Residual Ratio Tracking for Estimating Attenuation in Participating Media
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Figure 1: A cloudy sky rendered with our residual ratio tracking estimator (a, d) for computing transmittance in heterogeneous volumes.
Our technique is unbiased, outperforms the delta tracking-based estimator (b), and fits well into path tracing-based production frameworks.
The insets show renderings of absorptive only (top) and scattering (bottom) clouds; the transmittance was estimated using delta tracking (b),
ratio tracking (c), and residual ratio tracking (d) with a roughly equal cost reported as the number of extinction coefficient evaluations.

Abstract

Evaluating transmittance within participating media is a fundamental
operation required by many light transport algorithms. We present
ratio tracking and residual tracking, two complementary techniques
that can be combined into an efficient, unbiased estimator for evalu-
ating transmittance in complex heterogeneous media. In comparison
to current approaches, our new estimator is unbiased, yields high
efficiency, gracefully handles media with wavelength dependent
extinction, and bridges the gap between closed form solutions and
purely numerical, unbiased approaches. A key feature of ratio track-
ing is its ability to handle negative densities. This in turn enables
us to separate the main part of the transmittance function, handle
it analytically, and numerically estimate only the residual transmit-
tance. In addition to proving the unbiasedness of our estimators, we
perform an extensive empirical analysis to reveal parameters that
lead to high efficiency. Finally, we describe how to integrate the
new techniques into a production path tracer and demonstrate their
benefits over traditional unbiased estimators.
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1 Introduction

The world around us is filled with participating media that attenuates
and scatters light as it travels from light sources, to surfaces, and
finally to our eyes. Simulating this light transport in heterogeneous
participating media—such as smoke, clouds, nuclear reactor hous-
ings, biological tissue, or other volumetric datasets—is important
in many fields, ranging from neutron transport, to medical physics,
scientific visualization, and film and visual effects production.

Monte Carlo (MC) path sampling approaches, including variants
of path tracing [Kajiya 1986], bidirectional path tracing [Lafortune
and Willems 1993; Veach and Guibas 1994; Pauly et al. 2000], or
many-light methods [Keller 1997; Dachsbacher et al. 2013], have
proven to be practical approaches for accurately approximating this
light transport. All of these rely on generating random paths between
the light(s) and the sensor, and there has been extensive research on
importance sampling such paths to obtain low-noise images [Raab
et al. 2008; Kulla and Fajardo 2012; Georgiev et al. 2013].

Central to all these approaches, however, is the need to evaluate
transmittance—or fractional visibility—between two points in the
scene. This is needed for shadow connections between light- and
camera-subpaths, for rendering colored media, or simply for eval-
uating the fractional visibility to solid surfaces. In homogeneous
media, computing transmittance is trivial since it accepts a simple
exponential analytic form. Unfortunately, in heterogeneous media an
expensive numerical approximation is necessary and relatively little
research has been done on performing this critical operation effi-
ciently. Traditional ray marching techniques result in unpredictable,
systematic bias and require many fine steps in high-resolution data.
On the other hand, while unbiased free-flight sampling techniques
like delta tracking [Woodcock et al. 1965] can be adapted to esti-
mate transmittance, they result in coarse binary estimators with high
variance. These options lead to either substantially increased render
times or artifacts in the form of bias or noise. In this paper we are
interested in an efficient, unbiased evaluation of transmittance in
highly-complex heterogeneous media—the common case in visual
effects and film production, and other graphics applications.
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Figure 2: Homogeneous absorbing (top) and scattering (bottom)
media rendered with path tracing that evaluates transmittance ana-
Iytically (a), using delta tracking (b), and using our new method (c).

Unfortunately, due to the aforementioned limitations, rendering
heterogeneous media often takes orders of magnitude longer than
homogeneous media, in otherwise identical scenes. In fact, simply
rendering a homogeneous medium using only the techniques avail-
able for heterogeneous media (i.e. disallowing analytic transmittance
calculation) immediately leads to significantly higher render times,
higher bias, or higher variance—even though the scene is homo-
geneous, see Figure 2. While this is a sad state of affairs, it also
indicates that the problem is not inherent to the heterogeneity of the
medium itself, but rather stems from the lack of appropriate tools
to compute transmittance accurately and efficiently in this more
general case.

In this paper, we tackle this fundamental problem that is shared by so
many participating media rendering algorithms. We first survey exist-
ing approaches (Section 2) for computing transmittance—both from
graphics and other related fields like neutron transport—to identify
their relative weaknesses. We then propose two novel and comple-
mentary approaches to compute unbiased, low-variance transmit-
tance estimates in general heterogeneous media (Section 3), which
we call ratio tracking and residual tracking—the latter of which
gracefully and automatically simplifies to the standard analytic re-
sult when the medium is homogeneous. We prove the correctness
and unbiasedness of the proposed techniques (please see the sup-
plementary material), and perform an extensive empirical variance
analysis (Section 4) evaluating our approaches against the state-of-
the-art. Our techniques can be used as simple drop-in replacements
for evaluating the transmittance between two points in heteroge-
neous media. We demonstrate the practicality of these improvements
by incorporating our methods into a production rendering system,
demonstrating substantial noise reduction in a number of scenes
with complex heterogeneous media, such as the one in Figure 1.

