
regions better, and displays better temporal coherence.

Our accompanying video shows related deformation results for
the Face, T-Rex, Blowfish, Torus and MugJug animated models.
Corrected cases at selected deformation frames are highlighted to
demonstrate the differences. From a qualitative view point, our an-
imations visually reduce the introduced deformation in rigid areas,
better preserving the intended structure and shape of the applied
texture versus current state-of-the-art approaches.

Table 1 shows the dense warp calculation results for all the demon-
strated models. As can be seen from the simulation times, the fast
distortion correction time allows edits to be processed in real-time.
The total simulation times for each model occur only when mesh
vertices are modified simultaneously in a frame, and so they can
be regarded as worst-case simulation times. Each simulation iter-
ation involves running approximately 70 GPU shader passes, most
passes being constraint projection of a subset of the constraints that
can be safely run in parallel. As such, while using the hierarchical
approach significantly increases the convergence of the algorithm,
an increase of the dense grid resolution has a non-neglibible shader
pass overhead, as can be seen by the performance difference of the
two T-Rex entries. As the process is fully in GPU memory, in-
cluding transfer of edge data, there is no CPU-GPU data transfer
overhead during the simulation.

We compare rendering performance of a textured, deforming
model with and without the use of the calculated warps. The mea-
sured rendering performance was averaged over several frames.
The rendering involved a close-up of the model, using a basic lam-
bert material using the (warped or not) rigidity map as the diffuse
texture.

Table 2 shows the performance cost of evaluating the warps.
While the cost of rendering the dense warps is small, an inversion
of the warp is required first, adding to the total required time for
rendering.



Figure 4: Comparison of parameterisation methods using the MugJug model. The rest pose is the rightmost image; a mug. The deformed frames are shown
from left to right: re-parameterisation using our method, Koniaris et al. [13], Sheffer and De Sturler[24], Mean Value Coordinates, and using the original
UVs. Our method is the only one that preserves the features of the mug at the right scale. A video comparison is provided as additional material.

Figure 5: A horizontally compressed square (rest-pose: right), demonstrating the effect of variable rigidity (bottom row) under deformation: 100% (left -
all fruit), 50% (middle-left, bananas) and 25% (middle-right - bananas and strawberries) rigidity. As the compression is fairly strong and the rigid element
distribution is dense, there is not enough non-rigid space in the parameterisation domain to warp in order to preserve the size of rigid features. In that case,
rigid elements still compress, although more rigid elements compress less than less rigid ones. Additionally, our rigidity-density heuristic maintains the shape
of features in sparse-rigidity areas (bottom of texture) better compared to more dense areas (top of texture).



Figure 6: In this example we highlight the benefits of our method in an artistic work flow. An initial model (left) is created and then successively edited
by an artist (red arrows). At each edit (left to right), the original texture detail (middle row) is distorted, moving away from its initial desired shape (left).
Our method (middle-bottom) preserves the textures original shape, saving the artist valuable time in manually creating a new undistorted texture after each
edit. On the bottom, visualization are shown for rigid areas in the original (red) and warped (green) parameterisations, including areas where they overlap
(yellow). The highlighted areas focus on specific parts of the texture under distortion and correction and shown more closely in the top and second from top
rows. The final model corrected with our method preserves texture shape and size (right image).

Figure 8: Parallel sets of edge constraints (sec. 4.2) shown with unique
combinations of line style and color. There are eight disjoint sets – we
display four per figure for clarity.

7. IMPLEMENTATION DETAILS
The PBD process was implemented in C++/DirectCompute, us-

ing the GPU for calculating the individual steps. Calculation of es-
timates, constraint projection, integration, as well as the in-between
hierarchy levels interpolation and smoothing are all implemented as
shader passes. At each deformation frame, the object-space posi-
tions are rendered to a texture, which is used by the simulation. The
simulation results are rendered to a “UV redirection” texture using
a single shader pass.

In constraint projection, the constraints are organised in parallel
sets, where the vertices of a constraint in the set are not used by
any other constraint in the same parallel set. The parallel sets are
expressed programmatically in order to use minimum storage, and
are shown in figure 8.

In addition to the per-point/constraint parallelization, we also
partition the parameterisation domain into a 16× 16 grid, where

each of its cells is executed as a single threadgroup, thus improving
the performance via better use of the GPU hardware.

8. SUMMARY
In this paper we presented a technique to re-parameterise texture

space of an animated model in real-time, such that important rigid
features mapped on these regions are preserved when the surface
deforms. The warp behavior is driven by a rigidity map and a warp
mask, which can be modified dynamically (as the surface deforms)
at a small additional cost.

Comparisons with existing state of the art methods also show our
method to better preserve local texture deformation – minimising
distortions and artefacts introduced by coarse surface deformation.

The technique can be applied to reduce elastic distortions in an-
imated texture-mapped surfaces that represent materials with het-
erogeneous deformation properties. We have demonstrated such
application to several use cases. In offline production, the tech-
nique can be used to warp the parameterisation of selected high-
resolution fine-scale texture layers with heterogeneous elastic prop-
erties (e.g. leather cracks or scales). In modeling, artists can deform
and morph object preserving the shape and size of selected texture
layers. In real-time digital acting, a facial performance of an actor
can be retargetted to a creature with heterogeneous texture detail,
different to the source actor. In video games, different animated
characters can share the base model and animations while warping
parameterisations according to their unique textures.

We would like to extend the constraints of the simulation, so that
we can apply the algorithm for different use cases that would ben-
efit from post-deformation re-parameterisation, e.g. bidirectional
texture functions or polynomial texture maps. We would also like
to extend the algorithm to perform content-aware warp of the vol-



(a) Rest pose (b) Original (c) Corrected (d) Difference
Figure 7: Example deformations for various datasets (Face2, Blowfish, T-Rex). The face and T-Rex textures contain stone/bone-like bumps which we wish to
remain rigid. The blowfish has spikes mapped as displacement, which are marked as rigid. Uncorrected (red) and corrected (green) mapping of features are
shown in (d). Corrected and uncorrected rigid features that overlap are displayed in yellow.

umetric space (thick shell over the surface), so that detail of any
complexity can be preserved under deformation.
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