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Abstract—For applications that require very accurate video
object segmentations, semi-automatic algorithms are typically
used, which help operators to minimize the annotation time,
as off-the-shelf automatic segmentation techniques are still far
from being precise enough in this context. This paper presents
a novel interface based on a click-and-drag interaction that
allows to rapidly select regions from state-of-the-art segmentation
hierarchies. The interface is very responsive, allows to obtain very
accurate segmentations, and is designed to minimize the human
interaction. To evaluate the results, we provide a new set of object
video ground truth data.

I. INTRODUCTION

Image and video segmentation is one of the most funda-
mental yet challenging problems in computer vision. Dividing
the image into meaningful regions implies a high level inter-
pretation of the image that cannot be satisfactorily solved by
looking, for instance, for the homogeneous areas in the image,
as many of the classical approaches do. In Figure 8.a, for
instance, the car is very diverse in color, but humans recognize
it as object because they understand that it is a car.

In the era of big data and vast computing power, one
approach to model this high level interpretation of images is
to make use of powerful machine learning tools [1] on huge
annotated databases [2], [3]. While significant advances have
been made in recent years, automatic image segmentation is
still far from providing accurate results in a generic scenario.

The approach followed in this paper to achieve this high
level interpretation is to incorporate a human in the loop. This
type of techniques can be referred to as semi-automatic image
segmentation, which aims at minimizing the interaction that
the human has to do to obtain an accurate result. To achieve
this goal, we will make use of a representation of the image
known as segmentation hierarchy [4], [5], [6]. It transforms
an image from a matrix of pixels to a tree-like graph whose
nodes represent regions, from fine superpixels at the leafs to
the root representing the whole image.

Hierarchies have demonstrated state-of-the-art perfor-
mance [4] in image segmentation, object proposals, and con-
tour detection. Therefore, we use them here as the base for
our novel semi-automatic video object segmentation algorithm.
Intuitively, we cast object segmentation as selecting a set of
regions from the hierarchy, and then object tracking as finding
the set of regions in the following hierarchies.

We present an interface that allows the user to intuitively
and easily select a set of regions from the hierarchy via
click-and-drag interaction, which is suitable for both mouse
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Fig. 1. Overview of our approach: (a) mouse down on a region, (b) drag
to make the selection grow, (c) mouse up when we cannot grow more inside
the object; (d) iterate until all the object is marked, and (e) track the mask to
following frames. Images from [8].

and touchscreen operation. We provide some algorithms that
minimize the number of time that the user has to spend
annotating, by keeping track not only of the regions that the
user has selected, but also those that have been skipped.

When the user has finished annotating the mask of the
object in a certain frame of a sequence, we propagate it using
optical flow [7], and then we look for regions in the hierarchy
that match the propagated pixels to refine the mask and correct
potential errors. At each step, the user can easily further refine
small errors, and thus the propagation can be done fast.

To validate our approach, we provide new object-based
annotations on the Berkeley Segmentation Video Dataset
(BVSD) [8], that allow us to estimate the maximum expectable
performance, to validate the use of segmentation hierarchies,
and to assess our proposal.

The remainder of the paper is organized as follows. Sec-
tion II gives an overview of related work, and Section III
provides the needed background on segmentation hierarchies.
The proposed algorithm is described in Section IV, which
explains how we make use of hierarchies to help in the anno-
tation of a certain frame, and in Section V, which describes
how we propagate the mask to following frames. Section VI
describes the experimental validation, and finally we draw the
conclusions in Section VII.

II. STATE OF THE ART

Video segmentation techniques [9], [10], [11], [12] take
a video as input and output a partition of the frames into
a set of regions aiming at being as temporally consistent as
possible, and at regions between partitions being as connected
as possible.

Video object tracking [13], [14] provide trajectories of
objects represented by bounding boxes, thus providing only an
approximate location of the object. While this type of tracking

978-1-4673-6870-4/15/$31.00 c© 2015 IEEE



is useful for some applications like pedestrian tracking, others
require more precise shape, such as object inpainting.