2 Problem Statement & Previous Work

The propagation of light through participating media is subject to
interactions with particles. These interactions lead to absorption and
scattering of photons and their rates are described by the absorption
o () and scattering us(z) coefficients. The extinction coefficient
w(x) = pa(x) + ps(z) then denotes the total loss of light due
to absorption and out-scattering per unit distance traveled. Table 1
summarizes the various coefficients that we use throughout the paper.

Consider a differential beam of light propagating through a partic-
ipating medium with extinction coefficient u(x). The fraction of

Figure 3: Illustration of different techniques for estimating transmit-
tance through slabs of different materials. Regular tracking finds in-
tersections with interfaces between individual materials. Ray march-
ing proceeds with a constant step that needs to be small enough to
avoid excessive bias. Delta tracking fills optically thinner regions
with fictitious particles (red), analytically samples tentative free
paths, and probabilistically decides whether collisions occur with
real or fictitious particles.

Table 1: List of interaction coefficients used throughout the paper.

o  absorption coefficient

s scattering coefficient

1 extinction coefficient

[ majorant extinction coefficient

e control extinction coefficient

wr  residual extinction coefficient

-  majorant residual extinction coefficient

light T'(d) that “survives” the transport up to distance d is:

1@~ 1 = e (- [ ) as). 1)

where L; is the radiant energy at the beginning of the beam and
L, the amount that reaches distance d. The fraction is commonly
referred to as the transmittance. In homogeneous media—where y is
spatially constant—Equation (1) simplifies to a simple exponential:
T'(d) = exp (—du). In heterogeneous media, however, evaluating
Equation (1) represents one of the major challenges of simulating
radiative transport [Chandrasekhar 1960]. This is the problem we
focus on in this paper.

In the following, we describe traditional approaches that are used
to evaluate T'(d). For brevity, we omit an extensive treatment of
previous work on light transport simulation algorithms—and refer
interested readers to standard literature [Cerezo et al. 2005; Pharr and
Humphreys 2010]—as specific simulation approaches are largely
orthogonal to our contributions.

2.1 Regular Tracking

The transmittance can be computed analytically when the optical
thickness, i.e. the integral in Equation (1), has a known closed form
anti-derivative. If the scene contains materials that fulfill this crite-
rion (e.g. layered homogeneous slabs, discrete homogeneous vox-
els), we can use regular tracking [Amanatides and Woo 1987]—also
known as the ray tracing method, substepping, or surface tracking
in other fields—and split the beam at material interfaces. With
homogeneous materials, the transmittance simplifies to:

T(d) = HGXP (—(dip1 — di) ), 2

where d; is the distance to the ¢-th interface and p; the extinction
coefficient of the medium behind it (see Figure 3 for an illustra-



Algorithm 1: Pseudocode of the delta-tracking estimator of trans-
mittance along a ray with origin o, direction w, and length d.

DeltaTracking(o, w, d)

1 t=0

2 do:

3 ¢ = rand()

4 t =t logd=0
5 ift > d: break
6 & = rand()

7 while & > £(oH)

8 returnt

DeltaTrackingEstimator (o, w, d)
9  t = DeltaTracking(o,w, d)
10 vreturnt > d

tion). Since the properties of p; enable evaluating the integral an-
alytically, the main cost of regular tracking resides in finding the
interfaces, which is generally done by tracing rays. The drawback of
the technique is that it cannot handle media with arbitrarily varying
extinction coefficient that are fairly common in rendering.

2.2 Quadrature Methods

The integral in Equation (1) can also be evaluated numerically, e.g.
using quadrature rules that are in this context commonly referred to
as ray marching [Perlin and Hoffert 1989]. While this approach is
sufficiently general, it unfortunately produces biased estimates of the
transmittance. This holds even if the optical thickness is estimated in
an unbiased manner (e.g. using MC integration [Pauly et al. 2000])
since E[exp (X)] # exp (E[X]); the exponentiation step “skews”
the normal distribution of the error making its mean non-zero. The
bias can be reduced by small marching steps, however, this is often
too expensive and does not fit well into path tracing-based frame-
works that rely on averaging many, relatively low quality samples.

2.3 Free-flight Sampling & Delta Tracking

The estimation of transmittance is highly related to random sampling
of so-called free-flight distances between consecutive interactions
with the medium. This requires solving for a distance d in Equa-
tion (1), which results in a given transmittance value, and can be
done analytically in homogeneous media. Specialized approaches
exist for certain continuously varying extinction functions [Carter
et al. 1972; Brown and Martin 2003].

The general case, however, requires a technique like delta track-
ing—also known as Woodcock tracking, pseudo scattering, hole
tracking, or null-collision algorithms—which is based on von Neu-
mann’s [1951] rejection technique for generating numbers with
arbitrary distributions. The technique was independently devel-
oped in neutron transport [Woodcock et al. 1965] and plasma
physics [Skullerud 1968] for unbiased sampling of neutron and
ion free paths, respectively, in environments with many materials
(e.g. nuclear reactors). It has been later formalized [Coleman 1968]
and recently presented in an integral form by Galtier et al. [2013].
Raab et al. [2008] introduced delta tracking to graphics for rendering
participating media. As this technique forms the basis for our new
estimators, we introduce it in greater detail.

