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Figure 1: Video editing as an application example of our structure-aware music retargeting. After several scenes have been
cut from the video on the left by a video editor, our method automatically generates a correspondingly resized soundtrack by
computing a series of inaudible, structure preserving jumps.

Abstract

In this paper we propose a method for dynamic rescaling of music, inspired by recent works on image retargeting,
video reshuffling and character animation in the computer graphics community. Given the desired target length of
a piece of music and optional additional constraints such as position and importance of certain parts, we build on
concepts from seam carving, video textures and motion graphs and extend them to allow for a global optimization
of jumps in an audio signal. Based on an automatic feature extraction and spectral clustering for segmentation,
we employ length-constrained least-costly path search via dynamic programming to synthesize a novel piece of
music that best fulfills all desired constraints, with imperceptible transitions between reshuffled parts. We show
various applications of music retargeting such as part removal, decreasing or increasing music duration, and in
particular consistent joint video and audio editing.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications—H.5.5 [In-
formation Interfaces and Presentation]: Sound and Music Computing—Signal analysis, synthesis, and processing

1. Introduction

In various applications related to computer graphics,
a joint consideration of both the visual and auditory
content is required. Prominent examples are the recent
work of Berthouzoz et al. on placing cuts in interview
videos [BLA12], or the growing interest in audio synthesis
for physically based simulation [CJ11, ZJ10, CBBJR03]. A
particular challenge arises when the duration of audio-visual
data has to be adjusted. Consider the example in Figure 1.
To shorten a video sequence it is often visually acceptable
to simply cut out certain parts. However, straightforward re-
moval of the corresponding parts from the accompanying au-

dio track destroys the content continuity and leads to clearly
noticeable, undesirable artifacts. Existing audio editing tools
do not provide effective functionality for this type of rescal-
ing, hence requiring cumbersome manual editing.

Various successful concepts have been proposed
for content-aware rescaling of images [RGSS10],
videos [SSSE00], or motion data [KGP02]. Applying
similar ideas for content-aware retargeting of music seems
evident. However, while for images and videos local struc-
ture analysis can produce convincing results [AS07,RSA08],
musical structure, rhythm, and self-similarity are inherently
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more global, and violations of those relationships become
immediately apparent to the listener.

In this paper we apply the concept of content-aware re-
targeting to audio, especially structured instrumental mu-
sic, while respecting those global relationships. The core
challenge addressed in our work lies in lengthening, short-
ening, or reshuffling a piece of music without introducing
noticeable artifacts and without compromising its original
(or any user-prescribed) high-level structure. Our solution to
this problem is a combination of automatic music segmen-
tation and analysis techniques, which are input to a global
optimization framework. This optimization procedure syn-
thesizes a novel piece of music by finding a set of least-
noticeable jumps within the available audio signal that fulfill
certain constraints such as overall duration, global structure,
or audio-video synchronization. Our system works in real-
time, and enables a variety of applications in graphics- and
interaction-related areas such as audio editing, movie post-
production, and video games.

2. Related Work

The most simple approach to retarget a musical piece would
be to crop at the start and the end of the piece. But unlike in
image processing where the borders of images mostly con-
tain data of little importance, in music these parts often rep-
resent important structural or distinctive elements, e.g. the
very recognizable sounds of clinking coins and ringing cash
register at the beginning of the song “Money” by Pink Floyd.
Simply removing these parts could alter the dramaturgy or
story plot and also compromise the listening experience.

Professional music editing programs (such as Ableton
Live, Logic and Cubase) are getting more and more popu-
lar. They offer functionalities to edit digital music including
mixing, resampling, equalization and filtering. However they
have very limited tools to retarget a musical piece. There-
fore, in practice, an artist manually chooses segments to re-
move from the original music and the remaining segments
are aligned to form the new musical piece. The boundaries
between the segments are typically blended to restore con-
tinuity. High quality results can be obtained but it is a time
consuming process and a highly skilled artist is required to
find out appropriate cut positions. In contrast, our system
can run in a fully automatic manner and offers an intuitive
interface for non-expert users.

