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Robust, Error-Tolerant
Photometric Projector Compensation

Anselm Grundhöfer, and Daisuke Iwai

Abstract—We propose a novel error tolerant optimization
approach to generate a high-quality photometric compensated
projection. The application of a non-linear color mapping func-
tion does not require radiometric pre-calibration of cameras
or projectors. This characteristic improves the compensation
quality compared to related linear methods if this approach is
used with devices that apply complex color processing, such as
single-chip DLP projectors. Our approach consists of a sparse
sampling of the projector’s color gamut and non-linear scattered
data interpolation to generate the per-pixel mapping from the
projector to camera colors in real-time. To avoid out-of-gamut
artifacts, the input image’s luminance is automatically adjusted
locally in an optional off-line optimization step that maximizes
the achievable contrast while preserving smooth input gradients
without significant clipping errors. To minimize the appearance
of color artifacts at high-frequency reflectance changes of the
surface due to usually unavoidable slight projector vibrations and
movement (drift), we show that a drift measurement and analysis
step, when combined with per-pixel compensation image opti-
mization, significantly decreases the visibility of such artifacts.

Index Terms—Projector-camera systems, photometric compen-
sation.

I. INTRODUCTION

PROJECTORS today are used in various application fields,
such as home cinema, entertainment, cultural heritage,

and augmented reality. Several hardware and software tools
are available to guide the user on how to set up a high-
quality projection system, even when dealing with complex
geometry and color surfaces. Often, cameras are used to ease
the calibration process with software that analyzes the surface
and calculates an undistorted projection image. In addition to
these well-established geometric correction tools, photometric
compensation (PC) algorithms have been introduced within
the last decade, that generate a modified projection image
that, when projected on a colored or even textured surface,
reproduces the desired color with impressive quality.

The preparation, however, still is a laborious process. The
available algorithms all require the devices to be, at least
partially, radiometrically calibrated as well as carefully set up.
This can be a cumbersome, time-consuming, and error-prone
process, reducing the system’s flexibility. This approach also
limits the compensation quality on devices such as certain
DLP projectors, which offer complex, non-monotonic color
processing algorithms [1], [2], and additional primaries as well
as transparent components in their color wheels, since this
black box image processing is not accurately described with
standard radiometric color calibration methods.
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A. Grundhöfer is with Disney Research Zurich, Switzerland.
D. Iwai is with Osaka University, Japan.

Furthermore, even after carefully setting up the projection,
slight misregistrations resulting from temperature changes,
unsteady projector mounts, or surfaces, as well as other
external influences, such as construction or small earthquakes,
will severely reduce the image quality especially in long-
term installations, since those misregistrations will lead to a
boosting of color errors in high-contrast surface areas where
the compensation color becomes strikingly evident.

A. Motivation

The main motivation of this work is to overcome the limita-
tions of current PC methods so that they can be easily deployed
even by non-experts. This includes the development of an
algorithm that does not depend on radiometric pre-calibration
of the camera and projector. In addition, the method should
analyze potential projector motion and generate a visually
optimal compensation image even in slight misalignments.

To solve these problems, the proposed method consists of
a camera-based analysis of the surface’s reflectance properties
and the temporal drift behavior of the projector. First, this
method applies a scattered data interpolation approach to
model the color mapping of projector to camera pixels in a
non-linear manner. Therefore, thin plate splines (TPS) [3] are
applied to compute the mapping that, in addition to relatively
low computational complexity using radial basis functions
(RBF), guarantee an optimally smooth transition between the
captured color samples. Second, before the projection image
is computed, the input image is automatically scaled in an
optimization step that maximizes the luminance and con-
trast while avoiding significant clipping errors and preserving
smooth input gradients. Third, a drift analysis and perceptual
error minimization are carried out to avoid the appearance
of visually disturbing hard color edges due to misaligned
projections.

II. BACKGROUND AND RELATED WORK

In this Section, we will give a quick introduction to PC and
summarize the existing methods in the following sections. A
more thorough overview of this topic can be found in Bimber’s
et al. [4] state-of-the-art-report, for example.

The main purpose of photometric compensated projections
is the neutralization of non-perfectly white or textured surface
reflectance. This is accomplished by using a projector-camera
system to evaluate the reflectance properties for each pixel and
to calculate colors that, if projected on the surface pigments,
modulate to the expected intensity when captured by the
camera. Therefore, a two-dimensional geometric calibration is
required to map projector to camera pixels, which is usually
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Fig. 1: Results of the proposed method while projecting on the print of colorful leaves shown on the left. The uncompensated projection
is shown in the center, while the right shows how our proposed compensation method matches the input images shown on the left.

carried out by projecting a series of well-defined structured
light patterns, such as binary gray codes (see [5] for a
detailed discussion). Note that this enables accurate mapping
for all types of diffuse surfaces, including non-planar ones.
Depending on the method, several patterns are also projected
to estimate the color mapping needed to compute the compen-
sation images. To our knowledge, all existing methods require
the projector or camera to be at least partially radiometrically
calibrated to linearly model the light modulation.

A. Simple Photometric Compensation Methods
The oldest algorithms focused on modeling the compen-

sation without taking the input image content into account.
They varied widely in complexity and prerequisites. In Bimber
et al. [6], a multi-projector approach was presented in which
the devices were assumed to be linearized and their RGB
color channels to be completely independent. Although this
approach compensates for environmental illumination, most
real-world setups require a model of the overlapping color
channels to achieve high-quality compensation. In Nayar
et al. [1], a 3 × 3 matrix was used to model color channel
mixing that generated more accurate compensation. Yoshida
et al. [7] extended this approach to a 3×4 matrix, which also
considered uncontrollable, ambient illumination. [8] showed
that the color mixing matrix can also be separated from the
spatially varying surface reflection, and thus, the matrix must
be stored only once for the setup. An extended approach
that compensates global, complex illumination effects, such
as caustics, refractions, and scattering was presented in [9]
based on the idea of measuring the full light transport between
the projector and the camera and inverting it to compute
the compensation image. This approach requires, in addition
to the device linearization, up to several hours of scanning

time depending on the scene complexity, which makes this
approach impractical for real-world applications.

