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Figure 1: Captured facial expressions always contain a superposition of rigid transformation due to head motion on top of the non-rigid
deformation caused by the expression (left: captured shapes). Rigid stabilization estimates and removes this rigid transformation given only
observations of the non-rigidly deforming skin, which allows to automatically extract the pure facial expression (right: stabilized shapes).

Abstract

Facial scanning has become the industry-standard approach for cre-
ating digital doubles in movies and video games. This involves cap-
turing an actor while they perform different expressions that span
their range of facial motion. Unfortunately, the scans typically con-
tain a superposition of the desired expression on top of un-wanted
rigid head movement. In order to extract true expression defor-
mations, it is essential to factor out the rigid head movement for
each expression, a process referred to as rigid stabilization. In or-
der to achieve production-quality in industry, face stabilization is
usually performed through a tedious and error-prone manual pro-
cess. In this paper we present the first automatic face stabilization
method that achieves professional-quality results on large sets of
facial expressions. Since human faces can undergo a wide range
of deformation, there is not a single point on the skin surface that
moves rigidly with the underlying skull. Consequently, comput-
ing the rigid transformation from direct observation, a common ap-
proach in previous methods, is error prone and leads to inaccurate
results. Instead, we propose to indirectly stabilize the expressions
by explicitly aligning them to an estimate of the underlying skull
using anatomically-motivated constraints. We show that the pro-
posed method not only outperforms existing techniques but is also
on par with manual stabilization, yet requires less than a second of
computation time.
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1 Introduction

Human facial animation is one of the most important and wide-
spread topics of computer graphics. However, it is also one of the
most challenging tasks, since audiences are well-trained to identify
even the slightest inaccuracies in facial performances, which can
lead to strong feelings of unfamiliarity and the infamous uncanny
valley effect. Despite several decades of research, we continue to
strive for perfectly realistic digital 3D face animation. In current
practices, facial animation is typically performed using a blend-
shape face rig, which consists of a set of face shapes that span the
range of desired expressions of the character. Using this rig, new
poses for animation can be created by blending different amounts
of the expression shapes together. Clearly, the quality of the final
animation depends highly on the quality of the underlying blend-
shapes.

Face blendshapes can be created through manual sculpting, which
is common for creatures and other fictional characters. How-
ever, for human-like characters the blendshapes are usually recon-
structed by scanning real actors performing the expressions. High-
resolution digital face scanning is a growing trend in the entertain-
ment industry. This can be attributed to the increasing demand for
photorealistic digital actors, coupled with recent advances in high-
quality facial reconstruction [Ma et al. 2007; Beeler et al. 2010;
Bradley et al. 2010; Alexander et al. 2010; Beeler et al. 2011;
Huang et al. 2011; Ghosh et al. 2011; Fyffe et al. 2011]. In ad-
dition to entertainment demands, facial expression capture is a key
element of statistical face analysis, for example in the recent Face-
Warehouse database [Cao et al. 2013a], and the latest trend is to
capture actor-specific blendshape rigs for real-time facial anima-
tion [Weise et al. 2011; Bouaziz et al. 2013; Li et al. 2013; Cao
et al. 2013b].

A major problem that arises when scanning actors performing dif-
ferent expressions is that the resulting scans contain both expression
movement as well as rigid head movement, since the actor can-
not keep their head perfectly still while performing a wide range
of expressions (Figure 1, left). If the expression shapes contain
this ”baked-in” rigid motion, then any facial animation or statis-
tical analysis constructed from the expressions will also contain
un-wanted rigid head motion. Therefore, the scanned expressions
must be rigidly aligned to a common frame of reference - which is
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essentially the skull. This alignment process is referred to as sta-
bilization. In order to achieve production-quality in industry, face
stabilization is usually performed through a tedious and error-prone
manual process, during which an artist iteratively translates and ro-
tates the captured expression, trying to infer the change in shape
with respect to a reference pose. This 6-DOF alignment process
requires a lot of experience, and may take several man-months of
work for current movie productions. With the demand for realis-
tic digital doubles likely to increase in the coming years, manual
stabilization will quickly become a bottleneck in production.