A more sophisticated type of edit supported by commer-
cial editing tools is the audio time scale-pitch (TSP) modifi-
cation. It changes the duration of an audio signal by adjust-
ing the playback speed without affecting its pitch [GL08].
While it can produce reasonable results for small scaling
factors (up to about 20%), it often leads to noticeable TSP
artifacts (e.g. echo, drift and stretch distortion) for higher
factors [LD99]. Recently methods have been proposed to al-
low for larger scaling factors but still suffer from significant
limitations. For example the TSP implementation of Paul’s
Extreme Sound Stretch [Pau11] aims to minimize the amount
of distortion. However the result has only little resemblance
with the original music as it often gets transformed into a

noisy sound texture. Based on a stretch-resistance measure,
Liu et al. [LWB∗11] elongate the stretchable parts inten-
sively and other parts only lightly. It also removes repetitive
sections using a greedy algorithm. However, it still produces
noticeable TSP artifacts and the segment removal is based on
heuristics and extensive blending. In contrast, our approach
finds transitions between so-called bixels based on audio
similarity and does not require to apply traditional stretching
tools with error-leading high-scaling factors, which prevents
from TSP artifacts such as distortion effects.

The most recent approaches to music retargeting are
purely based on removing or repeating slices of the original
piece of music. For example, Wenger et al. [WM11] syn-
thesize a musical piece with the desired length and a mini-
mal perceptual error by applying a heuristic best-first search.
The method finds reasonable results for certain music gen-
res but does not guarantee to reach the globally optimal so-
lution of the proposed cost function. Hunt et al. [HB96] and
Schwarz [Sch11] follow a different strategy by applying a
global optimization [Vit67] in the contexts of concatenative
speech synthesis and musical synthesis respectively. While
they provide interesting results for particular audio signals,
their method neither considers the rhythm nor the high-level
structure of a piece of music, and thus cannot preserve these
properties. The Echo Nest’s Earworm application [Ear12] is
based on timbre and pitch features. Various heuristics are
used to extract a set of loops that are then selected in a greedy
manner until a length close to the desired one is reached.
Then the A* search algorithm [HNR68] is applied to con-
nect the initial loop solution to the constrained start and end
positions. Early tests showed that the algorithm often gener-
ates a solution far from the desired duration and sometimes
fails to find a solution at all. The major restriction of the
above approaches is their missing ability to preserve or en-
force certain musical structures.

With a similar motivation to image texture synthesis
[WL00,KSE∗03], there have been some efforts to create au-
dio textures (see [Sch11] for a recent review). For example,
Parker et al. [PB04] adapt algorithms from image texture
synthesis, namely image quilting and chaos mosaics. Lu et
al. [LWZ04] compute transition probabilities based on a sim-
ilarity measure which enables a probabilistic synthesis of au-
dio textures. Interesting results can be obtained for repeating
sounds (such as rain, fire and wind) and short ambient music
but they fail for long sequences of structured music.

Some methods have been proposed to retarget music in
a MIDI based representation. Simon et al. [SBSA05] apply
concatenative synthesis to transform an audio recording with
a known MIDI score into a new music with a target score.
Lui et al. [LHS10] retarget musical style from audio record-
ings to MIDI. For this, a machine learning procedure is per-
formed to obtain the style parameters that are then applied to
a raw MIDI to generate a new audio file. Algorithmic com-
posing poses a set of challenges outside the scope of this
paper. We are more interested in maintaining a high level of
similarity with the input musical piece rather than mimick-
ing a certain music style.
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Figure 2: Overview of the proposed algorithm.

In the context of synchronization of music and video
or animation, Yoon et al. [YLB09] describe a method to
automatically cut a music video by analyzing and match-
ing the brightness and the flow of music and video. Kim
et al. [KPS03] generate dance motions of characters such
that the motion beats match those of the accompanying mu-
sic. These methods have in common that they do not mod-
ify the input musical piece. Yoon et al. [YLL06] synchro-
nize a background music with a video by time-scaling the
music. Recently a semi-automatic tool called UnderScore
[RBM∗12] has been proposed for adding musical underlays
to spoken content. However it is limited to the alignment and
dynamics (volume) adjustment of the input piece of music.

A different family of retargeting is music summarization,
also known as music thumbnailing [LC00, CF02, BW05].
While this is an efficient tool to browse a large collection
of music files or provide a compact representation for music
retrieval systems, it is not well adapted to retarget a musical
piece to a desired length.

3. System Overview

Our algorithm is illustrated in Figure 2. It accepts a piece of
music selected by the user as input and returns a retargeted
version with the desired length and structure while adhering
to a set of optional constraints. The pipeline consists of two
major components: an analysis and a synthesis phase.

The first phase analyzes the input musical piece by ex-
tracting a broad range of low to high-level information. For
this, we extract a set of features (such as timbre and beats)
to describe each part of the musical piece (Section 4.1). This
permits to find pairs of perceptually similar parts in the in-
put music. To obtain high-level information, we also perform
segmentation using spectral clustering (Section 4.2). It auto-
matically decomposes the music into different clusters and
also captures its structure. Estimating this structure is im-
portant to maintain or edit it in the retargeted version.