Although these algorithms achieve satisfying results under
well-calibrated conditions, image contrast is lost and color
artifacts might occur due to the intensity saturation of the
projector on dark surface pigments.

B. Photometric Compensation with Adaptive Input Image
Scaling

Due to artifacts, more recent compensation methods have
focused on content-dependent adaptation to increase the visual
quality of the projected images by maximizing the perceived
contrast and luminance while suppressing saturation artifacts.
The methods optimize the projection images with different
computational complexities, depending on the application
scenarios. However, these methods require a radiometrically
calibrated projector-camera setup.

The first adaptive PC method was presented by [10], in
which the input image is scaled automatically by a global
scaling factor until the saturation artifacts approach the per-
pixel visibility threshold [11]. This algorithm compensates
grayscale images only, which constrains its applicability. This
idea was extended to color images by [12]. They described
a compensation framework that operates in the CIE L*u*v*
color space and applies luminance and chrominance rescaling
of the input image based on human visual perception. This
rescaling is optimized so that the visual impression after the
PC is applied is still close to the desired input. This algorithm
was further improved [13], enabling smoother chrominance
adaptations. Another algorithm presented by [14] focused on
a GPU-accelerated real-time adaptation to enable the system
to work with real-time content. A sophisticated compensation
method was recently presented by [15], which applies globally
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optimized compensation using the measured light transport
matrix between a camera and multiple projectors.

Although those methods show that high-quality compen-
sated projections can be achieved with radiometrically cali-
brated devices, they make the usage quite cumbersome for
several reasons. Any change in the hardware settings, e.g.,
adapting the projectors’ brightness to a new setup or re-
placing it with a different model, requires radiometric re-
calibration; furthermore, most DLP projectors apply complex,
multi-primary color processing and thus are difficult to ac-
curately linearize. Although projection-based illumination in
public spaces is becoming more popular, the surface colors
are mostly not compensated for because the expertise and
hardware needed to adequately calibrate the response curves
of the projection system are missing.

C. Photometric Compensation with One-to-Many Pixel Cor-
respondence

The compensation techniques described implicitly assume
one-to-one pixel correspondences between the projector and
the camera. However, the assumption is not valid in general
cases. For example, when projected on a textured surface,
some pixels inevitably cover high-frequency areas, such as
edges of the texture; i.e., reflectance varies widely within a
single pixel area. [16] proposed measuring the reflectance
within a single projector pixel area with multiple camera
pixels to compute the compensation color more accurately.
One-to-many pixel correspondences also must be considered
in the case of long-term projector use, in which the pro-
jected pixels may move slightly on the surface for various
reasons, such as projector housing deformations due to heat
variations, unstable projector mounts, or projection surfaces.
Consequently, the compensation color of a single projector
pixel must be optimized over the multiple camera pixels on
the drift trajectory. Conventional PC techniques based on one-
to-one correspondence models are not suitable in these cases
and will lead to a boosting of color artifacts, particularly in
high-frequency areas.

D. Our Contribution

The adaptive PC methods mainly differ in how the target
images are adapted so that they fit into the limited spatially
varying dynamic range of the projection. Furthermore, the
complexity of illumination effects that can be compensated
also varies depending on the approach. They all, however, ap-
ply variations of the core color mapping techniques assuming
completely known linear system behavior. Since depending on
the available hardware achieving this linearity is complicated
or even impossible, we focused on developing a novel PC
method that does not depend on this linearity and thus has the
potential to improve the image quality of recent methods.

Our approach computes a compensation image by generat-
ing non-linear per-pixel color mapping between the radiomet-
rically uncalibrated projector-camera pair. Scattered data inter-
polation based on TPS is used to calculate an accurate color
transformation. The advantage of the applied RBF compared to
the ones used in other scattered interpolation techniques, such

as Shepard’s interpolation method [17] or multiquadrics [18],
is the ability to smoothly interpolate between given sample
points as well as to adequately extrapolate the colors. This
method compensates for non-monotonic responses as well as
inter-channel color modulations.

We extend the work presented in [19] with a thorough eval-
uation of the non-linear compensation approach and a quality
comparison with existing methods. Furthermore, the extended
method improves the compensation quality by measuring and
optimizing projector misalignment in non-perfectly registered
and unstable projection setups.

Specifically, two compensation image generation methods
are presented: The first one processes images in real-time,
while the second additionally optimizes the input image off-
line in a global optimization step to further minimize lo-
cal clipping errors while preserving high overall luminance
and contrast. Furthermore, we propose a drift compensation
method that considers temporal one-to-many pixel correspon-
dences between the drifting projector and an observing camera.
We analyze the temporal behavior of the pixel and compute
a projection color that minimizes the perceptual error of the
projected result for a long-term installation–even if slight
projector misalignments occur.

III. NON-LINEAR PHOTOMETRIC COMPENSATION

In the following sections, the proposed PC method is
described in detail. We start with a brief summary of the
algorithm and the prerequisites, followed by an in-depth de-
scription of the required data acquisition and mapping function
calculation.

A. Algorithm Overview

In contrast to pre-calibrating the camera and projector to
achieve linear system behavior, our method can be applied
immediately after the devices are set up and a series of pro-
jected color patterns is captured. Radiometrically uncalibrated
projectors and cameras, however, require a per-pixel non-
linear mapping description to accurately model the unknown
color transformation from the camera to the projector via the
spatially inhomogeneous reflectance of the surface material.