Proper stabilization is very important in order to avoid artifacts
in facial animation, retargeting, anatomical simulation, eye track-
ing and statistical analysis, yet so far the problem has received
very little attention. Despite the growing field of work that re-
lies on scanned facial expressions, stabilization has been typically
only approximated or ignored completely. In this work, using
anatomically-motivated constraints, we propose the first automatic
face stabilization method that achieves professional-quality results
on large sets of facial expressions (Figure 1, right).

Contrary to previous methods which try to estimate the rigid trans-
formation directly from the observed skin, we propose to indirectly
stabilize expressions by explicitly aligning them to a common actor-
specific skull. This actor-specific skull is computed by deforming
a generic skull given a set of facial landmarks. The same set of
landmarks is further used in conjunction with the skull to establish
actor-specific anatomical constraints, which guide the automatic
stabilization.

The main contributions of this paper are:

1. We propose the first method to stabilize facial expressions at
production-level quality.

2. Our method is fast and fully automatic, after a simple one-
time actor initialization.

3. We automatically infer anatomical properties, such as the un-
derlying skull, from facial scans.

4. We demonstrate the quality of the results both quantitatively
and qualitatively on several actors, and show that the proposed
method not only outperforms existing techniques but is also
on par with manual stabilization.

2 Related Work

Despite the importance of separating rigid and non-rigid compo-
nents of facial scans, the problem of facial expression stabiliza-
tion has received little attention to date, and is generally performed
through a tedious manual process in industry.

One of the main applications for expression stabilization is in the
construction of actor-specific blendshape models for facial anima-
tion, which is a growing trend in recent years. Li et al. [2010]
propose to build a full set of blendshapes from a reduced set of
facial expressions. In their work, the expressions are aligned us-
ing their previous algorithm for non-rigid registration of shapes [Li
et al. 2009], however they do not consider the stabilization prob-
lem at all. Cao et al. [2013a] also use example-based facial rig-
ging [Li et al. 2010] to build blendshapes for their FaceWarehouse
dataset. Huang et al. [2011] find the minimum set of scans required
to build a blendshape rig that is capable of reproducing a given
low-resolution motion capture sequence at high resolution. Again,
stabilization is ignored.

Actor-specific blendshapes are also popular in real-time facial an-
imation, but related work does not focus on the stabilization prob-
lem. Weise et al. [2009] aim to remove the rigid motion component

of multiple expressions using ICP registration [Besl and McKay
1992], but this does not perform well on non-rigidly deforming
faces. Bouaziz et al. [2013] also use ICP but attempt to improve
on its shortcomings by restricting the alignment to forehead and
nose regions. Still, this approach assumes those face regions will
never deform in a non-rigid way, and thus fails when the forehead
or nose is deformed. In the 3D shape regression work of Cao et
al. [2013b], blendshapes are created with the help of their Face-
Warehouse dataset, which, as mentioned, is not properly stabilized.
Finally, Li et al. [2013] remove the need for stabilization since they
do not scan multiple expressions, but instead roughly approximate
them through deformation transfer [Sumner and Popović 2004] us-
ing a generic face rig. This approach comes at the cost of losing
important actor-specific geometric details, which can only be ob-
tained by face scanning. Thus far, the approaches for stabilizing
actor-specific blendshapes for real-time animation are insufficient
for high-quality facial animation rigs.

In the area of statistical analysis, related work aims to build linear
models of scanned faces in correspondence. In order to generate
accurate statistics across different scans, the faces should first be
stabilized. Blanz and Vetter [1999] build a 3D morphable model
of faces, but stabilize the geometry using simple normalization
of poses. Vlasic et al. [2005] compute multilinear face models,
which are further used for video face replacement [Dale et al. 2011].
They stabilize the rigid motion using Procrustes alignment [Gower
1975], which computes the least-squares fit of the neutral face to
each expression using vertex correspondences. As before, these ap-
proaches only approximate the true stabilization.