The idea of delta tracking is to “homogenize” the heterogeneous
medium by adding fictitious particles. The local concentration of
fictitious particles is set so that the combined extinction coefficient f,

often referred to as the majorant, is spatially homogeneous.' The
albedo and phase function of fictitious particles are set to 1 and §(w),
respectively. As such, photons interacting with fictitious particles
continue “unaltered” along the original direction. These interactions
are sometimes also referred to as “null collisions”.

In practice, delta tracking models the interactions with real and ficti-
tious particles probabilistically. The algorithm essentially constructs
arandom walk along a line, whose Euclidean length represents the
free flight distance. The tracking starts by sampling a distance ¢
using the majorant extinction to a “tentative” collision point (line 4
in Algorithm 1) and checking that ¢ is not beyond a given maximum
d (e.g. the distance to the nearest surface). Then it draws a random
number £. If € is greater than the relative concentration of real
particles, i.e. £ > p(x)/f (line 7), the collision is with a fictitious
particle. The random walk then continues by repeating the process
of sampling tentative free flight distances and probabilistically clas-
sifying the collisions until a real collision occurs. Coleman [1968]
proved that free flight distances generated in this manner have the
desired distribution and the algorithm is unbiased.

The cost of delta tracking is highly dependent on how tightly the
majorant i bounds the true extinction coefficient p () as this directly
impacts the number of rejected, tentative collisions. Yue et al. [2010]
and Szirmay-Kalos et al. [2011] both suggested strategies to optimize
this process by localizing the majorant calculation to only bound the
extinction coefficient locally. As we show later, these optimizations
are both orthogonal and complementary to our contributions for
computing transmittance. It is also worth noting that certain variants
of delta tracking can handle non-bounding “majorants” [Carter et al.
1972; Galtier et al. 2013].

Free-flight Sampling as a Transmittance Estimate. Unbiased
free-flight sampling routines can also be used for estimating trans-
mittance [Raab et al. 2008; Szirmay-Kalos et al. 2011; Jarosz et al.
2011]: if the sampled free flight distance is greater than d, the trans-
mittance is estimated as 1, and 0 otherwise. The binary estimate can
be further refined by averaging multiple instances, i.e. by counting
the relative number of free flight samples that exceed d.

Figures 4b (top) and 4c (top) show two instances of delta tracking in
the same medium but with two different majorants (see Figure 4a).
The trackings differ in the number of tentative steps (represented
by blue circles and tics on the x-axis) they generate. With a tight
majorant, the collision with a real particles occurs much faster than
with a loose majorant. In either case, the transmittance function is ap-
proximated by a step function. Figures 4d and 4e show the effect of
averaging multiple free flight samples yielding finer approximations
(black curves) of the transmittance function (red curves).

3 The New Estimators of Transmittance

In this section, we introduce two new complementary techniques
for estimating transmittance. We strive for an intuitive description
here, precise definitions and proofs of unbiasedness are included in
the supplementary material. The motivation for the first estimator,
referred to as ratio tracking, is to leverage the information discovered
during the tracking more efficiently instead of deducing “just” a
binary answer. The resulting estimator provides a piecewise constant
approximation to the transmittance function. The second technique,
called residual tracking, is complementary to delta tracking and
ratio tracking and combines numerical estimation with an analytic
approximation, yielding a piecewise exponential solution.

'The majorant can in fact vary spatially as long as it enables tractable,
closed-form inversions of optical thickness for sampling free flight distances.
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Figure 4: A comparison of delta and ratio tracking-based estimators in a periodic heterogeneous medium bound by a loose and tight majorant
extinction coefficient (a). In (b, ¢), we show single instances (blue) of delta (top) and ratio (bottom) trackings for the two different majorants.
In (d, e), we show approximations of the transmittance function (black) obtained by averaging 100 instances (thin blue) of the corresponding
tracker. Red curves represent the ground truth transmittance function. The ticks on horizontal axes mark all sampled (tentative) collision points.

3.1 Ratio Tracking

The delta tracking-based estimator of transmittance can be inter-
preted as a random walk terminated by Russian roulette. The ter-
mination probability at each tentative collision point is set to the
local fraction of real particles. In Monte Carlo simulations, Rus-
sian roulette often serves as an alternative to discrete or continuous
weighting [Hayakawa et al. 2014], where, instead of probabilistically
terminating the path, we continue constructing it until a boundary
condition is met while weighting down its contribution.

Our ratio tracking approach follows the same rationale: we replace
the Russian roulette by the probability of colliding with a fictitious
particle. Instead of probabilistically terminating the random walk
at tentative collision points, we continue until we reach the end-
point of the ray. During the construction, we keep track of the
joint probability of colliding with fictitious particles at all tentative
collisions. This becomes the “weight” that the estimator scores when
reaching d, defined as:

The multiplicand in the product represents the ratio of fictitious to
all particles at collision point z;. Note that in addition to these ratios,
the value of the estimator depends also on the number of tentative
collision points K that it generates before reaching d. This is a
random variable that, in addition to d, depends on fi. Its expected
value E[K| = [id determines the cost of the algorithm.

K

(r)n =]

=1

(1 - M (3)

I

Algorithm 2: Pseudocode of the ratio-tracking estimator of trans-
mittance along a ray with origin o, direction w, and length d.