The second phase is dedicated to the music synthesis
(Section 5). Given a set of optional constraints, such as de-
sired target length, structure, parts to remove or to include,
start and end nodes, our algorithm searches for transition
points inside music segments of the same cluster, and be-
tween segments of different clusters. The transition cost is

based on the feature descriptors and beat-aligned similarity
matrices. We represent the input music as a graph and math-
ematically formulate the problem as a constrained shortest
path problem. The objective function is to obtain the most
pleasing music in terms of audio continuity (smooth transi-
tions) as well as beats, melody and higher-level structures.
The main constraint is the desired duration of the music to
synthesize. Additional constraints can encode various facts
such as the importance of some parts of the input music (to
promote their use in the retargeting) and which parts must
be protected (not be modified) or not included in the output
music. This is solved by a dynamic programming-based ap-
proach running at interactive rate, which allows the user to
modify the constraints in real time and verify the new corre-
sponding output piece of music.

4. Music Analysis

This section is dedicated to analysis of the input music. We
show how to obtain both low and high-level information, re-
spectively by feature extraction and segmentation.

4.1. Feature Extraction

To analyze and manipulate a music file automatically, it
is important to extract relevant information from its audio
signal. This process is known as feature extraction. In im-
age processing, edge detection [FP02] and SIFT [Low04]
are widely used techniques to extract and/or describe reli-
able features in images. A similar concept exists for music
such as the Mel-Frequency Cepstral Coefficients (MFCCs)
[Mer76]. MFCCs can be represented by a vector (typically
40 dimensions) and correspond to the short-term power
spectrum of a sound, based on a linear cosine transform
of a log power spectrum on a nonlinear mel scale of fre-
quency [SVN37]. In practical terms, it has been shown that
MFCCs are an appropriate feature descriptor for music anal-
ysis, description and retrieval algorithms [PMK10, Log00].

MFCCs are computed from a fast Fourier transform spec-
trum with a certain window size. Setting the window size
to a fixed value and offset does not appropriately capture
the rhythmic structure of the music. Instead, a dynamic ker-
nel size based on the music beat can be used (e.g. [BW05]
for audio thumbnailing). We propose to apply a similar ap-
proach for our scenario of music retargeting, which can pre-
vent local changes in tempo and audible discontinuities dur-
ing music synthesis. Beat is the basic unit of time in mu-
sic [Ber76]. To automatically detect the beat positions, we
apply BeatRoot [Dix07]. The length of beat segments gen-
erally varies between 250ms and 1.5s, depending mainly on
the music genre (e.g., techno music tends to have short beat
segments). As an analogy to the basic unit in image process-
ing (i.e., pixels), we refer to these beat segments as “bixels”
(contraction of the words “beat” and “pixel”) to avoid con-
fusion with the segmentation terms of the next section.

Once the MFCCs are computed for each bixel, they can
be used to compare the associated parts of the music and
find perceptually similar parts. To compute the distance be-
tween all the MFCCs, we tested various distance measures.
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(a) (b)

Figure 3: Music analysis for the song “Lucy in the sky with
diamonds” by The Beatles. (a): beat-aligned self-similarity
matrix (cf. Section 4.1). (b): segmentation into clusters (cf.
Section 4.2). Top: novelty score computed from the similarity
matrix. Middle: segmentation automatically obtained by our
method. Bottom: ground truth segmentation for comparison.

The most reliable results were obtained by Spearman’s rank
correlation [MW10] in terms of discriminative power and
robustness. The distances are stored in a beat-aligned sim-
ilarity matrix where the entry S(i, j) contains the similarity
measure between the ith and jth bixels of the input music.
For completeness, a visual representation of S is shown in
Fig 3-a. The resulting matrix captures the perceptual simi-
larity between two bixels but does not contain any temporal
context. To incorporate the dynamics of the music, we adopt
the measure of Schödl et al. [SSSE00] originally developed
for video similarity: we consider not only the current bixel
but also the temporally adjacent bixels as:

S′(i, j) =
m

∑
t=−m

wtS(i+ t, j+ t). (1)

The weights wt are the normalized binomial coefficients and
we set m = 2. A similar approach was used by Schwarz
[Sch07] for audio concatenation. The value of S′(i, j) is high
when the ith and jth bixels are both perceptually and tempo-
rally consistent. S′ is normalized to the interval [0,1].

4.2. Segmentation

From the features described in Section 4.1, high-level struc-
tural information can now be obtained, which will permit
maintenance or editing of the structure of the input musical
piece during retargeting. We proceed in two steps: novelty
score computation and then segmentation, following exist-
ing work in the music research community [PMK10,Foo00].