Although, theoretically, this can be generated using a dense
sampling to populate a 3D color look-up table, this would,
assuming 8-bit color depth, require several millions of pro-
jected images to be captured and stored, which is impractical
considering the acquisition time and memory requirements.
The number of required samples can be minimized by sparsely
sampling the colors and applying sophisticated interpolation
methods to compute the remaining values. Straightforward
tri-linear interpolation cannot be applied directly since even
if the projector projects color intensity samples with uniform
spacing, the captured camera values are distributed in an irreg-
ular grid. Therefore, more complex scattered data interpolation
methods are required which minimize the errors significantly,
such as those presented in [20]. This method, however, still
requires more than 700 images to be acquired and is therefore
not practical, especially if the data has to be calculated and
stored for each individual pixel. To further reduce the number
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Fig. 2: (a) original input image; (e) non-uniformly colored projection
surface (illuminated uniformly white); (b) captured projection of
(a) on (e); (c) captured projected compensation image shows local
clipping errors; (d) reduced clipping errors after applying a global
optimization step. (f-h) geometrically warped projection images gen-
erating camera images (b-d).

of color samples while achieving high-quality compensation
results, we apply TPS interpolation [3], which guarantees
a smooth transition while interpolating between the known
projected and captured sample points.

B. Prerequisites
To acquire the series of projected color samples used to

calculate the color mapping transformation, a camera device
is required whose image sensor can capture the entire dynamic
range of the projector without saturating in bright areas. If that
is not possible depending on the hardware and the spatially
varying reflectance properties of the surface, high dynamic
range images can be captured as well (this implies radiometric
calibration of the camera). In the particular case of using time-
sequential projectors such as ones based on DLP, care must
be taken to set the exposure times to exactly or a multiple of
the refresh rate and to apply image averaging to minimize the
influence of the time sequential color generation. Except for
this precondition, no other calibration is required.

As with other camera-based compensation algorithms, a
color channel adjustment is optionally carried out to adjust
the projector’s white point to match the desired perceived im-
pression of the human observer. To accurately achieve desired
color values that are independent of the camera settings, full
radiometric calibration can be applied beforehand, but this is
not required for the algorithm to work. However, as in any
camera-based photometric projector compensation technique,
the resulting visual quality strongly depends on the camera
used. Image degradation effects resulting from the lens were
not considered in this research. To avoid strong vignetting,
the aperture was set at f/5.6, which seemed to give a good
compromise between image quality and light throughput.

C. Color Mapping Method
As opposed to relying on a linear color relationship between

the projector and the camera described by, for example, a per-

pixel 3 × 3 [1] or 3 × 4 [7] matrix multiplication, we define
it by a generic per-pixel color mapping function

c∗c = f (c∗in) (1)

transforming the individual input colors of each pixel c∗in into
the compensation colors c∗c required to generate the desired
intensities of c∗in on the respective locations on the camera’s
image plane (∗ denotes a 3 × 1 vector that stores the color
intensities [r, g, b]).

Our algorithm applies TPS interpolation to define this func-
tion in a smooth, non-linear manner. To gather the required
parameters, the color space of the projector is regularly, but
sparsely sampled. Although this regularity does not have to
be strict, it should sample the extremes as well as the interior
of the full RGB color cube evenly. This is achieved by
selecting colors with n increasing intensity levels from zero
to maximum intensity in all three color channels as well as
their combinations, which leads to n3 color samples. If more
detailed knowledge about the shape of the projector’s color
response curves exists, the samples can be adjusted accord-
ingly to get more regularized sampling. For our algorithm,
we used values of n = 4 up to n = 6 (cf. Section V for
an error analysis). These reference color samples are acquired
with sequential full screen projection of uniform colors and
capturing them with the camera.

Consequently, we acquire N = n3 correspondences of
reference color samples and according captured colors. Here-
inafter, we represent the set of reference color samples as
[p∗0...p

∗
N−1] ∈ P ∗ and the corresponding set of captured colors

as [q∗0 ...q
∗
N−1] ∈ Q∗. These values are used to compute

the weighting factors for each per-pixel TPS interpolation
function:

f(c∗in) =

N−1∑
i=0

ω∗
i ϕ(‖c∗in − q∗i ‖) + ω∗

N+

ω∗
N+1c

R
in + ω∗

N+2c
G
in + ω∗

N+3c
B
in

(2)

where ω∗
i are the N + 4 TPS weighting coefficients per color

channel, ‖·‖ the distance in Euclidean space, and ϕ is chosen
to be the TPS RBF:

ϕ(d) =

{
0, d = 0

d2 log d, otherwise
(3)

This RBF minimizes the integral of the squared second deriva-
tive of f and thus is well suited to the generation of smooth
color mapping. The value d is the Euclidean distance between
c∗in and each individual member of Q∗.

The per-pixel computation of ω∗
i must be carried out only

once per projector-camera setup and is calculated using reg-
ularized TPS [21]: To compute the values of ω∗

i , a linear
equation system is solved as described in the following.
Suppose the square matrix L is composed as follows:

L =

[
K Q
QT O4×4

]
(4)

where the elements of K, denoted by kij with i, j ∈ [0 . . . N−
1], are defined by:

kij = ϕ(‖q∗i − q∗j ‖) (5)
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which stores the RBFs of all captured color samples Q∗ to
each other. Q contains the individual color channels of all N
members of Q∗:

Q =


1 qR0 qG0 qB0
1 qR1 qG1 qB1
...

...
...

...
1 qRN−1 qGN−1 qBN−1

 (6)

Ox×y is a x × y zero matrix. The weighting coefficients are
computed by multiplying the inverted matrix of L with the
reference color values (L is inverted using LU decomposition):

W = L−1

[
P

O4×3

]
(7)

where matrix W stores the desired weights:

W =


ωR
0 ωG

0 ωB
0

ωR
1 ωG

1 ωB
1

...
...