As we will show in comparison, previous methods are all insuf-
ficient for generating production-quality blendshapes, since stabi-
lization is either only approximated or ignored altogether. With ex-
isting techniques, the rigid component of the face motion cannot be
fully removed, which entails tedious manual stabilization by pro-
duction artists in industry. Our approach is the first to perform au-
tomatic rigid stabilization of extreme facial expressions, which we
accomplish by considering anatomical constraints, aiming to sepa-
rate the rigid motion of the skull from the non-rigid deformation of
the face tissue.

3 Method Overview

Since human faces can undergo a wide range of deformation, there
is not a single point on the surface that moves rigidly with the un-
derlying skull. Consequently, computing the rigid transformation
from direct observation, a common approach in previous methods,
is error prone and leads to inaccurate results. However, the rela-
tive motion of the skin to the underlying skull as well as the change
in shape is constrained by human anatomy. Skin slides over the
skull and buckles as a consequence of underlying muscular activ-
ity. We argue therefore that it is advantageous to explicitly fit the
skull to the expressions considering these anatomical constraints.
The rigid transformation between any two given expressions can
then be computed from the transformations of the skull. More for-
mally, given a reference shape F̂ with corresponding skull Ŝ and
a deformed shape F , the goal is to determine the underlying rigid
transformation T of the skull such that it fits F . Transforming F
by the inverse T−1 yields the desired stabilization with respect to
the reference shape F̂ .

The proposed pipeline consists of two main stages as depicted in
Figure 2. In a first stage, described in Section 4, we register and
non-rigidly deform a generic skull to the neutral shape of the ac-
tor, and initialize anatomically-motivated constraints such as vol-
ume or shape preservation. With these constraints we then stabilize
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Figure 2: Method Overview - During initialization (Section 4)
we fit a generic skull to the actor’s neutral shape (Section 4.2) and
then establish actor-specific constraints (Section 4.3). After ini-
tialization, the skull and constraints are employed to automatically
stabilize input shapes (Section 5).

each deformed shape in a non-linear optimization framework as de-
scribed in Section 5.

4 Actor Initialization

The purpose of the first stage is to set up the underlying
anatomically-motivated constraints that will drive the stabilization.
This involves annotating a sparse set of facial landmarks (Sec-
tion 4.1), fitting a generic skull to the actor’s face (Section 4.2)
and establishing the constraints (Section 4.3). These steps are per-
formed only once per actor.

In this work, all facial scans were captured using the method of
Beeler et al. [2011], however our algorithm can stabilize any set of
facial expressions in correspondence.

4.1 Face Annotation

Our method requires a sparse set of facial landmarks annotated on
the neutral shape of an actor. Figure 3 depicts the landmarks, which
consist of the sides of the head, the forehead, between-eyes, as well
as the bridge, tip and sides of the nose. As the annotation is only re-
quired once per actor, we specify the landmarks manually, however
this step could be automated using a landmark detection algorithm
such as Amberg and Vetter [2011].

4.2 Skull Fitting

Five of the landmarks introduced in the previous step - forehead,
between-eyes, nose-bridge, head-left, and head-right - have corre-
spondences on the generic skull. As the skull lies underneath the
skin, the corresponding features of the skull can be found along
the normal direction, at a distance δ equal to the tissue thickness at
these points. Typical thicknesses were retrieved from a human CT
scan, and are listed in Figure 3. We compute the rigid transforma-
tion TS to align the generic skull to the neutral face by minimizing
the sum of euclidean distances between the correspondences [Arun
et al. 1987]. We account for differences in scale by scaling the
skull landmarks such that the average distance to the barycenter
corresponds to that of the facial landmarks.