In the first step, we detect the similarity discontinuities be-
cause they tend to indicate the beginning/end of a structure
element. This can be considered as an edge detection task
in images [FP02] and a similar procedure can be performed
for audio signals. We applied the weighted detection kernel
proposed by Foote et al. [Foo00] along the diagonal of S′ to
get the novelty score N(i) for each bixel i. We set the ker-
nel size to 64 for all our experiments. Finally the local max-
ima of this novelty score correspond to similarity boundaries
(edges) and the bixels inside the boundaries define segments.
A typical result is illustrated in Fig 3-b. With the exception
of one segment, the segmentation obtained by our method is

in accordance with the ground truth segmentation (obtained
manually) while running fully automatically.

The second step aims to cluster the different segments.
We start by computing the mean of the MFCCs for each ex-
tracted segment to obtain their descriptor. Then given these
descriptors, the segments are clustered using spectral cluster-
ing by the normalized cuts algorithm [SM00], widely used
in the computer graphics and vision communities such as
image and video segmentation. Compared to the popular K-
means clustering [Mac67], spectral clustering does not de-
pend on an initial solution and allows clusters to have differ-
ent spatial extents and shapes. Therefore in practice, better
segmentation results are obtained by spectral clustering. The
number of clusters typically varies between 2 and 5, and can
be interactively controlled by the user if necessary. Finally,
each bixel of the input musical piece is linked to its corre-
sponding cluster. Figure 3-b illustrates a typical example of
novelty score and the final segmentation.

5. Music Retargeting and Synthesis

The previous section focused on analyzing the input mu-
sic, especially how to extract low-level (feature descriptors)
and high-level (music structure by segmentation) informa-
tion. This section describes music synthesis for retarget-
ing applications using the extracted information. It starts
by defining the mathematical formulation of music retarget-
ing as an optimization problem. Then we discuss the rele-
vant optimization methods and present an efficient dynamic
programming-based technique. Finally, we explain how to
maintain or edit the structure of the input music using an
approach inspired by motion graphs.

5.1. Mathematical Formulation

We mathematically formulate the retargeting as a labeling
problem where a set of bixels of the input music is selected
and combined with respect to a music-relevant cost function
and constraints. In accordance to standard labeling notations,
the ith bixel of the input music is now represented by the la-
bel li. The audio perception consistency between two bixels
li and l j is measured by the similarity term S′(li, l j) defined
in Eq. (1). Each bixel li is also associated with an importance
term I(li) ∈ [0,1] which permits to force or forbid the selec-
tion of some bixels, for example when the user particularly
loves or dislikes a part of the input music. By default, the
values I(li) are set to uniform weights.

Let l = {li|i = 1 . . .M} define a bixel ordering that repre-
sents the retargeted musical piece of the desired length M.
The objective function based on the importance and similar-
ity metrics can then be written as:

E(l) = λ

M

∑
i=1

(1− I(li))+(1−λ)
M−1

∑
i=1

D(li, li+1), (2)

where the first term 1− I(li) encodes the inverse importance
of the bixel li. The second term represents the audio dis-
similarity between two bixels and is defined as D(li, l j) =

1−S′(li +1, l j), i.e., temporally adjacent bixels in the input
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music have a dissimilarity cost of 0. The constant λ balances
the influence of the two terms and we set λ = 0.5 for all the
experiments shown in this paper.

5.2. Optimization Technique

We now present the approach applied to compute the la-
belling l minimizing Eq. (2) in a globally optimal man-
ner. Multi-label optimization has been extensively studied
in the computer vision and graphics communities [BVZ01,
SZS03]. It is a challenging problem in general so existing
methods rely on approximation, and thus are not globally op-
timal, or assume particular smoothness terms (e.g. symmet-
ric cost). Contrary to general multi-label problems, two key
observations are that the neighborhood is one-dimensional
and the importance value I(li) at Eq. (2) does not depend on
the position of li in the returned solution. This allows us to
merge the importance I and the dissimilarity D into a single
cost term W defined as:

W (li, l j) = λ
(
1− I(l j)

)
+(1−λ)D(li, l j), (3)

which represents the cost of placing the bixel li right be-
fore the bixel l j. This permits the equivalent reformula-
tion of Equation (2) as a complete directed graph whose N
nodes are the bixels of the input music (see Section 4.1) and
whose edge value between two nodes li and l j corresponds
to W (li, l j). Given such a graph, the goal is to select a path
with the least cost and with the desired length M. We applied
a dynamic programming (DP) similar to Viterbi [Vit67] to
obtain this length-constrained path. The start and end nodes
of this path are constrained to bixels ls and le respectively
(such as the starting and ending bixels of the input piece or
any preferences of the user), i.e. l1 = ls and lM = le.