RatioTrackingEstimator (o, w, d)

1 t=0

2 T=1

3  do:

4 ¢ = rand()

5 t=1¢— 10%(;*()

6 if t > d: break

7 T=T (1 - W)
8  while true

9 return T

(b) Ratio tracking

(a) Delta tracking (¢) Reference

Figure 5: Transmittance estimated by averaging 2 instances of
delta (a) and ratio (b) tracking. While the non-analog ratio tracking
estimator reduces variance more efficiently, it is also more expensive.
See Section 4 for a comparison of the cost and effective variance.

Algorithm 2 provides pseudocode for the ratio-tracking estimator.
The correctness of the method should intuitively follow from the
fact that we simply replace Russian roulette by another unbiased
technique: the weighting that occurs at (discrete) tentative colli-
sion points. To support this intuition in a mathematically rigorous
way, we include a formal proof of correctness in the supplementary
material. The bottom row of Figure 4 shows the approximations
of the transmittance produced by single instances of ratio tracking
(blue curves), as well as averages over 100 trackings (black curves).
Note how the approximations drop at each tentative collision point
proportionally to the relative concentration of fictitious particles.

Discussion. Delta tracking belongs to the category of analog
estimators whose scores strictly adhere to real physical processes
being simulated. The estimator simulates the process of attenuation
by considering interactions with real particles only: it scores 1 if
only fictitious interactions occurred along the ray, and O otherwise.
In contrast, our ratio tracking estimator adjusts the score at every
tentative collision, including fictitious ones. It thus belongs to the
class of non-analog estimators that in certain situations yield lower
variance [Hykes and Densmore 2009; Hayakawa et al. 2014]; we
demonstrate this in Figure 5. However, as ratio tracking needs
to unconditionally reach the endpoint of the ray, the cost of the
estimation—in comparison to delta tracking—may increase. To
better understand these trade-offs, we analyze the variance, cost, and
the net efficiency of both estimators in Section 4.



Medium A

Medium B

| === Control transmittance Single tracking — Averaged trackings (residual transmittance) Product === Reference transmittance
100 100 100 100
| max
- /\ 104 104 104 104
: /M
g
5 o o 2 :
<= avg 2 5] 5] i 9 -
B} 7S g g
S £ 1 =1 =2
= £ £ g
B g4 ~. 21 Z 1
g g1 \ g g
= min = = = =
; \
@ 014 o1 o1
distance distance distance distance distance
100 100 100 100
| max
- 104 104 104 — 104
=
k2
3} o o o 2
= 15 o Q 15
3 g g1 g g
S £ £ £ £
= £ £ £ £
g Z Z Z Z
= =14 ERE ERE =14
2 g g g E
Z| ave
@ 014 014 014 014
min

distance

(b) tte = pimin & delta tracking

distance

(a) Extinction function

distance

(©) e = Mmin & ratio tracking

distance distance

(d) pte = pavg & ratio tracking (e) fte = Mmax & ratio tracking

Figure 6: A comparison of residual tracking with different control extinction coefficients. In (b) and (c), we analytically compute the control
transmittance (purple) based on the minimum p(x) along the ray and then apply delta tracking (b) and ratio tracking (¢) to numerically solve
the transmittance (blue curves - individual trackings, black curve - average) through the residual medium. The product of the control and the
residual transmittance is represented by the green curve. Ratio tracking can be used with arbitrary control extinctions: in (d) and (e), we show
examples with the average and maximum p(x) used as the control extinction.

3.2 Residual Tracking

The previously introduced ratio tracking becomes expensive when
E[K], i.e. the expected number of steps required to reach the end-
point of the ray, is high. This directly depends on the value of the
majorant extinction coefficient, which tends to be high in optically
thick materials. Our goal in this section is to reduce the value of the
majorant. We first evaluate part of the transmittance analytically, and
then use the numerical tracking only on the remaining (residual) ex-
tinction. Since the residual extinction has generally a lower majorant
than p, the ratio tracking—and under some constraints also delta
tracking—advances using longer tentative free-flight distance, which
in turn lowers E[K]. The cost of the estimation is thus reduced.

We start by introducing the control extinction coefficient pc(z),
which is a simplified version of the original p(z) that enables ex-
pressing the optical thickness up to distance d in closed form 7.(d).
The transmittance up to d can then be written as:

exp (_ / " (@) dx)

e (- " 1e(a) + ) — p1e(a) i)

T(d)

e (-re(@) e (- | " (e) — o) as). @

Control transmittance Residual transmittance

The first exponential term, referred to as the control transmittance
T.(d), represents a coarse approximation of 7'(d), which is com-
puted using the simplified extinction coefficient p.. The second
exponential then serves as a correction that accounts for the differ-
ence between the control and the actual transmittance. We denote
this exponential as the residual transmittance 7. and refer to the in-
tegrand as the residual extinction coefficient p, () = p(x) — pe(z).
Please note that for certain values of y.(x), the residual extinction
may become negative.
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Figure 7: We apply the concept of control variates and split the
extinction function () to control (b) and residual (c) extinction. The
transmittance of (a) can be then computed as the product of ana-
Iytically evaluated control transmittance and numerically estimated
residual transmittance.