...
ωR
N+3 ωG

N+3 ωB
N+3

 (8)

and matrix P stores the reference color samples:

P =


pR0 pG0 pB0
pR1 pG1 pB1
...

...
...

pRN−1 pGN−1 pBN−1

 (9)

Since p∗i is the i-th reference color sample, this results in a
vector storing the individual weighting factors ω∗

i .
To reduce the influence of measurement inaccuracies result-

ing from noise and sampling, a regularization term is added
to the TPS weights computation as proposed in [21]. This is
realized by extending equation 5 to:

kij = ϕ(‖q∗i − q∗j ‖) + δijα
2λ; i, j ∈ [0 . . . N − 1] (10)

where δij represents the element of an (N − 1) × (N − 1)
identity matrix IN−1, and

α =

N−1∑
i=0

N−1∑
j=0

‖q∗i − q∗j ‖

N2
(11)

The weight of the regularization is defined by λ and was set
within the range of 0.01− 0.1 in our experiments.

Depending on the image resolution as well as the chosen
number of samples n, the computation time for all ω∗

i values
for the individual pixels varies significantly. On the used
hardware the mapping calculation took several minutes, but
this calculation must be carried out only once per calibration.
During run-time, equation 2 must be evaluated once for each
pixel to calculate its compensation color, which can be carried
out in real-time using the GPU: We implemented a OpenGL
Shading Language (GLSL)-based compensation algorithm that
achieves real-time frame rates for a 1080p projector reso-
lution1, which proves that this method can also be applied
to interactive applications. 2 Please refer to V-C for a more

1approx 45Hz on a Nvidia Geforce Titan Black using 53 color samples.
2The calculation can also be applied within other color spaces, such as

CIEL∗a∗b∗. Since experiments showed no significant visual improvement
using this color space, it was decided to carry out the computations in RGB
to avoid the required computational overhead for the color transformations.

detailed performance evaluation as well as to Section V-A,
where an evaluation of the sampling parameters of the method
is given. Its performance is compared to other state-of-the-art
compensation methods in Section V-B.

Having computed the weighting factors for each pixel,
arbitrary input images can be transformed from the camera’s
desired colors into the corresponding values of the projector’s
color space by computing the transformations using equa-
tion 2. Although, in theory, this accurately approximates the
desired color values, errors might occur because of out-of-
gamut clipping, which arises from too bright or low RGB
intensity values that cannot be reproduced on dark or colorful
surface pigments or on grounds of ambient illumination. To
avoid this, the input image intensities c∗in can be globally
adjusted by adapting the overall brightness and saturation with
a uniform offset o and a scaling factor s so that the color
values required for the compensation can be generated by the
projector. Therefore, the input c∗in is transformed into c∗inadapt

by
c∗inadapt

= o+ s ∗ c∗in (12)

before equation 1 is applied: c∗c = f
(
c∗inadapt

)
. Depending

on the variations of the surface reflectance, applying global
intensity scaling can lead to a severe contrast and intensity
reduction even if only a part of the image is affected by out-
of-gamut clipping. In that case, a slight local manipulation
of the input image can improve the compensation quality as
explained in the next Section.

D. Spatially Varying Luminance Scaling

As already described by [12], an adaptive, spatially varying
adjustment of the input image has the potential to increase
the overall perceived image quality, especially if the surface
contains high spatially reflectance variations like the one
shown in Figs. 1 and 2. A possible solution for the application
of these intensity adjustments to the input image is described
in the following.

The perception of regional clipping errors is influenced by
two main factors. On the one hand, they depend on the local
reflection properties of the surface; on the other hand, the
intensities of the image content are crucial. Although it is
assumed that the former is static for the chosen projection
setup, the latter can be manipulated by optimizing the input
image’s intensities and slightly changing the content similar
to the approaches presented in [12], [14]. We have chosen to
smoothly adapt the luminance of the input colors with a set
S of spatially varying luminance scaling values s(x, y) ∈ S
to avoid clipping. For the current approach, it is assumed that
o is static over time and the luminance offset of the captured
ambient illumination conditions is already added to c∗in. Of
course, this should be kept at a minimum, since any source of
ambient illumination should be avoided to reduce unnecessary
contrast reductions. To achieve the smoothly adapted values
for S, non-linear optimization is applied to the input image
to estimate the optimized spatially varying luminance scaling
values Sopt:

Sopt = arg min
S

erropt(S), (13)
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which minimizes the error function

erropt(S) =

width−1∑
x=0

height−1∑
y=0

ωsat · errsat(S, x, y)+

ωgrad · errgrad(S, x, y)+

ωint · errint(S, x, y)

(14)

consisting of the following three per-pixel error components:
• Saturation error, occurring due to limited maximum pro-

jector brightness and generating perceived image arti-
facts:
errsat(S, x, y) ={

(f(c∗in(x, y)s(x, y))− 1.0)2, f(c∗in(x, y)s(x, y)) > 1.0
0, otherwise

(15)

penalizing the occurring out-of-gamut errors that should
be neutralized.

• Intensity error, resulting from an intensity reduction at the
current pixel, lowering the image brightness (an increase
in intensity is accepted):

errint(S, x, y) =

{
(1.0− s(x, y))2, s(x, y) < 1.0
0, otherwise

(16)
This error measure ensures that the overall image lu-

minance is maintained at a reasonable high level since
human visual perception usually prefers brighter projec-
tions within the normal limits of projection systems [22].

• Gradient variation error resulting from the spatially vary-
ing intensity adjustments leading to potentially visible
local intensity variations:

errgrad(S, x, y) =(s(x, y)− s(x− 1, y))2+

(s(x, y)− s(x + 1, y))2+

(s(x, y)− s(x, y − 1))2+

(s(x, y)− s(x, y + 1))2

(17)

Ensuring a smooth change in the adapted spatial lumi-
nance scaling values to minimize the perceived spatial
manipulation of the input image is the goal of this error
term.