Let Cs(i,k) be the cost of the minimum path from the start
node ls to the node li in k stops, which can be defined as:

Cs(i,k) = min
j∈{1..N}

(
Cs( j,k−1)+W (l j, li)

)
. (4)

The recursion is initialized with Cs(i,1) = W (ls, li). By ap-
plying DP, we finally obtain the globally optimal path of
length M from ls to lt . We call a transition between two nodes
(bixels) a jump if they are not temporally adjacent in the in-
put music. Illustrations of jumps are shown in several figures
of the paper, e.g. Fig 1. To synthesize the retargeted ver-
sion, the bixels on the computed path are stitched together.
A small local alignment of the signals is performed at jump
positions to minimize the potential audio discontinuity. Our
experiments showed that, thanks to the accuracy of our ap-
proach, cross-fading at jump positions was not necessary.

The described algorithm can achieve a duration precision
up to the length of a beat, which is sufficient for most of
applications. Some specific cases, like audio-video synchro-
nization, need a precision up to single sample. Given our re-
sult obtained by DP, only a small scaling (less than 3% in our
experiments) is required to achieve perfect synchronization.
For such small scaling factors, TSP is appropriate (Section 2)
and we applied the method of Verhelst et al. [VR93].

5.3. Structure Constraints

The retargeting algorithm of Section 5.2 is yet unaware of
any high-level structures and thus cannot reproduce them.
We now discuss how to generalize it for retargeting musical
pieces whose overall structure must be reproduced.

Our modeling of high-level constraints is based on the
concept of motion graphs in computer graphics. In the con-
text of character animation, Kovar et al. [KGP02], Arikan et
al. [AFO03] and Safonova et al. [SH08] find seamless tran-
sitions between different categories of character pose or ac-
tion. For example, given a walking character as the start node
and a kick action as the end node, the method aims to find a
set of transitions between these nodes inside a corpus of mo-
tion data in such a way that a certain discontinuity measure
of the animation is minimized. For our music retargeting ap-
plication, the corpus corresponds to the entire input music
and the categories of character poses/actions correspond to
the clusters obtained in Section 4.2. A fundamental differ-
ence between the strategy of motion graphs and ours is that
we enforce transition duration constraints (i.e., fix the output
music length) instead of spatial constraints and do not allow
data interpolation to avoid creating audio artifacts.

The method of Section 5.2 is modified as follows. The
main idea is to constrain the bixel selection based on the
clustering information. First, a dissimilarity matrix Dν is de-
fined for each cluster ν (see Section 4.2) and is computed
from the bixels of cluster ν. This enforces that only bixels of
cluster ν can be selected and thus prevents jumping to any
clusters, which would alter the musical structure. A general-
ized cost matrix (Eq. (3)) is defined for each cluster ν:

Wν(li, l j) = λ
(
1− I(l j)

)
+(1−λ)Dν(li, l j). (5)

In addition, we introduce a function ψ() that allows
us (i) controlling the duration of each cluster and (ii) main-
taining or editing the structure of the input musical piece,
that is to say control the cluster ordering in the final out-
put path. Through an intuitive interface, we give the user
the possibility to edit ψ() according to his/her own prefer-
ence in order to, for example, remove a cluster in the output
(e.g., if its duration is considered too short or its music is un-
pleasant), edit the cluster ordering and control the duration
of each cluster. By default ψ() encodes the original label or-
dering and the duration of each label is proportionally scaled
with respect to the retargeting scaling factor.

The recursive cost function of Eq. (4) is modified by the
cost matrix Wν depending on the function ψ(k) which as-
signs a cluster to the bixel at position k in the output music:

Cs(i,k) = min
j∈{1..N}

(
Cs( j,k−1)+Wψ(k)(l j, li)

)
. (6)

The DP approach is now applied on the modified version
of Cs to find the globally optimal solution. An important as-
pect is that we do not process each cluster individually (local
technique) but rather directly compute the entire path (global
approach). Therefore intermediate nodes between clusters
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do not have to be specified: they are automatically selected
from the consistency measure of Eq. (6). This approach re-
turns an ordered set of jumps (i) within the same cluster to
shorten/elongate the associated cluster and (ii) between dif-
ferent clusters to find transitions. These jumps form a path
with the desired structure. A representative result is illus-
trated in Figure 1.

