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Figure 1: Real-time ray casting reconstructions of offline-rendered animated data from a sparse set of viewpoints. Our method enables online Virtual Reality
exploration of sets of pre-rendered cubemap movies with optimized placement, allowing users to experience 6 degrees of freedom with full motion parallax and view
dependent lighting effects.

ABSTRACT

We propose an end-to-end solution for presenting movie quality ani-
mated graphics to the user while still allowing the sense of presence
afforded by free viewpoint head motion. By transforming offline
rendered movie content into a novel immersive representation, we
display the content in real-time according to the tracked head pose.
For each frame, we generate a set of cubemap images per frame
(colors and depths) using a sparse set of of cameras placed in the
vicinity of the potential viewer locations. The cameras are placed
with an optimization process so that the rendered data maximise
coverage with minimum redundancy, depending on the lighting envi-
ronment complexity. We compress the colors and depths separately,
introducing an integrated spatial and temporal scheme tailored to
high performance on GPUs for Virtual Reality applications. We
detail a real-time rendering algorithm using multi-view ray casting
and view dependent decompression. Compression rates of 150:1
and greater are demonstrated with quantitative analysis of image
reconstruction quality and performance.
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1 INTRODUCTION

Recently, we have seen a resurgence of Virtual Reality (VR), mainly
due to recent consumer releases of Head-Mounted Displays (HMD),
such as the Oculus Rift, HTC Vive and PlaystationVR. Of course,
the real-time rendering performance requirements for VR content
are much higher than for traditional non-VR rendering, typically
necessitating lower-complexity visual fidelity [29].

Besides interactive experiences using video game engines and as-
sets, immersive 360°videos (monoscopic or stereoscopic) have also
emerged as a popular form of content. The main challenge with such
videos is that they are captured assuming a fixed location, therefore
lacking motion parallax and resulting in immersion breaking and
feeling of the content being “flat”, or even discomfort when viewers
eyes diverge from these prescribed locations.

We aim to bridge the gap between cinematic quality graphics and
the immersion factor provided by viewing a 3D scene accurately
from any point of view. We propose a novel end-to-end solution
for content creation and delivery. Our solution involves offline
production-quality rendering from multiple 360°cubemap cameras,
encoding it in a novel, modular video format, and decoding and
rendering the content in real-time from an arbitrary viewpoint within
a predefined view volume, allowing motion parallax, head tilting
and rotations. Our focus is on dynamic scenes, and we design our
processing and rendering pipeline with such scenes as the target.

The applications of our solution are numerous. It enables con-
sumption of immersive pre-rendered video allowing six degrees of
freedom, using an HMD. It can also be used for rendering film-
quality visuals for non-interactive areas of a video game. In virtual
production, directors can previsualize shots using a tablet as the
virtual camera, streaming lightfield video decoded from a server.

Another benefit and motivator for our suggested solution is the
cost reduction in asset production. When making tie-in interactive
experiences using assets from films, assets typically have to be re-
targetted to a lower quality form, fit for real-time rendering, and the
conversion process is very expensive and time-consuming. Simi-
larly, in architectural visualization, assets have to be converted to
a lower quality form for use with a game engine, in order to allow



an additional form of viewing the data, for example using an HMD.
Both scenarios require time and expertise in authoring assets fit for
real-time use. Our system completely bypasses the artist-driven
conversion stages of the pipeline, automating the process of turning
production assets into a form usable in real-time.

Our solution also incorporates three features that allow even more
flexibility in terms of use-cases: (a) reconstruction is decoupled
from decoding the compressed lightfield, (b) any type and number
of virtual cameras can be used for reconstruction and (c) cameras
are independent of each other (uncorrelated datasets). For instance,
many users could explore a scene at the same time (one decoder,
several eye pairs for reconstruction), allowing a Collaborative Virtual
Environment with film-quality visuals. The same scene can also be
viewed with an HMD, on a standard screen, or even projected in a
dome. The uncorrelation of the per-camera data is useful as datasets
can be enriched or replaced at a later time, allowing, for example,
users to explore a scene from locations not possible before.

1.1 Contributions

Our contributions form an end-to-end pipeline, from offline produc-
tion rendering of an animated scene from sparse optimized view-
points to real-time rendering of scenes with freedom of movement:

• A real-time image-based rendering method that allows for
free-viewpoint rendering of a cinematic quality, pre-rendered
animated scene, using data from a sparse set of viewpoints.

• A method to optimize positioning of cameras for offline ren-
dering in order to capture the scene with the least number of
cameras for a given lighting environment complexity.

• Two GPU-friendly temporal compression methods (for color
and depth data) that reduce video stream memory requirements
(including lower GPU upload bandwidth use) and integrate
with raw or block-compressed data of any spatial pixel format.

• A view-dependent decompression method that exploits pre-
computed visibility to optimize GPU fill and bandwidth rates.

2 RELATED WORK

Our work uses a sparse set of dynamic light field data to synthesize
views of an offline-rendered scene at real-time VR rates (90fps+).

Light fields and Global Illumination. Light field rendering tra-
ditionally samples a 2D slice out of a 4D light field description of
the scene [10, 19]. As light samples contain no depth information,
depth estimation is a typical part of the rendering process [8, 15].
An alternative is to render directly from the light field [13]. How-
ever, without depth information, the ability to compose experiences
integrated with regular interactive 3D graphics is lost. While recon-
struction can yield impressive results for complex scenes [16], the
rendering cost is typically very high and prohibitive for real-time
rendering. Nevertheless, methods have been exhibited with real-time
performance in VR [17]. Another approach is to use a relatively
sparse light field probe set arranged in a uniform grid, and ray march
using data from multiple probes [9]. The method works well for
static scenes (although probes can be updated at an additional cost),
and uses the grid information to select the subset of probes to query
in rendering. Similar probes have also been used in the context
of global illumination reconstruction. Light field probes [20] en-
code incident radiance, depth and normals, while a world-space ray
tracing algorithm uses the probes to reconstruct global illumination
in real-time. The probes are placed in a simple uniform grid and
are used for static scenes, although the probes can be recomputed
at an extra cost. Another approach uses probes to efficiently bake
irradiance volumes by reprojecting color and depth data from nearby
probes to construct cubemaps for each voxel [11].