After transforming the skull by TS we deform it non-rigidly to fit
the face using iterative linear shell deformation [Botsch and Sorkine
2008] employing the aforementioned correspondences C as hard
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Figure 3: Facial Landmarks - We manually annotate a set of land-
marks on the face (a) which are used to fit the skull and create the
nose constraint. To fit the skull, we empirically determined the tis-
sue thickness at a subset of these landmarks based on CT scans (b),
namely forehead (∼4.5mm), between-eyes (∼7mm), nose-bridge
(∼2mm), head-left (∼3.5mm), and head-right (∼3.5mm).

constraints. The linear shell minimizes bending and stretching en-
ergies for the displacements d:

min
d

Eshell(d) +
∑
i∈S

ωi ‖δini − di‖2

s.t. dc = xc − xs
c − ns

cδc; c ∈ C.
(1)

Initially, we set all ωi to zero, suppressing soft constraints. These
will be introduced in subsequent iterations. The hard deformation
constraints dc are given by the difference of the position xc on
the face to the corresponding position xs

c on the skull, offset along
its normal ns

c by the typical tissue thickness δc at this point. The
deformed skull is only guaranteed to fit the face at the sparse con-
straint points and might still penetrate the skin in other areas. How-
ever, it yields a good initialization for the following iterative opti-
mization, which will ensure a good fit everywhere. In every itera-
tion, we compute for every vertex xs

i on the skull the distance δ?i
along the normal ns

i to the surface of the face. Depending on δ?i we
define soft deformation constraints δi and the according weights ωi

as

1. if δ?i ≡ inf → δi = 0, ωi = 0,

2. if δ?i < δmin → δi = δmin, ωi = λ[(δ?i − δmin)
2 + 1],

3. if δ?i > δmax → δi = δmax, ωi = λ/[(δ?i − δmax)
2 + 1],

4. otherwise → δi = δ?i , ωi = λ.

Intuitively, the function softly constrains the skin thickness to lie
within [δmin, δmax]. While it puts a lot of emphasis on preventing
the skin thickness from becoming too thin (2), its influence quickly
decays the thicker the tissue becomes (3) allowing the skull to retain
its original shape in these areas. Given these soft constraints we ap-
ply again the linear shell deformation to update the skull deforma-
tion. These steps are repeated until the the deformation converges,
which is typically achieved after only a few iterations (∼2-3). Fig-
ure 4 shows the generic and deformed skulls for three actors with
different facial anatomy. We use δmin = 2mm, δmax = 7mm and
λ = 1 for all results in this paper.

This method produces a tighter skull fit than purely affine tranfo-
mation [Ali-Hamadi et al. 2013] while still ensuring that the skull
will not penetrate the skin.
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Figure 4: Skull Fitting - A generic skull (a) is deformed to fit un-
derneath the facial anatomy of three different actors (b).

4.3 Constraint Creation

We propose two anatomical constraints that should be satisfied
when fitting a skull to facial expressions. The first is a skin con-
straint, which attempts to maintain a certain distance between the
skull and the skin, while incorporating changing tissue thickness
due to deformation. The second is a nose constraint, which con-
strains the distance between the tip of the nose and the skull, con-
sidering the amount of strain on the nose. Our framework could
include any number of other constraints, such as the position of
the upper teeth (when available), which transform rigidly with the
skull. However, as shown in Section 6, the proposed two types of
constraints are sufficient for high-quality stabilization.

4.3.1 Skin Constraint

During facial deformation, skin is stretched and compressed as a
consequence of muscular activity while it slides over the skull (Fig-
ure 5 (b)). If we assume that the volume within a small patch of
skin remains constant, we can predict the skin thickness h(x) at a
given position x as function of the surface area ratio ξ(x) and rest
state skin thickness ĥ(x) as

h(x) = ξ(x)ĥ(x) =
Â(x)

A(x)
ĥ(x), (2)

where A(x) is the surface area, approximated by the weighted av-
erage of discs centered at x through neighboring vertices xi. We
can then rewrite the area ratio as

ξ(x) =
1∑

i∈N (x) wi

∑
i∈N (x)

wi
‖xi − x‖
‖x̂i − x̂‖ , (3)

where the weights wi are computed according to

wi =
(`− ‖xi − x‖)2

`2
(4)

for vertices in the neighborhood N (x) of x that are closer than 2`
to x. Equation 4 favors vertices at distance ` from x and smoothly
attenuates the influence of vertices that are closer or farther away,
rendering it robust against small positional noise. We set ` = 1cm
for all actors in this paper.