Video object segmentation and tracking algorithms [15],
[16], [17] take a binary mask representing the shape of the
object at a given frame, and output the propagated mask to
the subsequent frames. Our application fits within this type
of algorithms. Other techniques working and optimizing on
segmentation hierarchies may be found in [9], [10], but they
output full partitions instead of objects, by means of cuts of
the tree.

The closely related work to our paper may be found
in [18], which presents the Graphical Annotator Tool (GAT).
As in our approach, the authors present a tool to annotate
objects using segmentation hierarchies. However, in contrast
to GAT, our method presents a more advanced interaction
approach, is based on an improved segmentation hierarchy,
and is much more responsive thanks to how we code the
hierarchies. Further, we also cover video object segmentation
by tracking and refining the masks over time.

III. SEGMENTATION HIERARCHIES

This section is devoted to give an overview of segmentation
hierarchies, reviewing the state of the art, and providing the
necessary background for the following sections.

Current state-of-the-art segmentation techniques are based
on a first step of contour detection, represented as a probability
map. Najman and Schmitt [19] refer to these probability maps
as contour saliency maps and they were the first to show
that there is a bijection between contour saliency maps and
hierarchies of regions. This idea was later popularized by
Arbeláez et al. [5] as Ultrametric Contour Maps (UCM), which
have been the state-of-the-art technique for image segmenta-
tion since then. Working directly on regions of hierarchies,
without starting from a contour map, has also been explored
in the so-called Binary Partition Trees [6].

In this work, we will use a recent improvement over UCM
called Multiscale Combinatorial Grouping (MCG) [4], which
runs significantly faster while obtaining better results than
UCM. Let us delve into how these hierarchies are represented.
As introduced before, current state-of-the-art segmentation
hierarchies are based on contour detectors [20], [21] (MCG
is based on [20]), whose output is the probability of each
pixel boundary segment of being a contour. Thresholding this
probability, we would have a binary contour map, which clas-
sifies pixel boundaries into contour/no-contour. The contour
probability map is then transformed into a contour saliency
map, or UCM, which has the interesting behavior that for any
threshold t, the output binary contour map produces closed
boundaries; and thus a segmentation of the image whose
contours are the ones obtained by the UCM.

This way, each piece of contour in the UCM can be seen
as the boundary between two (or more) regions in the image,
and thus augmenting the contour strength threshold can be
interpreted as merging the neighboring regions. If we represent
regions as nodes of a graph, and the merged region as the
parent of the original regions, we can represent a UCM as a
tree (dendrogram to be more precise) of regions, which we
will refer to as segmentation hierarchy.

Figure 2 shows a graphical representation of this duality.
On the lower left corner, we have a simple ultrametric contour
map. By thresholding it at different contour strengths λi we
obtain a sequence of closed boundaries, and so partitions,
that we refer to as merging-sequence partitions, as depicted
in the left-most column. On the right of the plot, each region
in the partitions is represented by a node of the graph, and
the merging process forms the region tree, or segmentation
hierarchy.
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Fig. 2. Graphical representation of a hierarchy as a region dendrogram.

As we will see in next sections, the intuition behind
our algorithm is that we process the image directly in the
dendrogram of regions, using tailored data structures that allow
us to compute the optimized proposals and their features very
efficiently.

Figure 3 illustrates how object segmentation is casted to
selecting regions in a segmentation hierarchy: (a) shows a sim-
plified version of the hierarchy introduced in Figure 2 and (b)
shows the single region in the hierarchy that better represents
the car. As we can see, there is no single region that covers
the whole car, so (c) shows the best object representation from
regions in the hierarchy, in this case, 3 of them.
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Fig. 3. Examples of objects (b), (c), formed by selecting regions from a
hierarchy (a).

This example also illustrates the benefits from working on
hierarchies. In a single structure, we can represent objects
at different levels of detail, with less regions than on a flat
partition. In this particular case, we would need 4 regions
(R2, R3, R5, R6) to represent the same object.