Figure 7 illustrates the concept of decomposing the extinction func-
tion into the control and the residual part. The transmittance through
the residual part can be computed using any of the techniques de-
scribed up to now; however, we will restrict ourselves to the general
and unbiased estimation via ratio tracking and, for some values of
ue(x), also delta tracking. For brevity, we drop the positional pa-
rameter and simply write p. assuming a constant control extinction.
It should be noted, however, that using spatially varying control
extinction may further decrease the variance (see Section 6).

The idea of residual tracking resembles the concept of control vari-
ates. The differences are subtle, but it is worth noting that since we
are evaluating exponentiated integrals, even a constant control vari-
ate (i.e. constant control extinction in our case) can reduce variance
if it decreases the rate of change of the residual exponentiated inte-
gral. The residual tracking is also related to the “separation of main
part” applied by Szirmay-Kalos et al. [2011] to the evaluation of op-
tical thickness. However, their approach will be effective only if the
main part is represented by a non-constant function that matches the
extinction function well. In contrast, our residual tracking benefits
even from constant control extinctions, which are easy to compute.
Furthermore, Szirmay-Kalos et al. proposed to integrate the residual
optical thickness using numerical quadratures, thereby biasing the
result. Our techniques, that we describe next, remain unbiased.
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Figure 8: Residual ratio tracking in a simple procedural volume
with the control transmittance (a) computed using the minimum
(top), average (middle), and maximum (bottom) extinction coefficient
along the ray. The residual transmittance (b) was in the product (c¢)
estimated using 4 trackings only to emphasize the noise typical for
each control extinction.

3.2.1 Residual Delta Tracking

In order to estimate the residual transmittance with delta tracking,
we have to ensure that the residual extinction coefficient ., (z) is
always non-negative, i.e. 1. must never exceed p(x). Otherwise the
probabilities of colliding with real particles become negative. Since
delta tracking has no means to handle such situations properly, the
estimation would not converge to the correct result. Note that this
is normally not a problem as media with negative densities do not
exist in the real world. In the case of residual tracking, however, this
limitation significantly restricts possible values of y. thus reducing
the effectiveness of using the control variate.

Figure 6b shows a log-plot featuring the control transmittance (pur-
ple curve), an estimate of residual transmittance obtained by averag-
ing 100 instances of residual delta tracking, and their product (green
curve) that approximates the true transmittance function. To prevent
negative collision probabilities with real particles, we set the control
extinction . to the minimum extinction coefficient pimin along the
ray. For sampling the free-flight distances, we used the majorant of
the residual extinction coefficient fi, = ftmax — [bmin-

3.2.2 Residual Ratio Tracking

By adjusting Equation (3) to estimate only the residual transmittance,
T (d), we yield the residual ratio tracking estimator:

<Tr(d)>RR:ﬁ(1 _ M) :ﬁ(l — W) )

i=1 Hr i=1

The value of fi, is in the case of residual ratio tracking defined
slightly differently. As stated at the beginning of Section 3.2, our
goal is to minimize the tracking cost by prolonging the tentative free-
flight distances. This amounts to finding the smallest fi, that still
avoids negative multiplicands, which would prevent convergence
of the estimator in Equation (5). To ensure that . (x)/f, < 1,
we use fir = max(|ur(z)];0 < z < d), i.e. the maximum absolute
difference between p(x) and p. along the ray.

Algorithm 3: Pseudocode of the residual ratio-tracking estimator
for sampling transmittance along a ray with origin o, direction w,
and length d.

ResidualRatioTrackingEstimator (o, w, d)

1 t=0

2 T.=exp (—ped)

3 Tr,=1

4 do

5 ¢ = rand()

6 t=t— os0=c)

7 ift > d: break

8 Tr — T’r‘ <1 _ #(OJr;W)*uc)
9  while true

10  return 7.7,

An important advantage of ratio tracking over delta tracking is that
it can handle negative extinction coefficients. To see how, we need
to refrain from the previously introduced physical meaning of the
multiplicand—the ratio of fictitious to all particles—and simply
consider it as a local weight. By inspecting Equation (5), we see that
the weights at collisions in regions of negative residual extinction
are greater than 1. In effect, these regions can be interpreted as
containing light amplifiers (instead of attenuators). More generally,
we can examine three different cases for fi.:

e if e = pmin = min(u(x);0 < x < d), i.e. the control
extinction is underestimating, the control transmittance sys-
tematically overestimates the real transmittance (i.e. the purple
curve in Figure 6c is higher than the red curve) and the residual
transmittance thus needs to scale it down.

o if e = paye = avg(u(z);0 < z < d), the control ex-
tinction along the ray matches the real extinction on average.
The residual tracking thus corrects only for the local over- and
underestimation of the control transmittance w.r.t the real trans-
mittance along the ray. This can be seen as a wiggle of the
black curve around value 1 in Figure 6d.

e if e = pmax = max(pu(z);0 < x < d), the control trans-
mittance systematically underestimates the real transmittance
(see Figure 6e) and the residual tracking thus needs to produce
values greater than 1 to scale the control up.

Figure 8 visualizes the control and the residual transmittance. The
rows represent the three values of j. described previously. The
bright regions correspond to cases when the residual transmittance
takes on values higher than 1. Algorithm 3 provides the pseudocode
of the estimator. Please refer to the supplementary material for a
proof of unbiasedness.