As may be expected, our assumption of constant local tissue vol-
ume will not be satisfied everywhere on the face. In particular,
when muscles bulge, local volume can increase. To account for
this, we define a spatially varying weight mask for enforcing the
skin constraint higher or lower in different facial regions, guided
by anatomy. We observed that thin tissue areas without underlying
muscles, such as the bridge of the nose, fulfill the assumption best.
The mask, as shown in Figure 5, contains the values ρ, which will
be used to weight the influence of the skin constraints in Section 5.

Â
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Figure 5: Skin Constraint - (a) Shows the weights ρ for the skin
constraints (the brighter, the higher the weight). These weights
are designed once on the generic skull using anatomical consid-
erations, such as muscle and tissue distribution. (b) The underlying
assumption for the skin constraint is that the volume of the tissue
remains constant at a point on the skull. Thus, if the areaA changes
due to stretch or compression, the height h should be adjusted ac-
cordingly.

4.3.2 Nose Constraint

Our second constraint considers the nose. The lower part of the
nose consists of cartilage covered by a thin layer of skin tissue. Es-
pecially around the nose tip, skin sliding is minimal and we can
consider the skin attached to the underlying cartilage. Unfortu-
nately, cartilage is not rigid and thus any motion causes an elastic
deformation of the nose. This deformation, however, is relatively
well-defined. In particular, we observed that the point xt at the tip
of the nose primarily exhibits a rotation around the nose tip xs

t on
the skull, with only little compression and stretching. This is illus-
trated in Figure 6 (a). The small spheres mark the position of the tip
of the nose for several ground truth shapes, which were manually
stabilized to the skull (refer to Section 6.2). The lines and color-
ing indicate the discrepancy of the points to the predicted distance
ˆ̀
nose. We design the nose constraint to preserve the distance

`nose = ν ˆ̀nose = ν ‖x̂t − x̂s
t‖ , (5)

where ν is an estimation of the compression of the nose. The com-
pression is estimated from the Cauchy strains between a subset of
the landmarks specified in Section 4.1. The Cauchy strain mea-
sures the change in length of a vector with respect to its rest length.
The strains between nose-bridge and nose-left (eb−l), nose-bridge
and nose-right (eb−r), as well as nose-bridge and nose-tip (eb−t)
are proportionally related to the nose compression. For example, a
snarl will compress the nose and consequently decrease the strain
eb−t. The strains between nose-tip and nose-left (et−l), and nose-
tip and nose-right (et−r) are considered to be inversely proportional
to the compression, due to the way the underlying muscles affect
the skin in this area. For example, raising the cheeks will pull back
the nose, increasing the strains et−l and et−r while the nose itself
compresses. We therefore estimate the nose compression as

ν = 1 + 0.2
(
eb−l + eb−r + eb−t − et−l − et−r

)
. (6)

While this heuristic is not an anatomically accurate representation,
it predicts the nose compression well in most cases as can be seen
in Figure 6 (b).

5 Stabilization

Given the anatomical constraints defined in Section 4, we now
present our method for automatically stabilizing facial expressions.
We start by pre-stabilizing an input expression F by computing the
rigid transformation that best aligns the same subset of the land-
marks as used for skull fitting in Section 4.2. This rough alignment
provides a good initialization for the following optimization.
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Figure 6: Nose Constraint - (a) The small spheres mark the po-
sition of the tip of the nose for several ground truth shapes. The
lines and coloring indicate the discrepancy to the predicted dis-
tance ˆ̀

nose. (b) Incorporating a model for the nose compression
ν improves the predicted distance ν ˆ̀nose and reduces the discrep-
ancy further.

Stabilization is cast as a non-linear optimization, minimizing the
energy

Etot = λskinEskin + λnoseEnose, (7)

over the translation t and the rotation r, a total of six degrees of
freedom. We could either align the face to the skull or the skull
to the face. Both approaches are similar in complexity and perfor-
mance, but we found empirically that aligning the skull to the face
is advantageous, because sampling density and distribution of the
skin constraints over the skull surface remain constant even if the
face exhibits extreme deformations. In the following we describe
the individual energy terms, which are weighted equally for all re-
sults in this paper (λskin = λnose = 1).