Independent weights are applied to these errors to generate
an acceptable tradeoff between the image degradation from
clipping errors as well as global and smooth local luminance
reduction in the final error term as shown in equation 14.
For our experiments, we used error weights of ωsat = 0.797,
ωgrad = 0.004, and ωint = 0.199. Since the main goal of
this optimization is the neutralization of visible out-of-gamut
clipping errors, ωsat was assigned the highest weight. The
lower weights of ωint and ωgrad seemed to be sufficient to
keep the image adaptations minimal while preserving high
luminance. In addition, since the scaling factor is optimized at
a sub-sampled resolution and then smoothly up-sampled for
speeding up the process, the spatial variance of the scaling
factor at the original resolution becomes small. Therefore,
we assigned the lowest weight to ωgrad. Please note that
automatic adaptation of these values that depend on the system
configuration and the human visual system will be part of
future evaluations.

Before optimization starts, all members of S are uniformly
initialized by a value that decreases the overall number of

saturated pixels in f(c∗in(x, y)s(x, y)) to <= 1%. To speed
up optimization is applied only in a sub-sampled resolution.
Note that this requires a new calculation of weights for the
mapping functions to ensure that the worst-case scenario is
considered in this lower-resolution calculation. Therefore, the
original pixel values are not simply averaged during rescaling.
Instead, all members of Q∗ are sub-sampled such that of all
the pixels collapsing to a single one, the one containing the
lowest luminance is chosen, while for the individual images to
compensate (c∗in), the one with the highest luminance is used.

Currently, we use a sub-sampling of 40× 28 pixels, which
seemed to be a reasonable trade-off in terms of accuracy and
computation time for our test setups. To solve this relatively
large number of variables within a reasonable amount of time,
bound constrained optimization (BOBYQA) [23], which does
not require derivatives, was applied. However, as stated in
[24], the number of variables in the sub-sampled computation
should not be set to a too high value, since this will make
the optimization no longer feasible. To further reduce the
computation time, the color mapping of the individual sub-
sampled pixels was pre-computed and stored in lookup tables
(LUT). In a post-process, the computed result is smoothly up-
sampled into its original resolution with a Gaussian kernel and
the computed per-pixel scaling values S are then used to adjust
the luminance of c∗in to generate c∗inadapt

as shown in equation
12 that will be used as input for equation 1 (cf. Figure 2 for a
comparison of global compensation with and without the local
adjustment step.).

Fig. 3: Close-up views of four pixel drifts during two measurements
over a duration of 2.5 hours. The intensity encodes the number of
occurrences. Left: Projector has been placed on a concrete surface.
Right: Projector has been mounted on a tripod. While the first setup
shows a satisfying stability over time, the vertical drift is clearly
visible in the latter.

IV. DRIFT ERROR MINIMIZATION

Although the results generate the expected image quality
under optimal, stable calibration conditions, problems occur
due to slight, unavoidable movements if this method is applied
in a real-world installation that is required to run for hours or
even days without any recalibration. As mentioned in the in-
troduction, there can be various reasons for those movements,
such as projector housing deformations due to heat variations,
unstable mounts, or surfaces. Since in real-world installations
such slight movements can occur unexpectedly and projectors
might not be immediately accessible for manual realignments,
we propose to adapt the projected compensation image to take
the potential projector drift into account.

To avoid the appearance of visually disturbing color edges
due to misaligned projections, drift analysis and perceptual
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Fig. 4: Comparison of a drift optimized compensation (right) with a conventionally compensated projection (center) in a misaligned projection
setup. The input image is shown in the upper left, the lower left shows the projection surface containing hard edges. The other images in
the lower row show close ups of the regions highlighted in red. Note that the hard color seams are visually reduced with our approach.

error minimization are carried out to increase the image quality
even when the projector becomes slightly misaligned over time
by distributing the expected errors depending on the potential
movement.

A. Algorithm Overview
Minimizing the perceived error resulting from a misaligned

projection system requires additional knowledge in addition
to the surface reflectance measurements that must be carried
out for the PC: The misalignment behavior of the individual
projector pixels must be defined as an input of the error
minimization calculation. Depending on the requirements and
prerequisites, this behavior can either be modeled by some
kind of heuristic distribution function or can be directly
acquired by the projector-camera system by measuring indi-
vidual pixel locations over a sufficiently long amount of time.
The results of the latter are used to describe a probability
distribution function that approximates the temporal projector
movement for each individual pixel accurately. In our tests, we
applied elliptic Gaussian functions as approximation functions.
Although this might be relatively rough approximations, they
seemed to offer an acceptable tradeoff between accuracy and
generality, since the measurements generate only a relatively
small number of samples that include measurement noise as
well.

B. Drift Measurements
To acquire and estimate the potential projector movement,

we measured a series of projector to camera mappings over
time with a fixed measurement interval. The mappings were
generated using a combination of robust gray codes and an
additional grid of blob patterns to acquire sub-pixel accurate
measurements.3 To avoid measurement errors resulting from

3For our experiments, we captured one reference measurement and addi-
tional 60 measurements with a time offset of 150s after initially heating up
the projectors for at least one hour.

camera motion when a DSLR camera is used with a physically
moving mirror, which potentially moves the camera slightly,
we used a GiG-E camera4 for these experiments.