Thanks to label-dependent data and importance terms, a
wide range of challenging retargeting applications is possi-
ble. For example, the user can define a new ordering of labels
to perform structural reshuffling operations. It also permits
completely removing certain parts of the input music so that
they are not contained in the generated musical piece, and
protecting some parts so that they are played entirely. Exam-
ples of such applications will be shown in Section 6.1.

6. Results

Our Matlab prototype runs on an Intel Core2 Quad Q6600
CPU with 8 GB of RAM. The pre-processing (see Section 4)
of a 3-minute musical piece typically runs in less than one
minute. The retargeting phase complexity (see Section 5) is
linear in the desired output length. Typical execution time to
resize a 3-minute musical piece to 6 minutes (about N = 300
nodes and M = 600 stops) by DP takes about 160ms with a
non-optimized C++ code running on a single core CPU. Re-
sizing a 3-minute musical piece to 1 minute (about N = 300
nodes and M = 100 stops) takes about 30ms. Therefore our
method allows real-time music retargeting and user interac-
tivity. Audio and video sequences, as well as additional re-
sults, are available in the supplemental materials.

6.1. Music Retargeting

Music follows a certain dramaturgic plot and whose struc-
ture is important to interpret and appreciate a piece of music.
In the following, we show that our approach can efficiently
capture and take into account this global structure informa-
tion to retarget a piece of music. Figure 1-left illustrates a
typical example of segmentation (see Section 4.2) to capture
the music structure. Figure 1-right represents the music auto-
matically retargeted to the desired duration by the proposed
algorithm. The associated jumps are shown in Figure 1-left.
They are depicted as arcs with a dot at their start positions.
Jumps that go forward in time are colored purple, backward
jumps are colored green. One may note that the structure of
the music is correctly preserved in the output. Another im-
portant observation is that only a limited number of jumps
are needed, even with high scaling factors, which preserves
as much of the input consistency as possible.

Figure 4 compares the retargeting results without and with
structure-awareness. Figure 4-a demonstrates that, without
structural information as in previous works (e.g. [WM11,
HB96,Sch07]), the music structure is altered and undesirable
repetitions of segments occur. On the contrary, Figure 4-b
shows that the proposed structure-aware music retargeting
algorithm (cf. Section 5.3) is able to correctly preserve the
structure. This constitutes a key advantage of our approach.

Singing part removal: in some applications such as

(a)

(b)
Figure 4: Retargeting of the song “Flood” by Tenpenny Joke
to 150% of the original duration without (a) and with (b)
structural constraints. See text for more details.

background music generation for, e.g., advertisements, it is
desirable to create instrumental-only versions of a song. Our
algorithm can remove the singing parts and return a ver-
sion that only consists of instrumental parts and with the de-
sired duration. The input song is segmented into vocal and
non-vocal clusters and then the optimization procedure is
applied. The vocal parts can be extracted automatically by
speech detection [RGS07] or karaoke files. A typical result
where we removed the singing parts of the song “Trouble”
by the band Coldplay is shown in Figure 5. An additional
result obtained for the Russian song “Chucelo” by Nastya
Yasnaya is available in the supplemental material.

Structural reshuffling: the structural segmentation (cf.
Section 4.2) and the handling of the labelling constraints (cf.
Section 5.3) permit reshuffling the input musical piece into
a completely new structure. We refer to this application as
structural reshuffling and a representative example is shown
in Figure 6. The desired structure is defined interactively by
the user. Such an assisted editing tool offers an efficient and
interactive way to remix and transform existing music works
into new creations.

6.2. Video Editing

During video post-production step, a video editor assembles
the sequences shot or created during the production, in col-
laboration with the directors and producers. The music might
be designed and recorded for specific parts and with a spe-
cific duration. If, at the end of post-production, the producer
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Figure 5: Singing part removal for the song “Trouble” by
the British alternative rock band Coldplay. Top: original
song with singing parts (shown in red) automatically ex-
tracted by lyrics metadata, and the associated jumps by the
proposed algorithm. Bottom: the retargeted music.

Figure 6: Structural reshuffling of the song “Victory” by
Alexander Blu. Top: input musical piece with its segmen-
tation and the associated jumps obtained by the proposed
algorithm. Bottom: the reshuffled version verifying the new
structure desired by the user (red, green, red, blue).

decides to delete some scenes, the soundtrack does not have
the appropriate length and must be shortened. A simple ap-
proach is to cut the unwanted scenes and stitch the remain-
ing video parts, along with their associated audio. To deal
with audio discontinuity, blending is generally applied. We
refer to this method as cut-and-blend. A similar case can oc-
cur during the development of animation sequences for high-
end video games. In the following, we show some scenarios
where scenes from a movie are removed and the audio is re-
targeted using our method. We compare each result to the
“cut-and-blend” approach.