5.1 Skin Energy

The skin energy is chosen such that it tolerates sliding over the skull
but penalizes deviation from the predicted tissue thickness. It is
defined over all points on the skull, as

Eskin =
∑
i∈S

wskin (xi, ρi)
∥∥∥(xi − xs

i )n
s
i − ξ(xi)ĥi

∥∥∥2 . (8)

The terms in Equation 8 are given as

xs
i = T (r, t)x̂s

i

ns
i = T (r,0)n̂s

i

xi = χ (F ,xs
i ,n

s
i )

ĥi =
∥∥∥x̂s

i − χ
(
F̂ , x̂s

i , n̂
s
i

)∥∥∥ ,
where T (r, t) denotes the transformation given rotation r and trans-
lation t vectors, x̂s and n̂s are the skull position and normal in the
reference frame, ξ (x) computes the stretch at position x as defined
in Equation 3, and χ(F ,x,n) computes the first intersection with
the shape F of a ray starting at the point x in direction n.

Constant volume does not hold in general, e.g. due to muscle
bulging. The more skin compresses or stretches, the less accurate
this assumption will be. We therefore reduce the weight wskin of a
skin constraint depending on the stretch ξ(x) as

wskin(x, ρ) =
ρ

κskin (ξ(x)− 1)2 + 1
(9)

where ρ is the user-specified weight as defined in Section 4.3.1 and
κskin is a user provided parameter that controls how quickly the
weight decays with increasing stretch. We set κskin = 1 for all
results in this paper.

5.2 Nose Energy

The nose energy penalizes deviation from the predicted nose length.
It is defined as

Enose = wnose (ν)

∥∥∥∥(‖xt − T (r, t)x̂s
t‖
)
− `nose

∥∥∥∥2 (10)

where xt denotes the tip of the nose on the deformed shape, x̂s
t is

the position of the nose tip on the skull at the reference frame and
as for the skin constraints, T (r, t) denotes the transformation given
rotation r and translation t vectors. The estimated nose length `nose

and compression ν are computed as described in Equations 5 and 6,
respectively. The predicted nose length `nose is just an approxi-
mation and will be less accurate the more the nose compresses or
stretches. Therefore, we reduce the influence of the nose constraint
based on the estimated compression ν as

wnose (ν) =
1

κnose(ν − 1)2 + 1
(11)

where κnose is a user provided parameter that controls how quickly
the weight decays with increasing compression. We set κnose = 1
for all results in this paper.

The resulting combination of energy terms yields a non-linear op-
timization problem, which we solve using the Levenberg-Marquart
algorithm. Convergence is quick (typically ∼10-20 iterations) and
since every shape is stabilized independently, the proposed method
is well suited to efficiently stabilize large datasets. Even though the
method does not incorporate any temporal continuity, stabilizations
are temporally consistent as shown in Section 6.

6 Results

In this Section we present both quantitative and qualitative results
of our rigid stabilization method.

6.1 The Upper Teeth Indicator

Assessing the results qualitatively poses a significant challenge,
since even millimeter inaccuracies in stabilization will be visible
in dynamic facial animations, but are difficult to visualize in print.
Fortunately, since the upper teeth are rigidly attached to the skull,
they can be used to assess the performance of our method (and
others) whenever they are visible in the images. If a stabilization
method successfully aligns a model of the teeth to the images for
each expression, it provides a good indication that the stabilization
is accurate. Furthermore, since we do not incorporate the teeth as
constraints in our optimization, the quality achieved on expressions
where they are visible can be considered representative for all ex-
pressions, whether teeth are visible or not.