Multi-view video and view synthesis. Free viewpoint television
and 3D television necessitated efficient methods to compress data

from cameras with angle and position variations [22, 23], and syn-
thesize novel views using that data [26]. When depth is part of the
per-camera data stream, it is important that the compressor handles
it differently to color, as encoding artifacts can easily manifest as ge-
ometry distortions [21]. An alternative to transmitting and rendering
image data is to reconstruct a textured mesh, which has been gener-
ated by capturing and processing video from an array of cameras [7].
While the results are good for the provided bitrate, a large number
of cameras are required to capture the surface well (more than 100).
Additionally, the texture maps are pre-lit, so view-dependent light-
ing phenomena are not recovered. Our approach employs custom
compression methods for multi-view depth and color data that fo-
cus on decompression speed and minimal CPU-to-GPU memory
transfers. While a mesh-based reconstruction works well for several
cases (architecture, humans), it is really challenging to reconstruct
high-frequency animated geometry, such as swaying trees and grass.
Mesh-oblivious methods such as ours do not suffer from such a
limitation on reconstructible content.

Image-based rendering. Due to the tight performance require-
ments of VR and mobile rendering, a common approach is to reuse
data from previously rendered frames to synthesize new frames in
nearby locations. One such approach is iterative image warping,
that uses fixed-point iteration to generate new frames [6]. Outatime
generates new frames by employing speculative execution, in order
to mitigate wide-area latency [18]. Another approach is to use a
novel wide-angle projection and dual-view pairs to synthesize a new
image: a primary view and a secondary view at quarter resolution to
approximately resolve disocclusions [25]. Szirmay-Kalos et al. [27]
use color and depth cubemaps to approximate ray-traced effects.
Our work, in a VR scenario, synthesizes the views for each eye
individually and targets a low reconstruction rendering cost.

3 OVERVIEW

Our system is comprised of three main stages: offline preparation
and rendering, stream compression and real-time decompression
and reconstruction (Figure 2). During the offline rendering stage, we
optimize the placement of a number of 360°cubemap cameras in the
scene (section 4) and render color and depth images for the desired
frame range that each camera should cover. Any renderer that can
output color and depth images in a 360°format (either equirectan-
gular or cubemap) can be used. The images, if necessary, are then
converted to cubemaps, as they exhibit a number of advantages over
the equirectangular format (section 7.4). Color images are processed
into compressed streams (section 5.1), one per cubemap face per
light field viewpoint sample. Depth images are first processed to
determine the depth range for each viewpoint, and then they are
similarly compressed into streams (section 5.2), one per cubemap
face per viewpoint. The final compressed data are organized per
stream, with an additional metadata header that describes the stream
configuration and the locations of local sample viewpoints. Finally,
the compressed data is fed to the application to reconstruct animated
frames in real-time from any viewpoint (section 6).

Use-cases. We used five datasets in order to demonstrate the
flexibility of our method in terms of the level of dynamic content, and
the freedom of movement the viewers have. The Sponza and Robot
datasets are environments with animation focused in a particular
area. The users experience motion parallax within a small volume;
this maps to a user standing with full freedom of movement and
rotation of the head. The Robot dataset in particular demonstrates
challenging reconstruction aspects such as thin geometry (potted
plant) and highly reflective surfaces. The Spaceship and Pirate
datasets are a representation of a single, animated object. Users can
move around the object and examine it from a variety of angles and
viewpoints. The Pirate dataset is a scan of a real-world model, and
is used to show that our system is capable of real-time rendered light



Figure 2: Overview: Animated scene analysis is performed in a preparation phase for optimized camera placement. The light field is then sampled at 360°cubemap camera viewpoints.
Per-viewpoint color and depth maps are compressed separately, and then packed into per-viewpoint data clusters. In real-time, we use a subset of the compressed per-viewpoint data to
render the scene from any point of view.

fields acquired from real scenes. The Canyon dataset demonstrates
large-scale user movement in a large animated scene. Users fly
over a canyon along a predetermined camera path with a set of 720
placed light field sample viewpoints. In the supplementary video,
we demonstrate an additional dataset for Sponza, using the same
scene but with animated user and viewpoint positions. The users
still experience motion parallax within a 50cm3 cubic volume along
the swept path of viewpoints.

4 CAMERA PLACEMENT

Our camera placement algorithm employs the rendering equation
[14]:

Lo(x,ωo,λ , t) = Le(x,ωo,λ , t)

+
∫

Ω

fr(x,ωi,ωo,λ , t)Li(x,ωi,λ , t)(ωi ·n)dωi
(1)

where Lo, Le and Li are the outgoing, emissive and incoming
spectral radiances at a light wavelength λ at a time t at a position x
with surface normal n, while ωo and ωi are the outgoing and incom-
ing light directions and fr the bidirectional reflectance distribution
function. We calculate a set C of 360°cubemap cameras that capture
all required data for reconstruction of a lighting environment from
any point of view. This requires the evaluation of Lo for any potential
parameter value. In a simplified lighting model without participat-
ing media, the evaluation of this equation is enough to evaluate the
time-parameterized formulation of the plenoptic function [4]. We
propose to solve the integral evaluation over various levels of light-
ing environment and scene complexity, such as a diffuse-only static
environment, diffuse/specular and dynamic. We keep the above
notation, where the integral is defined over all points x in a union of
all surfaces S = ∪Si.