IV. SEMI-AUTOMATIC OBJECT SEGMENTATION ON

HIERARCHIES

This section explains the interface we propose to allow a
user to annotate an object via the selection of regions in a
hierarchy. First, we describe how our hierarchy representation



allows us to preview the selected regions in real time, very
responsively. Then, the core strategy of the algorithm is a click-
and-drag interaction that allows to rapidly explore the whole
hierarchy. We improve the interaction by keeping track not
only of the regions that the user has selected but also those
that he has skipped. Finally, we introduce a modification of
the hierarchy in order not to have holes when we perform a
selection. The following sections expound on these four points.
Please also refer to the supplementary video and Figure 1.

A. Real-time selected region preview

One of the most relevant aspects of a tool that involves a
human in the loop is its responsiveness, which means that the
delay between an order and the response should be as short
as possible. In the case of our tool, we want to highlight the
region where the cursor is located in real time.

To achieve this goal, let us analyze how the hierarchy can
be stored. A first possibility would be to store a matrix of
labels, one label per pixel. To highlight region Ri using this
representation, we would need to scan all the matrix of labels
looking for those pixels with label Ri, at every mouse move,
which would make interaction prohibitively slow.

Instead of storing the hierarchy as a matrix of labels, we
propose a contour-based representation, in which we store the
coordinates of the pieces of contour between neighboring re-
gions; and we index all neighbors of each region. To highlight
region Ri, therefore, we just have to scan the reduced set of
neighbors, say {Rj , Rk, Rl}, and paint the contour coordinates
between {(Ri, Rj), (Ri, Rk), (Ri, Rl)}. This way, we reduce
the number of operations needed at every mouse move, as
well as the memory footprint, and we obtain a smooth and
responsive interaction.

B. Click-and-Drag: General region selection

The main idea of our interaction strategy is that the user
clicks on a certain area of the image, and then the leaf of the
hierarchy at that position (previously highlighted) is selected.
While still with the mouse/touchscreen pressed, dragging the
pointer makes the selected region grow, by selecting the parent
of the region selected at each time instant.

As expounded in the introduction, [18] is based on a
similar principle but with the following significant differences.
Instead of click and drag, they use the mouse wheel, which
prevents the algorithm to be used on touch interfaces. In
order to make a click-and-drag approach feasible, the contour
representation of the hierarchy plays a key role, which makes
it responsive enough to be usable. Apart from this, we use
state-of-the-art segmentation techniques and we optimize their
parameters, tailored to the semi-automatic task, apart from
taking advantage of the non-selected regions to minimize the
number of clicks (see following section).

Figure 4 illustrates how the click-and-drag algorithm
works. First, the user clicks on a certain leaf (a), and the region
is highlighted. He starts dragging, and the leaf is substituted
by its parent (b). If the user keeps dragging, it will get to a
point where the selected region is too big (c), and so he will
have to drag back to the last acceptable region.
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Fig. 4. General region selection on hierarchies via click and drag. We start
by clicking on a leaf and growing the region through its ancestors by dragging
the pointer.

C. Non-selected regions avoidance

As depicted in the previous example (Figure 4), given
that the hierarchies are not perfect, the object of interest
won’t usually be represented by a single region. This way, the
common behavior from a user is to keep growing the object
until the selected region expands out of the object. Figure 5
shows the typical behavior in these cases: (a) the object is not
complete yet, so the user keeps making the mask grow, until
it grows too much (b). He then needs to take a step back (c).

Apart from getting the selected part of the object (c), we
can also deduce that the regions added in the last step (b), as
a whole, are not part of the object. Observing the hierarchy
in (c), for instance, we realize that regions R7 and R4 are not
both part of the object, and thus are marked as non-selected
regions (in gray in the figure). We keep track of these sets
of regions and we avoid them in future interactions. Figure 6
shows an example of interaction with an avoided region (red
stripes in (d)).
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Fig. 5. Non-selected regions avoidance: We keep track of the regions that
the user did not select to avoid them in future interactions.