Discussion. Similarly to ratio tracking, the residual tracking is
a non-analog estimator. Furthermore, it combines the properties
of continuous and discrete weighting estimators [Hayakawa et al.
2014]: the control transmittance provides a continuous, exponential
approximation, which is then adjusted using a discrete, piecewise-
constant correction term obtained from the residual (ratio) tracking.
The resulting approximation of transmittance is thus piecewise expo-
nential. Note that when the medium is homogeneous (as in Figure 2),
the control transmittance is already exact and the result thus noise-
free. Residual tracking can also be used for creating “medium-length
beams” proposed by Kfivanek et al. [2014].
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ratio tracking, however, the tracker is able to compensate this by decreasing the variance. In (€) we show the products of variance and cost
(lower is better) and (f) then depicts the absolute difference between the two products. The white line represents zero difference and the labels

mark the estimator that performs better in the region.

4 Analysis of Efficiency

In this section, we analyze the variance, the cost, and their product
for the aforementioned tracking estimators.

4.1 Delta vs. Ratio Tracking

In Figure 4 we visualized the delta and ratio trackings for a tight
and a loose value of the majorant extinction coefficient. The loose
majorant generally leads to a higher number of tentative collision
points, thereby increasing the cost of both trackings. However, the
resulting ratio-tracking approximation consists of more steps that
match the true transmittance better, reducing variance.

The goal of this section is to analyze how the variance and the cost
of the two trackers depend on the value of the majorant and the
optical thickness of the medium. We use the collision sampling
efficiency [Leppénen 2010], defined as n(x) = u(z)/@, to express
how “tightly” the majorant bounds the extinction function at x; high
values correspond to tight bounding and high probabilities of real
interactions. For the comparison we consider a canonical scene con-
sisting of an axis-aligned unit cube filled with an absorbing medium,
an orthographic camera, and an area light source, placed behind the
cube; see Figure 9a for an illustration. To study the dependency
on the optical thickness, we exponentially increase the extinction
coefficient of the medium along the x axis so that the transmittance
(and thus the intensity of pixels) decreases linearly as we move from
left to right across the rendered image (see Figure 9b). The density
of the medium is kept constant along y and z axes. To incorporate
the dependency on the majorant, we modulate the collision sam-
pling efficiency vertically: pixels at the bottom are rendered with
low 1 (loose majorants) while pixels on top are computed with n
approaching 1.

Figure 9c visualizes the variance of single instances of the delta
tracking (top) and the ratio tracking (bottom) estimators. In case
of delta tracking, the variance does not depend on 1. Since the
estimator always scores 0 or 1 independent of the number of tentative
collisions, its variance is agnostic to the value of the majorant. In
contrast, the ratio tracking-based estimator always scores a rational

number leading to a lower overall variance. More importantly, its
variance reduces with decreasing collision sampling efficiency. This
is because ratio tracking—in contrast to delta tracking—can leverage
the higher number of tentative collision points to produce a finer
approximation of the transmittance function.

Figure 9d depicts the number of generated tentative collision points
per single tracking; we consider this as the cost of the estimation.
The cost of both trackers increases with lower values of the collision
sampling efficiency. Unsurprisingly, ratio tracking is also more
expensive than delta tracking as it always constructs the random
walk all the way to the back side of the unit cube. This becomes most
apparent in the right part of the visualization, where the medium is
optically thick and mean free paths are relatively short.

In order to compare the net efficiency, we plot the effective variance,
i.e. the products of the per-tracker variance and cost, in Figure 9e.
High values in these plots correspond to configurations where either
the cost, the variance, or both are high; i.e. the tracker has difficulty
reducing the noise in these configurations. In Figure 9f we visu-
alize the absolute difference of the effective variance plots. The
white curve represents configurations where both estimators perform
equally well. For high values of 7, the delta tracking estimator
performs marginally better. However, the difference between the
two estimators becomes much more significant for low values of 7,
where the piecewise constant approximation produced by ratio track-
ing outperforms the binary estimation, despite the higher cost per
single instance. This can be seen in Figure 9b that shows “equal cost”
renderings of the volumetric cube. While the noise in the top part
of the renderings is comparable, the bottom part looks significantly
better when using ratio tracking.

For best performance, one would want to choose the estimator based
on the transmittance and collision sampling efficiency along the ray.
However, as neither of these is known a-priory, the selection can be
done only heuristically. We also experimented with different on-line
switching schemes, but since the relative improvements of delta
tracking with high 7 are rather low, the returns were diminishing.
We thus always start with ratio tracking and switch to delta tracking
only if the transmittance drops below 0.1%. It is also worth noting
that low values of 7 are fairly common in practice.
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Figure 10: Variance, number of evaluations of the extinction coefficient, and their corresponding product for different extinction functions.
Note that independently of the optical thickness (horizontal axis), the product of the variance and the cost is minimized quite well by using the
average extinction coefficient as pi.. Please refer to the supplementary material for more examples.