4.1 Diffuse lighting

For the diffuse scenario, the fr reflectance term does not depend
on ωo, therefore the incoming light integral at a point is, regularly,
independent of the outgoing direction, therefore the integral in eq. 1
at a point x, time t and wavelength λ can be reused for any angle
ωo. The effect is that points can be rendered from any camera angle
and the resulting data can be used to reconstruct these points for
any viewing direction. The practical consequence for our camera
placement algorithm is that if a point is seen from a camera, it does
not have to be seen by any other camera.

We define an objective function for the “quality” of a camera
position O, given an existing set of cameras Ci, i ∈ [1,Cnum] for a
diffuse lighting environment. The quality depends solely on how
much of the surface the camera sees that it is not already seen, so

that we effectively minimize redundancy. We define a minimum
viewer distance function Z(x) in order to set a limit on how close a
camera can get to a surface 1. Without such a limit, in order to cover
a whole scene at an adequate sample rate, we would need to place an
infinite number cameras at an infitesimal distance from all surfaces.
Below, we use the visibility function V : R3→{0,1} and define a
set of helper functions to calculate the objective function f : Isuit is
a compound camera “suitability” term (camera-to-point visibility
term multiplied by a proximity term) and Icov is the redundancy
penalization term due to existing coverage.

Isuit(O,x) =V (O,x)e−k max(| ~xO|−Z(x),0) (2)
Icov(O,x,C) = max{Isuit(O,x)− max

i∈[1,Cnum]
Isuit(Ci,x),0} (3)

f (O,C,S) =
∫

S
Icov(O,x,C)dx (4)

The proximity term uses exponential decay (with a rate k, see
fig. 3) after the threshold distance Z(x) is exceeded, so that closer
cameras are preferred but the importance of covering a point would
never drop to zero. The optimal camera is obtained simply as the
position that maximizes f :

h(C,S) = argmax
O∈R3

f (O,C,S) (5)

Figure 3: Varying k (eq. 4) for the Pirate dataset. The coverages score on the left
include reduced-weight score from surfaces further than Z(x) whereas the scores on the
right do not. In parentheses we show the number of cameras at which the optimisation
converges. High k values result in better coverage of surfaces within the minimum
viewer distance and converge quicker.

A procedure that obtains the minimum number of cameras is
displayed in algorithm 1.

1This can be defined in the following way: an artist creates a potential
viewer location volume as a union of simple primitives, not intersecting with
geometry in the scene. At each point x we can then calculate and store the
minimum distance to the volume, effectively creating a sparse distance field.



Algorithm 1 Calculating an optimal set of cameras
Precondition: A union of surfaces S
1: function OPTIMALCAMERASET(S)
2: C← /0
3: do
4: O← h(C,S)
5: y← f (O,C,S)
6: if y > 0 then
7: C← C∪O
8: while y > 0
9: return C

The optimization generates locally optimal cameras. While a
global solver could potentially generate a smaller set, it would also
result in much slower computation, which can make the problem
infeasible to solve for complex, long scenes. Further advantages
of using a locally optimal but iterative method is that (a) offline
rendering can start immediately after a camera has been calculated
and (b) if in the future a larger volume would need to be covered
using the same 3D scene, the optimization would continue using the
existing camera set as a starting point.

4.2 Specular lighting and dynamic scenes

In order to adequately capture a specular lighting environment, we
need to render every point on all surfaces from all possible directions.
The camera optimization objective function eq. 4 then needs to take
into account this new requirement. To express this in a way that the
number of calculated cameras remain finite, we specify a minimum
view angle θ between the vector from a point on the surface to
two camera position: the currently tested one and an existing one.
To satisfy that requirement, we modify Icov using an extra angular
weight term:

I′cov(O,x,C) = I(θ ≥ ∠(
−→
xO,
−→
xCi))Icov(O,x,C) (6)

When the BRDF is known, we can identify where variation occurs
most and parameterize θ over the hemisphere accordingly in order
to lower the number of required cameras.

To optimize a fixed camera set for a dynamic scene, we parameter-
ize the scene geometry S in time and integrate over it in the objective
function:

f (O,C,S) =
∫ t1

t=t0

∫
S(t)

Isuit(O,x)Icov(O,x,C)dxdt (7)

This will calculate an optimal set of cameras that remain fixed
throughout the scene animation, and data generated using such
cameras are better compressed with our suggested compression
methods.

We have implemented the proposed method and evaluated it in a
number of 3D models, for diffuse and specular lighting environments
(figure 4). For our initial prototype, we optimize eq. 5 using a brute
force approach that uniformly samples the subset of R3 inside the
potential viewer volume. In the supplementary video, we show how
and where coverage improves by adding cameras incrementally.

5 COMPRESSION

We compress the color and depth streams separately, as they exhibit
two main different characteristics. First, color compression can be
much lossier than depth compression; Depth inaccuracies result in
bad reconstruction, which has a propagating effect to color recon-
struction. Additionally, color pixel values change at a much higher
frequency than depth. The main reason is due to noise that exists
as a result of the rendering equation’s approximation of integrals.
Another significant reason is because depth is shading-invariant;
shadows, lighting changes and ray bounces do not affect depth. Our
aim is to exploit these characteristics and compress the data to a
format that can be rapidly decompressed and uploaded to the GPU
as texture data, trying at the same time to minimize the required
bandwidth. We aim for low bandwidth and rapid decoding as the

Figure 4: Results of the two variants of the camera placement algorithm (dif-
fuse/specular) for the Stanford dragon, Cornell Box and our Pirate dataset. The camera
placement converges to full coverage faster for the diffuse cases. Complex models and
placement for specular environment will rarely converge to full coverage, as some parts
of the models can either never be seen be seen from some (or any) directions, such as
areas with high degree of ambient occlusion, or faces of boxes that touch each other.
All the specular examples use a minimum view angle θ = 50°.

potential throughput requirements are very high: nine color+depth
1024 × 1024 cubemaps amount to the same amount of raw data as a
color image in 16K UHD resolution (15360 × 8640).