Action level control: in a part of the animation “Big Buck
Bunny” (directed by Sacha Goedegebure, 2008), the action
scenes are interleaved with humorous scenes. We demon-
strate how those non-action scenes can be removed without
compromising the consistency of audio and video. Since it
changes the animation duration, we apply our method to re-
target the music to the new necessary duration: from 60 to 33
seconds. The inputs are the original audio track and the seg-
mentation (parts to keep and parts to remove). The transition
results automatically obtained by our algorithm are shown in
Fig 7(a). The complete retargeted music and a comparison to
the cut-and-blend method are in the supplemental video.

(a)

(b)
Figure 7: Examples of our music retargeting for advanced
video editing. (a) Top: video editor time line of the animation
movie “Big Buck Bunny”. The video scenes to be removed
are marked in red. Bottom: the resulting jumps to retarget
the audio. (b) Music retargeting with synchronization con-
straint. The video editor timeline of the video clip “Better
World” shows the scenes to remove marked in red and those
to synchronize with the audio (bomb explosion) in blue.

Synchronization: the audio track is often correlated with
the video content: for example explosion sound effects when
a bomb explodes. In such cases, when a movie is edited, it is
important for these audio effects to stay synchronized with
the associated video frames. Our algorithm can handle this
synchronization constraint: the user simply needs to label the
scenes to stay aligned with the audio. We demonstrate this
feature on the music video “Better World” by the band Sat-
urday’s Tinitus (curtesy of Reto Troxler, 2010). We removed
some scenes from the video and retargeted the soundtrack
while maintaining the synchronization between the explo-
sion sounds and the corresponding explosion visual effects.
Figure 7(b) shows the explosion labelling, and the retargeted
music is available in the supplemental video. The cut-and-
blend approach provides a good synchronization but leads to
very annoying discontinuities of the rhythm and melody at
the cut positions. In contrast, our algorithm succeeds to align
the explosions and creates high quality transitions. Moreover
one may note that this task is usually very time consuming
for an artist following a manual approach, even using profes-
sional tools, whereas our method runs fully automatically.

6.3. Retargeting Comparison

We conducted two user studies to measure the quality of our
results. The first study is dedicated to the local consistency
of the retargeted musical piece while the second one focuses
on the global structure of the entire retargeted musical piece.

For the first user study, we evaluate the audio continu-
ity and consistency of the jumps obtained by our algorithm.
For this, we prepared a set of 32 10-second snippets taken

c© 2013 The Author(s)
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Figure 8: Results of our user study. Left: comparison of the
ratings for snippets (i) obtained by our retargeting algorithm
and (ii) extracted without modification from the original mu-
sical pieces. Right: comparison of the ratings for rescaling
entire musical pieces using our method, WSOLA, and Adobe
Premiere. See details in Section 6.3.

from the retargeted musical pieces obtained by the proposed
method. Some of them correspond to the results obtained
in the previous sections (from Section 6.1 to Section 6.2).
All these snippets contain transitions within the same cluster
or between different clusters (cf. Section 5.3). For compari-
son, we also considered snippets extracted directly from the
original musical pieces (i.e. they do not contain any jumps)
at random positions. We asked each of the 63 participants
to grade the snippets from 1 (very annoying) to 5 (perfect,
unnoticeable transitions). Results are shown in Fig 8-left. A
similar number of retargeted and unmodified snippets (about
13%) was rated 1 and 2. The explanation is that some lo-
cal changes of style are misinterpreted as transitions, even if
they exist in the original musical piece. More than 85% of
the retargeted snippets were rated acceptable (3), very satis-
fying (4) or perfect (5). Data analysis indicate a mean of 3.7
and 3.9, respectively for our retargeted and the unmodified
snippets, with a similar standard deviation of 1.1 and a me-
dian of 4. It indicates that the results obtained by our method
are statistically consistent with the original snippets.

We conducted a second user study about the global aspect
of the entire retargeted musical pieces. The aim is to com-
pare our algorithm to existing automatic retargeting meth-
ods. In early experiments, we applied Paul’s Extreme Sound
Stretch (PESS) and Echo Nest Earworm (cf. Section 2).
However Earworm failed† creating a result for the majority
of the musical pieces we tested. Both Earworm and PESS
returned outputs violating the duration constraint, up to 53
seconds for a 2’12"-long piece. Moreover the audio qual-
ity of these outputs was obviously poor (strong artifacts and
distortion) so we excluded them from a deeper user study.
In contrast, our program returns a solution for all the tested
musical pieces and always verifies the duration constraint.
We presented to the participants a set of original musical
pieces and their retargeted versions with various scaling fac-
tors (from 50% to 200% of the original duration) obtained
by our content-aware algorithm presented in Section 5.3 and
by two other relevant state-of-the-art approaches: (i) a TSP
method called WSOLA [GL08] (cf. Section 2) similar to the