D. Hierarchy hole filling

When performing user tests with the tool, we realized that
a significant part of the interaction time was devoted to fill the
holes that the hierarchy would create. Sometimes they were
objects that contained holes, but the common case was that
small artificial holes appeared due to textured areas. To solve
this issue, we considered filling the holes automatically while
the user was interacting.

This approach, however, would entail adding computation
to the front-end of the tool. Since we envision our tool
to be used on mobile devices, we wanted to minimize the
computation at the front end.

We therefore decided to modify the hierarchies in a way
that they would contain no hole. We analyzed all regions there
were merged at each step of the creation of the hierarchy.
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Fig. 6. Non-selected regions avoidance example: (a) the user clicks on a
certain region, (b) drags the mouse until the selection is in the object, (c) one
step more and the selection gets background regions, (d) when taking a step
back and releasing the mouse, the non-selected region is selected as to avoid
(red stripes). Images from [22].

In case the merging created a hole, we modified the tree
so that the hole region was merged together in the same
merging. We created an algorithm to detect the holes directly
in the hierarchical graph not to have to rely on morphological
operations that would have been prohibitive to do so many
times.

As a result, we have a very efficient algorithm that con-
verts the hierarchy into another one that has no holes when
performing a click-and-drag. This way, the user does not have
to fill the holes, but now one cannot creates tags with holes.
To solve it, we added the negative mode, in which the tool
removes selected regions. In this mode, the user can create
holes. We observed that the interaction was much faster using
this mode.

V. OBJECT SEGMENTATION TRACKING

Once the objects are annotated in one frame, we propagate
the masks to the following frames to minimize the user inter-
action. To do so, we pre-compute the optical flow [7], which
links the pixels from one frame to the position where they
have moved in the following frame. Using this information,
we propagate the marked pixels to the next frame, which gives
us an estimate of the mask of the objects in that frame.

In order to refine this mask and also to allow the user to
further correct potential errors, we look for the set of regions
that best match the propagated mask. To do so, one naive
approach would be to select those regions whose overlap with
the propagated mask is higher that 0.5. As we will show below,
this would not achieve the optimum representation in all cases.
Let us therefore analyze the problem formally.

Given the propagated mask and a set of non-overlapping
regions (leafs of the hierarchy), and assuming we have some
regions selected R, let us evaluate whether adding another
region R′ to it would increase the Jaccard index between the
selected regions and the mask we want to fit (O). Let us define:
tpR =

∣

∣R∩O
∣

∣ and fpR =
∣

∣R∩O
∣

∣, the true and false positives
in R, respectively. The Jaccard index of this solution would
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Fig. 7. Object tracking overview: (a) Marked objects by the user at frame
1, (b) propagated object with optical flow after 40 frames, and (c) mask
propagated with optical flow and adapted to the hierarchy. Images from [8].

then be:

J(R) =

∣

∣R ∩O
∣

∣

∣

∣R ∪O
∣

∣

=
tpR

|O|+ fpR
.

We would like to evaluate whether adding a non-
overlapping region R′ improves the result, that is, we would
like to check when:

J(R) < J(R ∪R′) ⇔
tpR

|O|+ fpR
<

tpR + tpR′

|O|+ fpR + fpR′

where fpR∪R′ = fpR + fpR′ and tpR∪R′ = tpR + tpR′ hold
because R and R′ do not overlap. Manipulating the expression
we derive that the inequality holds if, and only if

J(R) <
tpR′

fpR′

In other words, there is no need to calculate J(R∪R′) to know
whether adding R′ to R would improve the result. Since we
can calculate

tp
R′

fp
R′

beforehand for all regions, we can use the

inequality to speed the algorithm up.

We therefore sort the regions with respect to
tp

R′

fp
R′

and we

keep adding regions while the inequality holds, guaranteeing
that we reach the optimum representation. Figure 7 shows
an example to illustrate the tracking algorithm. It shows that
propagating the selected mask using optical flow introduces
errors in the long term, especially in the boundaries and in
high-motion parts. This errors can be minimized by adapting
the propagated masks to the hierarchy.