4.2 Residual Ratio Tracking with Various Values of ;.

In this section, we compare how different values of the control ex-
tinction coefficient impact the efficiency of the residual ratio tracking.
‘We use the same geometric setup as in Section 4.1, however, this
time we also vary the density of the medium along the z-axis. This
enables studying how the shape of the extinction function impacts
the efficiency of the estimators. Columns (a) and (e) of Figure 10
show four extinction functions that are scaled to produce the desired
transmittance along the horizontal axis (as in Figure 9). The vertical
axes of all false-color plots are identical and represent the control
extinction coefficient (precisely its relative value w.r.t the maximum,
i.e. tic/ pimax). The three dashed lines correspond to fimin, Havg, and
Imax, i.e. the minimum, average, and maximum p(x) along the ray,
respectively. While it is generally hard to classify how the variance
and cost depend on (., the minimum of their product (columns (d)
and (h)) is in all cases (and for all values of transmittance) very
close to ptave. As such, using the average extinction coefficient as pi.
will be effective in reducing the stochastic error of estimating the
residual transport, which in that case averages to value 1. Note that
avg Tepresents the average along the ray and computing it for every
ray independently is not practical. We address this in Section 5.1.

5 Practical Rendering Algorithm

The primary motivation for developing the new transmittance estima-
tors was to meet the criteria of production path tracers. These create
a large number paths for every pixel whose (weighted) average con-
tribution estimates the pixel color. The transmittance thus needs to be
evaluated relatively cheaply along each path, but without systematic
errors to ensure correct and predictable results on average.

In cases when the medium is highly heterogeneous and relatively
large, w.r.t the mean free path, maintaining a single p. for the entire
volume is sub-optimal. Fortunately, our technique can be combined
with spatial indexing structures, e.g. super-voxels [Szirmay-Kalos
et al. 2011] or kd-trees [Yue et al. 2010], that provide localized ma-
jorants. Our implementation uses the super-voxels idea by Szirmay-
Kalos et al. [2011] but stores localized control and majorant residual
extinction coefficients; we detail their computation in Section 5.1.
The other difference to the original super-voxels is that our repre-
sentation is sparse and hierarchical, leveraging the benefits of the
VDB data structure [Museth 2013] for compact storage and fast
traversal. The size of super-voxels is set to 10x the size of the
smallest representable detail. During rendering, we split each ray
into segments—one for each intersected super-voxel—and estimate
the transmittance in each segment using residual ratio tracking.

(a) Supergrid

(b) Average (pe = ftavg) (€) Heuristic (prc = pl.)

Figure 11: When a ray passes just next to a medium, using the
average extinction within super-voxels as ji. may heavily underesti-
mate the control transmittance and thereby make the estimation of
residual transmittance prone to noise (b). Our heuristic (c) detects
such situations and conservatively decreases the control extinction.

5.1 Extinction Parameters of Super-Voxels

The super-voxels aggregate extinction parameters of all heteroge-
neous volumes. The analysis in Section 4.2 suggests that setting jsc
to the average extinction along a ray (segment) yields good perfor-
mance. Since finding the exact average along the ray segment is
impractical, we could instead approximate it with the average ex-
tinction inside the super-voxel. This works well if the mean gradient
of the extinction function in the super-voxel is rather low. Figure 11
illustrates a failure case where a ray travels through super-voxels
that only partially overlap dense regions, and the average extinction
of those voxels heavily overestimates the actual extinction along the
ray. Consequently, the control transmittance severely underestimates
the true value and the residual tracking is prone to high variance.

To address this issue, we decrease the control extinction coefficient in
troublesome super-voxels to a heuristically derived value p., so that
the expected value of the residual transmittance, approximated as:
—_ dfiy
(Tr(d)) ~ [1 - Hoe ke ], ©)
fir
is always below a user-defined threshold ~y. Here, pt4v represents the
average extinction along a ray segment of length d. To derive p.., we
assume a hypothetical worst case with the highest possible residual
transmittance: i.e. the ray travels along the super-voxel’s diagonal of
length D, the extinction along the ray equals the minimum extinction
min found in the super-voxel, and fi» = fimax — min. TO cOmpute
L., we use v as the expectation of the residual transmittance, solve
Equation (6) for tic: fie = fimin + fir (’yﬁ — 1), and evaluate it
for the user-defined threshold; we always use v = 2. We further
restrict ,u'c to be within (fmin, ,um,g>, compute the majorant of the
corresponding residual extinction coefficient fi, (see Section 3.2.2),
and store these two coefficients in each super voxel.



5.2 Rendering

In order to estimate the transmittance along a given ray, we perform
regular tracking through the super-voxel grid (i.e. 3D DDA [Ama-
natides and Woo 1987]). For each intersected super-voxel, we iden-
tify the overlapping ray segment and extract the local p. and fi,.
The transmittance along the segment is computed by the product of
control transmittance and residual transmittance estimated using ra-
tio tracking. The transmittance along the entire ray is then calculated
by multiplying the transmittances of all ray segments.

While performing the residual ratio tracking, we temporarily store
a functional representation of the transmittance. This is then used
for 1) constructing a PDF for importance sampling in-scattered light
along the ray (our PDFs are proportional to the product of transmit-
tance, scattering, and fluence), and 2) estimating the transmittance
to sampled in-scattering locations on the ray.

6 Results

We implemented both estimators in the Mitsuba renderer [Jakob
2010] and an in-house production renderer. Figure 12 shows unbi-
ased renderings of a rising smoke plume—we purposely made it
absorptive to avoid variance due to scattering—computed by the
traditional delta-tracking estimator, residual delta-tracking estimator,
and four variants of our residual ratio-tracking estimator. The bottom
row visualizes the variance of each estimator. We use super-voxels
to store localized control and majorant extinction coefficients. The
residual transmittance corrects only in regions where the control
transmittance underestimates or overestimates the true value. To
visualize the noise, we use rather low per-pixel sample counts that
are adjusted to produce a roughly equal number of p(z) evaluations;
this in practice determines the performance of the algorithm.