5.1 Temporal color compression

The goal of our temporal color compression method is to find the
smallest selection of keyframes that can be used to derive the rest
frames (bidirectionally predicted, B-frames), on a per-cell basis (see
figure 5). The compression/decompression happens independently,
and therefore in parallel for each cell. As such, the first stage is to
partition the image to a regular grid, with a cell size ideally between
32 and 256 pixels per dimension (section 7.4).

Formally, let Bx be the image cell of size D, where x the frame
index ∈ [0,N). Below, we demonstrate how to calculate the next
optimal keyframe index h given a starting keyframe index m. The
reconstruction for a B-frame cell Bx is simple linear interpolation of
two nearest frame cells, m and n where m≤ x≤ n, using a per-frame
per-cell parameter t:

r(n, t) = (1− t)Bm + t(Bn), t ∈[0,1] (8)
We use PSNR as the quality metric q for the reconstruction:

q(x,n, t) = PSNR(Bx,r(n, t)) (9)
Per-frame parameters g are calculated to maximize quality:

g(x,n) = argmax
t

q(x,n, t) (10)

Finally, keyframe indices h are calculated so that the distance be-
tween them is as-large-as-possible, whilst guaranteeing a minimum
level of reconstruction quality:

Iq(x,n) = I( min
x∈]m,n[

q(x,n,g(x,n))> Q) (11)

h = argmax
n∈]m,N[

(
nIq(x,n)

)
(12)

where Iq is an indicator function that returns 1 only if the recon-
struction quality for a range of frames is for all above a threshold
Q. The whole optimisation process for an animated cell is shown in
algorithm 2. In practice, we quantize the t values to a byte for each.

This form of compression is agnostic of the how the underlying
frame data is stored; the only requirement is that data in a cell
needs to be independent from other cells. This allows two further
optimisations: view-dependent decoding (section 6.1) and spatial
re-compression (section 5.3). Decoding the compressed data in GPU
is an efficient linear interpolation operation, as shown in eq. 8.



Algorithm 2 Temporal color compression for an image cell B
Precondition: An animated image cell B with N frames
Output: Vector k of keyframe indices and a vector t of per-frame parameters
1: function COMPRESSCOLORBLOCK(B, N)
2: k0 ← 0
3: i← 0
4: do
5: i← i+1
6: ki ← h(B,ki−1)
7: for x ∈ [ki−1,ki] do
8: tx ← g(B,x,ki−1,ki)
9: while ki < (N−1)

10: return k, t

Our pipeline fully supports the use of HDR color data, due to the
agnostic nature of the compressor and the decoder. In that case, the
metric used has to be changed to be better suited for HDR data [28].

Figure 5: Color compression: An image is partitioned into a regular grid. Each grid
cell stores a number of keyframe cells ki and an array of per-frame parameter values t j
that interpolate the closest keyframes forward and backward in time.

5.2 Temporal depth compression

In terms of reconstruction, depth is more important than color, as
otherwise geometry is registered incorrectly. As such, we aim for a
near-lossless quality temporal depth compression method. We ex-
ploit the fact that depth maps, captured from a static camera, display
low frequency of updates. We store video frames as keyframes or
P-frames. Keyframes store all data for the frame, while P-frames
only encode the differences to the last keyframe. The differences
are encoded using a set of axis-aligned bounding boxes (AABB):
each P-frame stores a list of AABB coordinates and the raw depth
data contained in each. The depth compression process is shown in
algorithm 3. We choose AABBs because the data memory layout
maps well to GPU texture update functions, therefore updating a
depth video texture is simply a serial set of texture update calls,
using the depth data as-is from the P-frame data stream. Therefore,
it is important to calculate as-tight-as-possible AABBs, in order to
update the least number of pixels. Calculating tight-fitting AABBs
is well studied in collision detection literature, and it is very closely
related to calculation of AABB trees [5]. Our use case is slightly
different, as 1) we are only interested in the “leaf level” of an AABB
hierarchy, 2) calculation time is not a priority, as compression hap-
pens offline and 3) too many AABBs can cause a high overhead of
GPU texture update calls.

Algorithm 3 Temporal compression for depth frames D
Precondition: Depth images D for N frames, of dimensions w,h
Output: A vector C of compressed frames, each stored as a list of rectangular frame

data with the corresponding rectangle
1: function COMPRESSDEPTHIMAGES(D, N)
2: r← (0,0,w,h)
3: C0 ← {(D0,r)}
4: for i ∈ [1,N−1] do
5: Ci ← {∅}
6: Ddiff ← I(|Di−Di−1|> ε) . computes a binary difference map
7: R← CalculateAABBs(Ddiff)
8: for r ∈ R do
9: Ci ← Ci ∪ (SubImage(Di,r),r)

10: return C

The AABBs are calculated using a simple exhaustive search that
starts with a single tight AABB of the difference map and iteratively

splits it to smaller, tighter AABBs until the maximum number of
AABBs has been reached. We show an example in figure 6.

Figure 6: Depth compression: AABB fitting example for a cubemap face of a view at
a single frame. a) Depth Map, b) Depth difference with previous frame, c) AABB set
that encloses the differences as tightly as possible. A maximum of 8 are used in this
example.