To reconstruct a model of the teeth in 3D, we manually draw the
outlines of the eight frontal upper teeth in four cameras for one of
the expressions where they are visible, which we will refer to as
Teeth-Frame FT in the following. These outlines are then trian-
gulated to produce the outline in 3D, which we transform rigidly
into the reference frame. Figure 7 shows the drawn outlines (a) and



the triangulated shape (b). This teeth model can now be used for
qualitative evaluation of our results.
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Figure 7: Teeth Reconstruction - To be able to qualitatively as-
sess the stabilization, we reconstruct the upper teeth by manually
drawing their outlines in four different views (a). These outlines
are then triangulated and reconstructed in 3D (b).

6.2 Ground Truth Generation

We quantitatively evaluate our method by comparing to ground
truth data, which consists of a subset of 15 manually-stabilized
shapes for one actor. Since the alignment of the upper teeth gives
additional queues for the stabilization, manual fitting was per-
formed only on those shapes where the upper teeth were visible
in the images, and our teeth model was made available to the artist.

The artist stabilized the same set of shapes a second time without
using the teeth model, which provides a measurable indication of
the quality achievable by manual stabilization on expressions where
the teeth are not visible.

6.3 Evaluation

Given our ground truth data and the upper teeth as an indicator of
quality, we now evaluate our method in comparison to previous
work and manual stabilization when no teeth are used. For pre-
vious methods, we consider ICP, used by Weise et al. [2009] and
Bouaziz et al. [2013], and also Procrustes alignment, used by Vla-
sic et al. [Vlasic et al. 2005] and Dale et al. [Dale et al. 2011]. As
can be seen in Table 1, the proposed method performs significantly
better than previous techniques and even outperforms the human
operator. For both ICP and Procrustes, we consider only the up-
per part of the face as suggested by [Bouaziz et al. 2013] to avoid
negative influence of the jaw and neck motion. Without this mask-
ing, those algorithms perform considerably worse, as we indicate
in the table. Therefore, for the rest of this evaluation we will com-
pare only to the masked versions of ICP and Procrustes, in order to
provide the best possible comparison. We further evaluate the con-
tribution of the two individual constraints. The skin constraint alone
yields an average mean squared error (MSE) of 1.07. The nose con-
straint on its own is under-constrained and so we combined it with
the Procrustes method to be able to assess its contribution, which
yields an average MSE of 1.96. Both constraints on their own give
a lower error than previous methods (all>2) but are not as effective
as when combined (0.89).

To visualize the quality of the stabilizations, we apply the rigid
transformations T to the teeth model and project the outline into
the respective images. A comparison with the previous techniques
is shown in Figure 8. Note that the manual annotation and recon-
struction is not perfectly accurate in itself and that the results must
therefore be assessed relative to the Teeth-Frame FT .

In general, ICP and Procrustes show similar average performance,
and both exhibit problems for expressions where the shape changes
substantially, for example when wrinkling the forehead or scrunch-
ing the nose (Figure 9, left and middle column). These algorithms
do not perform well for such expressions since they estimate the

Method Mean [mm] StdDev [mm] Max [mm]
ICP 2.17 1.14 4.52

-no mask 3.20 2.51 8.54
Procrustes 2.16 1.13 4.52

-no mask 3.50 1.69 6.38
Manual (no teeth) 1.15 0.57 2.10
Ours 0.89 0.49 2.06

Table 1: Quantitative Results - As an error measure we compute
the mean squared error (MSE) for every expression and list mean,
standard deviation and maximal MSEs over all expressions for the
different methods. The shapes stabilized by hand using the teeth
as reference are considered ground truth. Our method performs
significantly better than existing techniques and even outperforms
the same human operator when not using the teeth.

transformation directly from the observed skin. In contrast, our
method is able to make use of anatomical constraints and provides
better results (Figure 9, right column).
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Figure 9: Shape Comparison - We compare ICP, Procrustes and
Our method for two challenging expressions (’Anger’ and ’Eye-
brows Up’). Results are shown by overlaying the stabilized ex-
pression (blue) on the reference pose (green). Both ICP and Pro-
crustes suffer from large misalignments since they try to estimate
the transformation directly from the observed skin, which is heav-
ily deforming. The proposed method performs much better since
it uses anatomical constraints to estimate the transformation indi-
rectly. This can be verified by inspecting corresponding expressions
in the top row of Figure 12.