After the measurements were captured, corresponding tem-
poral points were collected, and for each point set, a 2D
Gaussian ellipsoid was fitted by calculating its mean and
covariance matrix. Using this data allows us to calculate
localization probabilities for all surrounding pixels describing
how likely a specific projection pixel might be located at this
position. To speed up the optimization described later, for each
pixel the drift probabilities are precomputed for a specific
set of x, y coordinates surrounding the current pixel p and
stored in a set P of probabilities for all pixels of interest. The
size of this 2D region of interest is calculated by searching
for the maximum deviation of the current pixel’s reference
measurement to it’s mean value. Equation 18 was used to
calculate the probabilities for the discrete pixel locations:

p(x, y) =
1

2πC(0, 0)C(1, 1)
· exp(− 1

2 · C(0, 0)2
·

(x−mx))2 − 1

2C(1, 1)2
· (y −my)2),

(18)

where C is the 2× 2 covariance matrix, and mx and my are
the mean x, y coordinates of the current pixel. Figure 3 shows
the plots of four sample pixels within two different setups. For
the left one, the projector was placed on the ground, while in
the right one, the projector was placed on a tripod. As can be
seen, depending on the setup and the hardware, the movement
varies significantly.

C. Perceivable Drift Error Minimization

To estimate the projection color that generates the least
perceivable error for all possible projector movements, we also

4Allied Vision Manta, 4MP
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Fig. 5: Compensation accuracy with respect to the number of samples used to compute the TPS weights: The overlaid numbers shows
the average ∆E∗

00 of the two sample image series with respect to the reference images shown on the left. While there is a clear quality
improvement between 43 and 53 samples, the extension to 63 samples only marginally improves the result, while requiring almost twice as
many images. For this setup, an LCD projector (Epson EH-TW3200) has been used.

applied non-linear error minimization that will be described in
the following5.

Instead of just computing the forward mapping from the
input to compensation pixel intensities using the TPS mapping
function 1, we also computed the inverse mapping functions
for each pixel

c∗in = f−1(c∗c) (19)

transforming the compensation intensities back to its original
values. This was carried out by calculating the individual TPS
weights by switching the input and output color samples.6 Ob-
viously, applying equation 19 directly to the output of equation
1 for the same coordinate x, y should lead to a result that
is very close to the input image intensities. If the projection
has been moved, this prerequisite no longer holds, but the
computation can be used to calculate the appearance of the
projection image while being moved during a physical drift.
Since we do not know the actual position of the projected pixel
on the surface, but gathered a probability function from the
measurements as described in Section IV-B or with a heuristic
function, we applied per-pixel error minimization adjusting
the color intensities for each individual projected pixel c∗copt
such that the perceived error of the misaligned projection is
minimized for all possible drift positions weighted by their
probabilities:

c∗copt = arg min
c∗c

errdrift(p, c
∗
c) (20)

where c∗c is an individual pixel value at any coordinate
x, y, and p stores the according drift probabilities. The error
function errdrift calculates the expected error for the current
input pixel at location x, y by:

errdrift(p, c
∗
c)

=

rx∑
s=−rx

ry∑
t=−ry

p(s, t) ·∆E∗
00(cest(x+ s, y + t), cin(x, y))

(21)

5Please note that, besides the fact that we integrated this method into our
proposed TPS mapping function, it can be applied with any of the existing
PC methods and does not rely on our proposed TPS mapping.

6For the matrix multiplications used in the related work, the inverse
mapping can easily be calculated by inverting the color transformation matrix.

where rx and ry are the range of drift probabilities stored for
each individual pixel (this might be constant, spatially varying,
or even computed on the fly), p(s, t) is the probability for
the current pixel at the given offset coordinate s, t and ∆E∗

00

is a CIE standard for perceptual color differences (cf. [25]).
cest(x+ s, y + t) is the estimated color value after backward
color mapping is applied to the compensation image using the
mapping function of the current offset coordinate x+ s, y+ t
instead of x, y:

c∗est(x+ s, y + t) = f−1
(x+s,y+t)(f(x,y)(c

∗
in(x, y))) (22)

Since this approach optimizes only three variables and is
solved independently for each pixel, it can be easily par-
allelized and solved using the BOBYQA algorithm [23] in
a reasonable amount of time. If no drift is expected at all,
the optimization still can be applied to further enhance the
compensation image quality generated by applying thin plane
spline mapping. This results from the fact that if the pixel
offset is set to 0, re-projection error minimization is applied
to reduce potential color mapping inaccuracies by applying
the inverted color mapping function (cf. equ. 19). Since the
latter also contains inaccuracies, the result still might not be
the exact compensation color, but with reduced error compared
to forward color mapping alone.

In addition to the samples shown in Fig. 4, additional
measurements and drift compensation results are presented in
Section V-B.

V. EVALUATION

To evaluate the performance of the proposed methods, var-
ious hardware setups were used to compare the image quality
based on the chosen parameters as well as in comparison to
related compensation algorithms [6], [7]. The projectors were
linearized beforehand with a commercial calibration system7.
This hardware calculates only linear responses for the three
primaries and a white channel, and thus fails to accurately
generate linearization for all kinds of mixtures of the red,
green, and blue color channels. Since the black box processing

7Datacolor Spyder 4 Elite
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of the projectors varied significantly between the different
devices, the algorithms performed with noticeable quality
differences. This will be discussed in the following sections.
Our proposed method does not require linearization; it was
applied for an equal comparison of the different techniques
under the same conditions.

We will start with the first evaluation of the image quality
regarding the number of samples used for the TPS mapping,
followed by an analysis of the image quality using different
projectors and color processing settings. Finally, after a com-
parison of processing times, we also evaluate the effects of
the drift error compensation.

A. Image Quality Regarding Sampling Density

The number of color samples used to generate the mapping
function strongly influences the accuracy and thus the resulting
image quality. In Section III, we mentioned that for our exper-
iments, the number of samples varied from 43 to 63 samples.
Figure 5 shows a comparison of the resulting image quality
regarding the sampling density for an LCD projector setup
containing the strongly saturated projection surface shown
in Fig. 2. Here, the ∆E∗

00 error metric was applied. Using
more samples decreased the average error. For this particular
setup, 53 samples seemed to be a reasonable tradeoff between
image quality, acquisition, and computation time. Note that
the image content strongly influences the perceived errors due
to the contrast sensitivity and visual masking properties of
the human visual system. For other setups, for example, the
BenQ projection system described in the following section and
shown in Fig. 10, a greater amount of non-linear color channel
interdependency was encountered, and therefore 63 samples
were required to achieve satisfactory image quality.