5.3 Spatial recompression and fixed-point depth

The compression methods that we described reduce data only in
the temporal domain. They were designed as such, so that they
could be used directly on already spatially compressed data. We
exploit the properties of hardware-accelerated block-compression
texture formats, such as S3TC [12], BPTC [2], RGTC [3] or ASTC
[24], as they have fixed data rate and fixed block dimensions. In
color compression, if the BCn block dimension is a divisor of the
cell dimension, the block-compressed data can be stored directly
in the cell data stream. Similarly, in depth compression, if the
block dimension is a divisor of the AABB corner points, block-
compressed data can be stored instead of raw for each AABB. For
color data, we can use formats BC1, BC6 and BC7 depending
on the quality requirements and dynamic range. Depth values are
originally generated as 32-bit floating point values. In order to
reduce bandwidth and maintain high precision, we map the values
to 16-bit unsigned integers in logarithmic space, using the following
conversion:

zu = (216−1)log(
z

znear
)/log(

zfar

znear
) (13)

where znear,zfar the minimum and maximum depth values respec-
tively. Logarithmic space provides a better distribution for the depth
values, offering more precision closer to the camera. As there is no
hardware-accelerated compression for 16-bit unsigned values, we
split the data to two 8-bit channels and compress them using the
BC5 texture compression format.

6 REAL-TIME RENDERING

The real-time rendering algorithm reconstructs the scene from a
given camera using data for a set of viewpoints (locations and
color/depth textures) and camera parameters using ray marching,
and is shown in algorithm 4 (last page). The rendering algorithm is
comprised of two parts: calculating the intersection with geometry
and calculating the color contribution from all views. The inter-
section step involves marching along the ray until an intersection
is found. The ray marching step size is constant in the non-linear
space that the depths are stored (eq. 13), so that resolution is higher
near the camera. A point on the ray is guaranteed to hit a surface
at the first occurence where BetweenViewpointAndGeometry 2 is
false for all viewpoints. Conversely, if there is even one case where
the point on the ray is between a viewpoint and its reconstructed

2BetweenViewpointAndGeometry returns true if, at a point p, the distance
from a viewpoint v sampled using the direction p−v is farther than |p−v|



position at that direction, then the point is in empty space. Color
calculation is based on the product of two weighting factors: the
distance of the ray point to the closest depth sample from a cubemap
(wdepth) and the distance of the ray point to the camera (wcam). Both
are exponential decay functions, with wdepth decaying at a faster
rate. The weight wdepth ensures that the contributed color will be
from a sample as near as possible to the ray point. The weight wcam
ensures that, if we have a set of samples with similar wdepth values,
those near the camera are preferred, ensuring better reconstruction
of view-dependent shading.

6.1 View-dependent decoding

Users can only see part of a the reconstructed 3D scene at any
given time, due to the limited field of view. Therefore, decoding
full cubemap frames is unnecessary and hurts performance. Our
compression methods support view-dependent decoding: the ability
to decode only the parts of the video that are visible to viewers,
which we make use of to lower the per-frame bandwidth required
to update viewpoint texture data. Using our compression scheme
(section 5.1), color video streams are formed by smaller compressed
streams of independent cells. Each cell of a particular viewpoint
creates a world-space pyramid that extends to infinity, formed by all
lines originating from the viewpoint and intersecting the cell surface
on a cube centered at the viewpoint. Video content for the cell can
only be projected within the frustum that is obtained by cutting off
the volume of the pyramid before and after znear and zfar values, as
the depth values can only lie within that range. If this frustum does
not intersect with the camera frustum at a given frame, the cell data
do not need to be updated, as they are not seen by the viewer. Depth
video streams (section 5.2) can benefit from the same optimisation by
splitting each stream into tiles, and compressing each individually.
For our examples, we use a 2× 2 tile grid per cubemap face for
depth data, to benefit for the view-dependent decoding optimisation
without introducing too many new partitions and AABBs.

6.2 View-selection heuristics

Typically, not all cameras can provide useful data at any given time.
For example, in the Spaceship dataset, viewpoints on the other side
of the ship (with regards to eye location) will provide very little
useful data compared to viewpoints near the eye. In other cases, we
might want to use a lower number of viewpoints in order to maintain
a high framerate, which is crucial for a VR experience.

We formulate heuristics that calculate a prioritized set of view-
points each frame. Prioritisation is important for maintaining coher-
ence of the set elements across frames. Coherence is important for
the rate of updates, as every time the viewpoint changes, the associ-
ated texture data need to be updated as well. Besides prioritisation,
we also use viewpoint culling for additional control over the active
viewpoint set. We use two different prioritisation methods and two
different culling methods accordingly.

Distance-based prioritisation. The viewpoints are sorted based
on their distance to the eye (closest point is highest priority). This
prioritisation is useful in scenarios where the user moves through
a large space of distributed viewpoints, as only nearby viewpoints
provide useful data. It works well in conjunction with the rendering
contribution weight wcam in algorithm 4. Angle-based prioritisa-
tion. The viewpoints are sorted based on their angle to the eye
location, using a reference point as the origin (smallest angle is high-
est priority). This is useful in scenarios like the Spaceship, where a
model is captured from all angles. In that case, the reference point
is set as the center of the model. This scheme works well with
heavy view-dependent effects, as the prioritised cameras have the
best matching data. Angle-based culling. Viewpoints forming an
angle with another, higher-priority viewpoint that is smallest than a
given threshold, using the eye location as the origin, are not placed
in the active viewpoint set. The reasoning for this type of culling is

that when the angle between two viewpoints is very small, the data
redundancy is very high, therefore the higher-priority viewpoint is
used instead. Performance-based culling. Low-priority viewpoints
are culled if the runtime performance is below a given requirement.
Given an estimated cost that a view incurs on the runtime and the
current runtime performance, we can estimate how many views need
to be culled in order to reach a performance target. This is important
when maintaining a high framerate is crucial for user experience, for
example in VR applications where a low framerate can introduce
flickering with physical discomfort.

To form a heuristic, we use a combination of the above. We select
a prioritisation method to sort the view locations and then apply
one or more culling methods: for example we apply angle-based
culling to skip redundant views and then performance-based culling
to ensure that we maintain performance. Finally, we rearrange the
resulting set of views, so that the order of the active viewpoints is
maintained as much as possible with respect to the previous frame.