While setting ftc = ftave yields residual transport that is on average
closest to 1 among all the tested variants, the product may suffer
from high variance in configurations outlined in Section 5.1. Using
the heuristically derived p., avoids these issues while preserving the
RMSE obtained with fiavg, Which is about 2 lower than with the
traditional delta tracking-based estimator. A path tracer leveraging
the residual ratio tracking thus requires 4 x fewer samples to resolve
transmittance at the quality of delta tracking. It is worth noting
that not all values of . reduce the error equally well, e.g. using
e = Umax yields significantly higher variance than e = pimin. It
is thus important to estimate the average extinction along the ray
accurately, or make p. rather underestimate the optimal value.

Figure 13 demonstrates the benefits of using trilinearly interpolated
control extinction; we use the same polynomial approximation as
Szirmay-Kalos et al. [2011] but apply it to . instead of the majorant.
Since the trilinearly interpolated control matches u(x) better, the
residual transport is less prominent and can be estimated with lower
variance. One can also make the control extinction continuous by
using the same coefficients for adjacent super-voxel corners; this
makes the noise distribution over the image plane more uniform.

6.1 Media with Colored Extinction

Figure 1 shows a rendering obtained with our in-house production
renderer. The clouds use “colored” extinction coefficients. This
poses a problem for delta tracking, which, in order to preserve
high collision sampling efficiency, needs to handle the transmittance
computation for each color channel independently. The estimation
becomes easier with our ratio tracking that maintains good effective
performance even with low values of 7; all color channels can thus
be efficiently handled at once. For the control transmittance, we
compute p. coefficients separately for each color and then estimated

the residual transmittance by a single instance of residual ratio
tracking, which uses the maximum fi,- across all color channels.

The insets emphasize the noise obtained with delta, ratio, and resid-
ual ratio tracking with roughly the same number of u(x) evaluations.
For the top insets we disabled scattering to visualize the noise due
to the transmittance estimation only. As shown in the bottom insets,
the different performance of the two estimators is clearly visible
even when adding noisy estimates of multiple scattering; all render-
ings use the same PDFs to sample in-scattering, the only difference
resides in the transmittance estimation. The residual ratio tracking
yields lower RMSE producing results with roughly 6.1x lower ef-
fective variance (i.e. the product of MSE and cost) when considering
just the transmittance, and about 2.3 X lower effective variance when
simulating multiple scattering in the medium. Figure 14 shows two
more examples with scattering media.

7 Discussion and Future Work

Overall Impact of Transmittance Estimation. Transmittance es-
timation is only one of the many components of evaluating radiative-
transport integrals. Here, we primarily focused on studying the
variance of transmittance estimators in isolation using metrics that
are renderer independent. In general, the reported improvements
should lead to a corresponding decrease of noise in memory bound
scenes where transmittance significantly impacts the quality.

Non-strict Majorants. The residual delta tracking and residual
ratio tracking estimators require strictly bounding majorants to avoid
negative probabilities or negative multiplicands, respectively. Carter
et al. [1972] and Galtier et al. [2013] proposed weighted variants
of delta tracking that can deal with non-bounding majorants (i.e.
negative densities of fictitious particles). These methods are quite
practical as they remove the burden of finding strict majorants, be it
at the cost of increased variance. While employing such weighting
in residual delta tracking is trivial, applications to residual ratio
tracking would require careful variance analysis, which we leave as
future work.

Free-flight Sampling. One could also leverage the concept of
control variates and residual tracking for free-path sampling. As-
suming that the control extinction represents a good approximation
of u(x) and the control optical thickness is invertible, free paths
could be sampled using the inversion method. The sample would
then be further weighted by the residual transmittance, which can be
efficiently estimated for all channels via the residual ratio tracking.

Integral Formulation. 'We would like to note that ratio tracking
can be seen as a special case of the recently presented integral
formulation of delta-tracking [2013]. While we did not leverage this
framework here, we believe that it represents a fundamental basis
for deriving and proving new, weighted trackings, which may be
more efficient than the original algorithm under certain constraints.

8 Conclusion

We presented two complementary concepts that yield unbiased es-
timators for efficient evaluation of transmittance in heterogeneous
volumes. In comparison to delta tracking, ratio tracking decreases
the need for having tight majorants via improved efficiency in such
those cases. When combined with the control transmittance, the
residual ratio-tracking estimator gracefully handles media with low
degree of heterogeneity, simplifying to an analytic solution for homo-
geneous (sub)volumes. Furthermore, the estimators do not require
any manual tuning (such as the step size in ray marching), and can
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Figure 14: Two scenes from the Big Hero 6 animated feature rendered using the residual ratio tracking for estimating transmittance in
participating media. The insets, showing renders of the medium only, were not color graded (hence the difference to final images above) to
allow for a better comparison of noise obtained with traditional delta tracking and our residual ratio tracking.



be easily combined with existing spatial indexing structures. Given
that the code changes w.r.t. delta tracking are minimal, integrating
them into renderers that already perform delta tracking is trivial and
well justified by the more effective handling of media with colored
extinction.
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