† memory error or Python segmentation fault

feature included in the popular tools Ableton Live and Stein-
berg Cubase and (ii) the audio editor of the well-established
and renowned commercial Adobe Premiere. We asked each
of the participants to grade the entire musical pieces, in terms
of global structure preservation, from 1 (strong artifacts) to
5 (perfect, unnoticeable modifications). The musical pieces
have different properties (beats, structure) and correspond to
various genres such as psychedelic folk, traditional flamenco
and alternative rock. Results of the user study are displayed
in Fig 8-right. It shows that our method clearly outperforms
both WSOLA and Adobe Premiere. More than 80% of the
musical pieces retargeted by our method were graded very
satisfying (4) or perfect (5). Moreover analysis of the rat-
ings shows that in every user response, our method was con-
sistently rated better (respectively 92.8% and 91.0% of the
tests) or equivalent to WSOLA and Adobe Premiere.

In addition to the evaluation of the above existing tech-
niques, we showed our tool and results to professional
video/audio editors and we received a very positive feedback
from them. They particularly appreciated the numerous po-
tential applications, the quality of our results and the fact
that the user or artist can easily interact with the system and
define his/her own preferences.

6.4. Discussion

The proposed method provides satisfying and reliable results
for a wide range of instrumental musical genres from heavy
metal to traditional flamenco. However, for audio pieces
with no self-similar parts, the computed transitions might
introduce discontinuities. Examples that fall into this cate-
gory are musical pieces whose features are purely progres-
sive (e.g. structure, loudness, melody or rhythm changes in-
crementally over time) such as the musical piece “Bohemian
Rhapsody” by the band Queen. The quality of the generated
musical pieces also depends on the reliability of the feature
analysis (Section 4). For example, beat tracking tools gener-
ally assume that the musical piece has a reasonably regular
beat, with no large discontinuities and silent parts [Dix07].
Thus if the input musical piece has such characteristics, its
structure might not be preserved.

As demonstrated by the above experiments, our approach
can reproduce a wide range of patterns thanks to the beat
detection and structure-awareness. Nevertheless some repet-
itive patterns that are relatively far apart (e.g. more than 5-10
seconds) might be not captured. An example for the movie
“Oceania” (directed by Harpreet Dehal, 2008) is in the sup-
plemental material. While the jumps are barely noticeable,
the beat is preserved and our results compare favorably to the
cut-and-blend technique, music professionals might notice
that the interval between the piano bass chords is slightly al-
tered once. More generally, our current system does not cap-
ture medium-scale features, such as bars (also called mea-
sures), and thus they cannot be correctly preserved. A po-
tential solution could be to add information from instru-
mental analysis [Mar06]. Note that our overall approach re-
mains valid and can easily incorporate such additional fea-
tures thanks to the generality of our system.
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As stated above, our system is dedicated to instrumental
musical pieces rather than radio songs containing lyrics. Our
system can still be applied and synthesize such songs but the
resulting jumps might alter the continuity or meaning of the
lyrics. To solve this issue, we automatically detect the lyrics
of a song from karaoke files and protect the associated audio
parts (see Section 5.3): the retargeted version contains vocal
parts and the lyrics are not altered. Alternative solutions to
deal with lyrics could be voice detection [RGS07], speech
recognition and techniques of Natural Language Processing
to maintain meaningful lyrics.

7. Conclusions

We proposed an algorithm for converting existing music
tracks into scalable music with varying length, capturing
and maintaining the music’s high-level structure and sup-
porting additional constraints such as importance or posi-
tion of specific parts. Our program runs in a fully auto-
matic way and still offers the user a high degree of con-
trol over the final result through optional constraints. We
built on ideas from image and video processing research and
demonstrated that audio processing may benefit from simi-
lar concepts, enabling more effective techniques. Still, many
questions are unique to audio processing and require dedi-
cated features (e.g. MFCC and segmentation) and novel so-
lutions (e.g. length-constrained cluster-based shortest path).
We presented some challenging applications that would be
difficult or time consuming with a manual approach or exist-
ing tools. Experimental results and user studies showed that
our approach provides interesting improvements over exist-
ing commercial packages and algorithms. Finally, while this
paper focused on retargeting of music, we believe that our
underlying concept of global and structured content retar-
geting can be applicable to other graphics-related problems
such as motion retargeting.
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