7 RESULTS

Our test system is an Intel Core i7 6700K with 32GB RAM and an
NVIDIA TITAN X GPU card with 12GB RAM. The input datasets
were created using Pixar’s RenderMan. The Sponza dataset consists
of nine 360°cameras, 600 frames each. The cameras are placed
as follows: one in the middle of the cubic volume, and the rest
at the eight corners. The Spaceship dataset consists of fourteen
360°cameras surrounding the object, 300 frames each. In this ex-
ample, we dynamically select a subset of the cameras, based on the
angle of the vectors from the center of the object to the viewer and
camera. The Pirate dataset uses fifteen 360°cameras distributed in
front of the face of the pirate, each consisting of 150 frames. This
dataset demonstrates the capability for an end-to-end pipeline from
real-world data to a real-time lightfield playback. Camera positions
for this model have been generated using our camera placement
algorithm. The Robot dataset consists of sixteen 360°cameras, 78
frames each. The cameras are arranged in a 4×2×2 oriented grid.
This example poses several challenges for a faithful reconstruction,
such as thin geometry (potted plant leaves) and highly specular and
reflective surfaces (robot, floor, table). The Canyon dataset consists
of 720 360°cameras, distributed along a flight path. The dataset
contains an animated satellite dish. For this flythrough example we
use a conservative rendering scheme, where the location along the
path is tied to the animation time. Therefore, each camera only ren-
ders the time range mapped to nearby path segment. In our scenario,
the environment is generally static, so most cameras render a single
frame. As such, most cameras in this example do not benefit by our
temporal compression codecs therefore they are omitted from the
compression and bitrate tables. In all examples, the 360°virtual cam-
eras generate 1024×1024×6 cubemaps. The color compressor uses
a threshold PSNR of 50 dB and a cell size of 64 pixels. Below, we
discuss results in compression efficiency, throughput optimisations,
runtime performance and reconstruction quality.

Raw
(GB) Stream Temporal

Window
Depth

AABBs
Temporal

(GB)
+Spatial

(GB)
Ratio
(%)

+LZMA2
(GB)

Ratio
(%)

73.83 Color - - 0.97 0.162 0.22 0.016 0.02
16 8 3.18 1.59 1.61
2 8 2.82 1.41 1.43Spaceship 98.43 Depth
2 16 2.58 1.29 1.31

0.076 0.07

22.46 Color - - 1.76 0.293 1.30 0.100 0.44Robot 29.25 Depth 2 16 0.32 0.159 0.54 0.053 0.18
39.55 Color - - 3.23 0.539 1.36 0.129 0.32Pirate 52.73 Depth 2 16 1.58 0.79 1.49 0.27 0.51
94.9 Color - - 8.94 1.49 1.57 0.590 0.62Sponza 126.56 Depth 2 8 3.26 1.63 1.28 0.342 0.27

Table 1: Color and depth compression (in GB). Raw corresponds to 32-bit floating
point depth values and 24-bit RGB data, followed by our temporal compression methods
(5.1, 5.2), spatial re-compression (5.3) and finally the total percentage over the raw
color or depth dataset. We additionally provide results after lossless compression, using
LZMA2, to demonstrate the further compressibility of the output data. We provide three
cases for depth compression for the Spaceship dataset, to show the effect of varying
temporal frame window size and number of AABBs.



Size (GB) Ratio (%) Decode (ms)
HEVC-hq 0.009 0.031 57.5

HEVC-lossless 0.208 0.71 57.69
Ours (+LZMA2) 0.159 (0.053) 0.54 (0.18) 1.62

Table 2: Depth compression comparison in Robot dataset. We compare compression
and decoding performance against HEVC using high quality and lossless presets. De-
coding measures decoding time for all faces from a subset of 9 views (54 streams in
total). Our method has a clear advantage in decoding speed, which is paramount for
the required data throughput. LZMA2 streams are decompressed asynchronously, so
LZMA2 decompression times are not included in the decoding times.

7.1 Compression

In table 1 we show compression results obtained using our meth-
ods. Unlike typical codecs, they are primarily optimized for pure
decoding performance, due to the large number of pixels that needs
to be decoded in runtime. The decoding cost of our methods is
insignificant, as it is limited to memory transfers (parts of a tex-
ture, each frame) and, in the case of colors, a linear interpolation
operation, which is performed in hardware. Decoding the block-
compressed data is also performed in hardware. The Spaceship and
Pirate datasets exhibit very good spatial compression ratio, mainly
because many of the cubemap faces contain no data: in such a case
a cell would compress to two keyframes (out of 300) using any pa-
rameter value. In contrast, the depth compression is not as effective,
partly because the color block-compressor provides a better ratio
(6:1 for DXT1 over 2:1 for BC5) and partly because of the 16-frame
depth window and number of AABBs, which increase the area that
needs to be updated each frame. The Sponza and Robot datasets in
contrast offer better compression in depths rather than colors. This
is because of the effect of light bounces in the scene: For example,
the falling spheres cause light to be bounced on the walls and floor,
causing changes in shading in areas where depth remains constant.
All results can be further compressed with general lossless methods,
such as LZMA2. As can be seen in the table, such compression can
significantly reduce the data to rates that can be easily transmitted
over a network. The reason for the higher lossless compression of
the Spaceship dataset is because of the redundancy of data (e.g. no
colors or depths) across several views and cubemap faces.

Quality and resolution of depth maps are critical for reconstruc-
tion (moreso than color data), therefore our compression scheme for
depths is not very aggressive. As the rendering algorithm samples
multiple views for depth, inconsistencies would manifest as holes on
surfaces (a single intersection test incorrectly failing in algorithm 4)
or floating geometry (all intersection tests incorrectly pass in algo-
rithm 4). Similarly, during color reconstruction, wdepth factor could
be incorrectly set, leading to wrong color contribution. If compres-
sion is of paramount importance for a particular implementation, the
depth streams can be compressed with any compressor, including a
stream of AABBs for each frame, pre-calculated using our method.
In real-time, the frame can then be decompressed and we can then
use the AABB info to update the appropriate texture region.