B. Comparison with Other Photometric Compensation Meth-
ods

Two off-the-shelf projectors were used for evaluating the
image quality of the developed algorithm and to compare
it to related approaches. In the first setup, the goal was to
generate a projector-camera system that is calibrated such that
a linear response is approximated as much as possible. The
results should show whether the proposed method generates
results that are adequate or still provide a better image quality
compared to linear compensation methods, such as the one
presented by [7]. Therefore, we used a 3-chip LCD projector8

and a machine vision GigE camera9 to provide linear data.
Although this camera has a relatively poor color rendition,
it was chosen to avoid a linearization operation that might
contain additional calibration inaccuracies and to reduce the
overall acquisition and processing time compared to a DSLR
camera with RAW image data. Since the application purpose
of this projector is home cinema, it offers comparably good
color reproduction; additional internal color processing could
be deactivated so that the response curves could be calibrated
accurately using a colorimeter.

8Epson EH-TW3200
9Allied Vision Manta G-504C

We used the same surface pattern as the one shown in
Fig. 2 for this evaluation, since it contains various different
saturated colors and does not lead to severe errors during small
misregistrations. In addition to an uncompensated projection,
we captured the projected compensation images generated
with the following methods:

• Bimber’s linear, non-color mixing method [6]
• Yoshida’s linear, 3× 4 color mixing matrix method [7]
• Our proposed non-linear TPS method using 63 input

samples
For computing the required 3× 4 color mixing matrix as well
as the TPS weights, the same 63 input samples were used.

In Fig. 6, the captured images of several compensated
projections of the LCD projector are shown. As can be seen,
all compensation methods significantly decreased the visibility
of the surface structure.

The proposed non-linear compensation approach decreases
color errors even more than the already well-compensating
linear method and thus better approximates the desired input
images. While this is visually shown in the figure, it is also
objectively visualized in the comparisons shown in Fig. 7:
It shows the ∆E∗

00 and the SSIM of the different methods
compared to the input images.

∆E∗
00 median SSIM

Fig. 7: ∆E∗
00 and median SSIM plots of the captured image with

respect to the input images shown in Fig. 6. While all compensation
methods can better reproduce the image contents compared to the
uncompensated version, our proposed method shows an advantage
over Yoshida’s linear color mixing method even if the camera and
projector have been carefully linearized beforehand.

Table I lists the median ∆E∗
00 values as well as the median

SSIM of the sample images. We used the median values since
the color ramp sample generates far worse results than the
other samples due to the saturated colors that were out of
gamut of the camera (cf. Fig. 8 for a successful compensation
of this image using a DSLR). However, our proposed method
outperforms the other methods in both metrics.

Method Median ∆E∗
00 SSIM

Uncompensated 8.265 0.948
Bimber 5.814 0.965
Yoshida 4.239 0.967

TPS 3.715 0.971

TABLE I: Averaged median ∆E∗
00 and SSIM measurements for the

images shown in Fig. 6.

Since a machine vision camera with relatively low-quality
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Fig. 6: Comparison between uncompensated projections (2nd row), Bimber’s method (3rd row), Yoshida’s method (4th row), and the
proposed method using 63 samples (5th row). It is clear that the color errors are reduced depending on the complexity of the method. See
Fig. 7 for details. The LCD projector was calibrated to a gamma of 1.0, and all special color processing was turned off beforehand. For
reference, the input images are shown in the top and bottom rows.

color reproduction was used to avoid response curve lineariza-
tion errors, even the TPS compensation is not able to fully hide
the underlying surface. If a DSLR camera capturing RAW
data is used instead, the compensation quality can be further
enhanced. See Fig. 8 for this particular setup.

Fig. 8: Sample result using a DSLR camera in RAW image mode
(Canon Eos 5D MkII). The left side shows the captured image of
the uncompensated projection. The projection surface under uniform
illumination is shown in the center. On the right side, a captured
image of the projected compensated image using the proposed
method is shown.

In the second experiment, a DLP-based presentation projec-
tor was used10 that contains several internal color processing
operators. For this setup, the projector again was calibrated to a
linearized response; however, the internal, unknown CMY and
white color processing made it impossible to achieve accurate
linearization for arbitrary input images. This is clearly seen in
Fig. 10. Interestingly the linear matrix transformation method
[7] generated results that were comparable or even worse than
the method of [6] not considering color mixing.

Table II lists the median ∆E∗
00 and SSIM of the sample

images. The individual results are visualized in Fig. 9. Again,

10BenQ W1100

∆E∗
00 median SSIM

Fig. 9: ∆E∗
00 and median SSIM plots of the captured images for

the input images shown in Fig. 10.

our proposed method generated an increased image quality
compared to the other methods.

Method Median ∆E∗
00 SSIM

Uncompensated 9.644 0.921
Bimber 5.975 0.969
Yoshida 5.882 0.963

TPS 4.544 0.972

TABLE II: Averaged median ∆E∗
00 and SSIM measurements for

the images shown in Fig. 10.

While all three evaluated compensation methods can better
reproduce the image contents compared to uncompensated
projection, our proposed method shows an improvement in
image quality even if the projector is carefully linearized
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Fig. 10: Comparison between uncompensated projection (2nd row), Bimber’s method (3rd row), Yoshida’s method (4th row), and the
proposed method using 63 samples (5th row). The linear matrix transform, in this case, is not able to coop with the non-linearity of the
DLP’s color processing. See Fig. 9 for details. The DLP projector was calibrated to Gamma 1.0, but in this case, white boosting and “brilliant”
color processing was turned on during calibration. For reference, the input images are shown in the top and bottom rows.

beforehand.
The improvement of the proposed method was bigger in

the case of the DLP projector than that of the LCD projector
although the same number of 63 samples was used in both
experiments. Because the DLP projector generally has more
non-linear and inconsistent color space than the LCD pro-
jector, conventional linear methods are not suitable for DLP-
based devices. However, our method compensates for the non-
linearities of the DLP’s internal processing. Therefore, the
image quality can be improved further in the case of the DLP
projector.