Figure 12 shows stabilizations for some extremal expressions for
different actors. All actors were stabilized with the same set of pa-
rameters and exhibit comparable quality, which demonstrates the
robustness of the proposed method. Figure 10 shows stabilizations
for some frames out of a longer sequence. Results are temporally
much more consistent than previous techniques even though the sta-
bilization is performed on each frame independently without any
explicit temporal continuity. All of our evaluation results are best
seen in the accompanying video material.

6.4 Application

As a final result, we applied our algorithm to stabilize facial expres-
sions that are used to build a blend-shape facial animation model.
An artist then constructed an animation, and we directly transferred
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Figure 8: Comparisons - We show qualitative comparisons of the results produced by ICP, Procrustes, Manual without teeth and Ours (from
top to bottom) marked in blue with ground truth marked in yellow. Ground truth was generated by manually stabilizing the shapes using the
teeth as additional queue. The first column shows the reconstructed teeth as reference, the others show results on various expressions. Our
method visually outperforms previous techniques and even the human operator, which is quantitatively supported by the findings in Table 1.

the blendshape weights to replica models built after stabilization
using ICP and Procrustes, respectively. The resulting animations
using the previous techniques contain un-wanted rigid motion that
the artist would not be expecting, caused by errors in stabilization.
We demonstrate one example of this in Figure 11, which shows
two frames of the animation comparing the blendshape model sta-
bilized by Procrustes and the one stabilized by our method. For
Procrustes-stabilized blendshapes, the chin moves down whenever
the character wrinkles his forehead. Our method, on the other hand,
enables artifact-free animation. We would like to refer the reader to
the accompanying video material, since the artifacts are much more
apparent and extremely disturbing in animations.

t1t0

Procrustes Ours

Figure 11: Blendshape Application - The input expressions to a
blendshape rig must be stabilized in order to avoid un-wanted rigid
motion during animation. Here we show two frames of animation,
t0 and t1. Previous methods, such as Procrustes (center), do not
succeed in stabilizing and as a consequence the jaw will move down
whenever this character wrinkles his forehead. Our method (right)
allows for artifact-free animation. While these effects seem subtle
on print media, they are extremely disturbing in animations and we
would like to refer the reader to the accompanying video material.

7 Discussion

We present the first method capable of automatically stabilizing fa-
cial expressions at a level of quality on par with human operators,
which is currently the only viable solution for high-quality produc-
tions. Already, the time and effort required for rigid stabilization
can be in the order of several man-months for a single production,
and with the increasing demand for digital doubles, face stabiliza-
tion will quickly become a bottleneck in coming years. The pro-
posed method not only provides consistent high-quality results and
major time savings, but will also facilitate other research directions
such as anatomical simulation or simplified eye tracking.

Our method can be applied to stabilize entire performances, but
note that we explicitly refrained from incorporating temporal con-
tinuity since it might not always be available, e.g. when capturing
only extremal poses of an actor. Integrating temporal continuity
could be an interesting extension.

Similarly, our approach leverages only two sets of constraints to
explicitly avoid the use of constraints that are not visible in every
expression, such as the upper teeth. The proposed framework, how-
ever, is general and any number of other constraints could be incor-
porated. For example, additionally aligning the upper teeth could
provide even better quality for those shapes where they are present.
For the proposed constraints to be effective, the method requires an
accurate measure of the skin and nose deformation. In our current
implementation, this requires dense correspondences, which might
not be available in traditional marker-based facial motion capture.
Extending the method to work with such sparse data would be a
very valuable direction for future research. Also, since every face
is different, learning strategies could be employed to adopt the con-
straints to the individual anatomy.



Fr
on

ta
l C

am
er

a
Fr

on
t

Si
de

O
urs

ICP
Procrustes

Figure 10: Performance - The proposed method (green) may also be used to efficiently stabilize performance captures, since every frame
is processed independently. Even without explicit temporal continuity, results are temporally smooth and accurate, which is not the case for
ICP (blue) and Procrustes (magenta). Again, zoom regions are shown from both front and side views.
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