In table 2 we show a comparison of depth compression against a
hardware-accelerated HEVC implementation by NVIDIA [1] for the
Robot dataset. Floating point depth values were mapped to 24-bit
integers using equation 13 and split to RGB channels, swizzling bits
for better compression: SetBit(c(i mod 3),GetBit(u, i)� (i\3))∀i ∈
[0,23] where c is the output 3-channel color and u the input 24-bit
integer. Our method has better overall compression than the lossless
HEVC and the decoding speed is an order of magnitude better.

7.2 Runtime performance

The performance in all our examples is real-time and can be used
with performance-demanding HMDs (often requiring 90Hz render-
ing rate for a smooth experience). The performance bottleneck of
our runtime algorithm is the texture update stage, where all visible
parts from all views in the active set need to be updated to display the
current frame correctly. As such, we attempt to reduce the volume
of data by only updating visible parts for each viewpoint. Even with

such an optimisation, in cases where the user is looking towards a
direction with moderate to heavy animation, the performance gener-
ally drops due to increased texture updates. In such cases, we use
heuristics (section 6.2) to detect such performance drops and adjust
the active set size by dropping lower priority views. Reducing the
number of views improves perfomance both by reducing the data
that needs to be updated each frame, but also because fewer textures
are sampled in the ray marching shader.

Table 3 shows timings for the texture update and rendering parts
of the runtime, as well as the effective bitrate for color and depth
data. We measured the bitrate by recording the updated color and
depth at each frame, for all frames over several repetitions of the
video. It is clear that the view-dependent optimisation significantly
reduces the bitrate, and as a consequence it reduces texture update
time, resulting in improved performance. Depth bitrate is typically
higher than color as the per-texel storage cost is higher.

Figure 7: PSNR and SSIM of reconstruction against reference for the Spaceship dataset
using a variable number of active viewpoints, selected via the angle-based prioritisation
heuristic.

7.3 Reconstruction quality

The quality of our reconstruction largely depends in the number
and placement of cameras in the animated scene. Challenging cases
from a geometrical point of view involve thin geometry (e.g. chains
of hanging braziers in Sponza, potted plant in Robot) and deep
crevices (e.g. parts of Spaceship, especially in front). To evaluate
the reconstruction quality of our method, we rendered 90 frames of
turntable animation for the Spaceship dataset using Renderman, and
compared it with our method by using the camera path information
to reconstruct the views. Challenging cases in terms of lighting
complexity involve highly specular reflections (e.g. table, floor
and robot in Robot). To demonstrate how our method compares
to ground truth, we rendered a small set of images for the Robot
dataset using a constant frame and a camera moving between two
view points (figure 9). It can be observed that the largest errors
are disocclusions, followed by edge reconstruction. The latter can
be explained by the nearest-depth filter that is used for the depth
image generation (sec. 7.4), as multiple depth samples (typically
prominent at the edges) are lost. We evaluate the PSNR between our
reconstruction and the reference against a simple point rendering of
the Spaceship dataset, where every texel of every cubemap of every
view is projected into the world-space position using the depth map
information (see supplementary video). We also compare the PSNR
values obtained using different number of active viewpoints, shown
in figure 7. It can be observed that the greater the number of views
is used at any given time, the better the reconstruction becomes. The
drop in reconstruction quality around frame 60 can be explained
by the fact that at those frames the camera is pointing directly at
the ship’s crevices, where data is not present among the viewpoint
samples. This could be solved by having a further viewpoint sample
at such a location (figure 8).

7.4 Implementation Analysis

Cube mapping vs equirectangular. Equirectangular mapping is
often used to generate 360°images. While this is a convenient, single-



View
Dependent

Active
Viewpoints

Animated Color Data
at 24fps (in Mbps)

Animated Depth Data
at 24fps (Mbps)

Per Frame Update
Time (ms)

Render Time (ms)
1024x1024

no 5 9 14 36.00 91.04 119.12 216.16 880.64 1092.48 0.74 2.18 2.82 2.83 2.94 3.30Spaceship yes 5 9 14 19.52 35.12 40.48 205.20 471.68 589.76 0.60 1.13 1.40 2.84 2.94 3.31
no 5 9 - 292.43 521.35 - 323.93 557.61 - 3.77 6.79 - 1.40 1.60 -Sponza Soldier yes 5 9 - 153.07 241.25 - 185.49 287.49 - 2.08 3.22 - 1.42 1.63 -

Sponza Floor yes 5 9 - 54.95 124.59 - 46.21 116.70 - 0.64 1.45 - 0.98 1.18 -
Sponza Spheres yes 5 9 - 213.54 368.56 - 253.24 404.84 - 2.71 4.61 - 1.85 2.23 -

Table 3: Timings and bitrates in the runtime. We show the effective bitrate (in Mbps) of texture updates for a 24fps video, and the time needed for texture updates and rendering (in
milliseconds). We vary the number of active viewpoints and we show the results of view-dependent decoding (VD) versus without. Rendering cost is for a 1024 × 1024 image. Floor,
soldier and spheres view implies looking towards areas of low, medium and high degree of animation. We can observe that using view-dependent decoding typically halves the bitrate
and significantly improves performance.

Figure 9: Comparison of our reconstruction (top row) with ground truth (middle row) for the Robot dataset. We render images from four locations along the line between two
360°cameras (scene views (a) and (d) are the endpoints, with two zoomed sections on the left). The reconstructions at the endpoints have higher PSNR/SSIM, but still exhibit heat map
differences due to compression and loss of depth information on edges. Specular effects are handled gracefully (e.g. glass sphere), while thin and transient geometry poses a challenge.