C. Processing Time Analysis

The improved visual quality comes with the tradeoff of
longer computation times. In Table III, the different methods
are compared regarding their computation times for the initial
mapping parameter calculation that must be carried out only
once for each setup and for the compensation image generation
that, depending on the application, requires real-time compu-
tation in the case of interactive or unknown dynamic content.
As can be seen, the pre-computation time scales significantly;
however, real-time processing is possible using state-of-the-art
GPUs.

D. Perceptual Error Reduction with Drift Error Compensation

To investigate the potential image quality improvement in
a geometrically unstable projection setup, we synthetically
generated a drift probability map of a reasonable size (5× 11
projector pixels in our test case) with similar parameters to the

Mapping (s) Comp. CPU (s) Comp. GPU (ms)
Ref.[6] 0 0.05 < 1
Ref.[7] 34 0.07 < 1
TPS 43 132 2.6 17
TPS 53 403 4.8 21
TPS 63 1763 7.1 34∗

TABLE III: Timing comparison of the proposed methods using 43-
63 samples and the methods of [6] and [7]. Mapping denotes the
initial calculation of the required parameters, while Comp. denotes
the image dependent calculations which were implemented on the
CPU and on the GPU. Note that the starred mapping of 63 samples
could not be calculated in the given 1080p resolution due to memory
limitations; therefore, the mapping was calculated with 720p in that
particular case. Since other GPUs already offer up to 16GB of
RAM and next-gen GPUs were already announced with this amount
doubled this limitation will soon become negligible.

ones that were estimated during our test measurements. Using
the additionally acquired color samples, two compensation
images were generated using the proposed TPS color mapping
algorithm: For the first image, only center pixel compensation
was directly applied, as explained in Section III-D. For the sec-
ond, the drift compensation optimization described in Section
IV-C was applied afterward. Since the goal is to provide an
enhanced image quality for arbitrary slightly offset positions,
which might occur during projection, we synthetically shifted
both images on the projector’s image plane by 5×11 pixels to
generate misregistered samples. For all of them, the projected
images were captured and compared to the reference input
using the same approach described in Section V-B. The results
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of the SSIM evaluation are visualized in Fig. 11: The heat
maps show the median SSIM for the 5 × 11 shifted pixel
positions for any of the four test images. As can be seen,
the drift compensated projection is able to increase the SSIM
in offset areas as long as it is not too far away from the
optimal position. The approach outperforms the center pixel
compensation in all of the four test images for all offset values
and closely matches the SSIM even in the not-shifted position.
The same can be observed by analyzing the ∆E∗

00 values (see
Table IV). Again, the drift compensation descreases the values
in a significantly wider range than the standard compensation
approach alone. As can be seen, on average, the median
error can be significantly reduced with our proposed method;
however, for a perfectly registered projection, the standard
compensation method generates similar or even slightly better
results.

Image DC median ∆E∗
00 CC median ∆E∗

00

Ship 4.279 4.688
Tree 3.270 3.364

String 4.295 4.610
People 4.747 5.066

TABLE IV: Median ∆E∗
00 measurements of the four images shown

in Fig. 11. Left: results of the drift compensation (DC) method. Right:
values for a conventional compensation (CC).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we showed that robust error-tolerant high-
quality photometric compensation can be carried out without
any radiometric pre-calibration of the device (see Figs. 1, 2,
4, and 8). By projecting and capturing a reasonable number of
images, a non-linear color mapping function is generated that
calculates an accurately compensated projection image even on
strongly textured surfaces. The proposed method offers several
advantages compared to existing methods:

• Linearization errors resulting from inaccurate or noisy
radiometric calibration do not affect the compensation
quality.

• The algorithm compensates for the complex, multi-
primary processing of many off-the-shelf consumer pro-
jectors.

• No further calibration hardware is required, which makes
deploying the compensation straightforward.

• The visibility of color seams at strong surface color
gradients can be efficiently reduced by applying the
proposed drift measurement and compensation method.

The overall memory requirement is higher compared to the
linear mapping algorithms. In our system, we require up to
436 × 3 (= (63 × 2 + 4) × 3) floating point values for
each pixel (for 63 color samples) which, depending on the
resolution, requires several gigabytes of memory. We could,
however, show that even current consumer GPUs can process
this data in real-time. The global optimization takes, depending
on the setup, 5 to 30 minutes to converge. The current
drift compensation implementation takes several minutes to
converge as well ( 5−10 minutes in our examples). A GPGPU-
based non-linear optimization might even achieve interactive
frame rates including these optimizations.

Currently, we are trying to directly map desired input colors
to output color only accepting smooth luminance variations.
Incorporating gamut mapping algorithms [26] accounting for
the spatially varying gamut as well as extending the work
presented in [27] for multi-projector systems to per-pixel
gamuts is part of our future work.

Although the proposed drift error compensation method
reduces the perceptibility of hard edges that appear during mis-
aligned projections, future work is needed on their evaluation
and compensation depending on the actual image content. The
relatively simple error metric that is currently applied could
be replaced with a more sophisticated error model that takes
contrast sensitivity, saliency, and the temporal component into
account to further reduce the perceived artifacts. This will be
part of future investigations as well.

Finally, we are working on a more thorough evaluation
of the method using a series of varying surface textures,
projectors, and input images. Since this is a laborious process
due to the calibration requirements and processing needs, we
are planning to use a physically based rendering system to
accurately evaluate the different methods in simulation.
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