Figure 8: Ground truth comparison for Spaceship dataset. We compare the reconstruc-
tion (left) from a random angle to an image generated explicitly from that angle by the
offline renderer (middle).

image representation, it has several drawbacks compared to cube
maps, which have been used for a long time in computer graphics:
Mapping distortion. The equirectangular mapping exhibits higher
distortions the closer a point is to any of the two poles. At its most
extreme distortion, the single points at the poles cover the same
number of pixels as the great circle. Standard video codecs also
perform better with cube maps, as they assume motion vectors as
straight lines. Storage cost. A cubemap needs 75% of the stor-
age space required for an equirectangular map at the same pixel
density. In such maps, the excess storage cost is spent near the
distorted poles. Sampling performance. Cubemap sampling using
3D cartesian coordinates has been implemented in hardware since
2000. Equirectangular mapping requires the use of trigonometric
functions, which increases the sampling cost when used frequently.

Cell dimensions for temporal color compression. Our tempo-
ral color compression scheme first partitions an image into a regular
grid of N×N cells, which are then compressed and decompressed
independently of each other. There is no globally ideal cell size that
is always the best for any given case; this depends on the content
and the hardware that is used for decompression. For the following
comparisons, we assume cubemap faces of dimensions 1024×1024
and a reference cell size of 64. Selecting a very small cell size

(e.g. N = 16) results in better identification of static or animated
cells, therefore the cumulative ratio of keyframes over frames will be
lower (better). But the smaller cell size also reduces the compression
ratio as the per-cell, per-frame data becomes higher (bytes used by t
over bytes used by cell). During decompression, the performance
can also be lower, as the number of texture update calls and frustum
culling checks becomes higher (16×). Conversely, selecting a very
large cell size (e.g. N = 256) results in higher (worse) cumulative
ratio of keyframes over frames, but in a better per-cell, per-frame
compression rate. During runtime, frustum culling is faster due to
lower number of checks, but texture update cost can be higher, as
the coarser cell granularity results in more data in need for update.

Depth map filtering Production renderers often apply filtering
on outputs to reduce aliasing artifacts and noise. Such a filter is
destructive for depth output, distorting silhouettes by linearly inter-
polating depths of foreground and background disjoint geometry.

8 CONCLUSION

We have presented a set of methods than enable real-time reconstruc-
tion of pre-rendered video from an arbitrary point-of-view within an
animated light field, that is capable to run at 90Hz on modern hard-
ware, allowing smooth, high-quality VR experiences. Our camera
placement method ensures that the datasets minimize redundancy
among views. Our temporal compression methods are specialized
for the color and depth streams, whereas they can also be used in
tandem with hardware-accelerated, spatial texture compression for-
mats. Decompression for both methods is very fast to evaluate and
minimizes GPU memory bandwidth by only updating out-of-date
and visible texture regions. Our runtime rendering algorithm is very
easy to integrate due to its simplicity and uses prioritization heuris-
tics to control the number of active viewpoints, and by extension,
the performance versus quality tradeoff.

In the example scenes, we have purposefully not used offline-
rendered images containing camera effects such as depth of field



and motion blur or participating media and other volumetric effects.
Our method uses images capturing a single depth value per pixel,
so there is a direct mapping of depth pixels to color pixels. As
such, reconstruction using imagery with such effects would result in
artifacts. In further work, we plan to add support for camera effects,
such as depth of field and motion blur, as runtime components.

In the future, we would like to improve support for thin geometry
and complex light paths, such as mirror-like specular reflections, re-
fractions, caustics and transparency. We would also like to improve
the spatial adaptivity of the compression codecs by using a subdivi-
sion scheme such as a quadtree. Hardware texture decompression
informed by our scheme could reveal a much higher performance
towards ultra high resolution VR.
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Algorithm 4 Real-time rendering algorithm
Precondition: Set of Nview cubemaps C j(color), D j(depth) and their origins P j . Eye

location o and direction d. Number of raycasting steps Nstep. Near/far clipping
planes znear,zfar. Z conversion functions lin(),nonlin() between linear and nonlinear
space using eq. 13

Output: A color cout

1: function BETWEENVIEWPOINTANDGEOMETRY(pcur, j,P,D)
2: x← pcur−P j

3: dtex ← SampleCubemap(D j ,x)
4: return dtex > nonlin(||x||)
5: function SAMPLECOLOR(pcur, j,P,C,D)
6: x← pcur−P j
7: dtex ← SampleCubemap(D j ,x)
8: ctex ← SampleCubemap(C j ,x)
9: ddiff ← |dtex−nonlin(||x||)|

10: wdepth ← 1/(ddiff + ε)
11: wcam ← 1/(||o−P j ||+ ε)
12: return (ctex,wdepth ·wcam)

13: function MAIN(C,D,P,o,d)
14: cout ← (0,0,0,0) . Initialize output with transparent color
15: snonlin ←

nonlin(zfar)−nonlin(znear)
Nstep

. Step magnitude

16: for i ∈ [1,Nstep] do . Non-linear raymarching
17: zcur ← lin(nonlin(znear)+ i · snonlin)
18: pcur ← o+d · zcur
19: risect ← true
20: for j ∈ [1,Nview] do
21: if BetweenViewpointAndGeometry(pcur, j,P,D) then
22: risect ← false . We are on empty space, continue marching
23: break
24: if risect then
25: break
26: if i = Nstep then . Check if ray did not intersect
27: return cout
28: csum ← (0,0,0,0)
29: wsum ← 0
30: for j ∈ [1,Nview] do
31: (c,w)← SampleColor(pcur, j,P,C,D)
32: csum ← csum + c
33: wsum ← wsum +w
34: cout ← csum

wsum
35: return cout