VI. EXPERIMENTAL VALIDATION

New object annotations:: We base our experiments
on the annotated Berkeley Segmentation Video Dataset
(BVSD) [8], consisting of 100 high definition sequences.
The original ground-truth partitions were only provided for
the central frame of each sequence. The database was later
annotated by different subjects as reported in [23], for every
20th frame in each sequence, also providing full partitions
instead of foreground-background masks.

In this work, we generate foreground-background masks
from these multiple partitions and we make them publicly
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Fig. 8. Example annotations from the database. Even human annotations have a certain degree of variability due to motion blur, low-contrast boundaries, or
different levels of semantic interpretation. Images and annotations from [8].

available as High-Definition Video Object Annotations (HD-
VOA)[24]. Having multiple foreground masks for each object
will allow us to assess the human variance within the an-
notations and thus normalize the results with respect to the
acceptable variability of human masks. Figure 8 shows some
ground-truth masks from the dataset, in which the boundaries
of the different annotations are all overlaid.

The resulting database consists of 88 sequences (39 train-
ing, 49 testing), containing a total of 9 585 frames. In them,
200 objects are annotated every 20 frames, making a total set
of 1 270 masks (each of them annotated four times).

Evaluation of human performance:: We start by eval-
uating the maximum expected quality in the database by
evaluating one human against the others; that is, we will
evaluate the ground truth created by one annotator as if it
were a machine-generated result, by comparing it to the rest
of annotations created by the other subjects.

We use the Jaccard index [25] (Intersection over Union) to
measure similarity with ground truth, being J=1 a perfect re-
sult and J=0 the worst result. In the case of humans, we obtain
a mean Jaccard value of J = 0.89± 0.08, which corroborates
that the dataset is very challenging, because even human results
are not perfectly coherent. In other words, the exact position
of the object boundaries is inherently ambiguous. This value
is in practice a quality reference for what we can expect from
any machine-generated result.

Evaluation of performance:: As our system is inter-
active, the user can improve results until he is satisfied up
to a maximum achievable quality, which is a property of
our algorithm. It is given as best possible approximation of
the ground-truth by selection of elements from the hierarchy,
and can be computed to evaluate the system performance
for a certain configuration (number of nodes, see below).
For that, we use the Single-scale Combinatorial Grouping
(SCG) hierarchy [4], given its state of the art quality and
computational efficiency.

In a region-based representation of images as ours, we
have the situation that the larger the number of regions (nodes
in the graph) is, the better the maximum achievable quality
is, with per-pixel resolution as theoretical limit. On the other
hand, the bigger the graph is, the slower and more memory

consuming the processing is. Therefore, we have a classical
trade off between quality and computational efficiency, with
the number of nodes as crucial parameter for system design.

To assess this trade-off and to choose an optimum number
of regions, we computed the maximum achievable quality as
function of the number of regions, as plotted in Figure 9. It
also includes human performance as reference.
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Fig. 9. Achievable quality of the hierarchies with respect to the number
of regions in the representation for two different strategies of reducing the
number of regions.

The plot shows that, as expected, the more regions in the
representation, the more quality we can achieve by selecting
regions from the hierarchy, at the expense of being slower.
Comparing pruning strategies, pruning with respect to the
number of regions gives better performance, at all ranges,
so we choose the hierarchy obtained by pruning at 5000
regions for the following evaluations, as it is very close to
human performance, although still with an affordable number
of regions.

To further analyze the comparison with human perfor-
mance, Figure 10 shows, for the 102 annotated objects in
training, the maximum achievable quality (for 5000 regions)
in the hierarchy with respect to the human annotation quality
of the same object.

We observe that the quality obtained from hierarchies is
very correlated with that of humans, which validates our
approach. We find some outliers in which hierarchies do not
perform well, which correspond to objects with very low con-
trasted contours (no low-level contour), in which humans mark
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Fig. 10. Human upper bound versus the achievable quality in the hierarchies,
for the 102 annotated objects of BVSD.

it by context and semantics. In a semi-automatic environment,
the annotator will correct these mistakes.

VII. CONCLUSIONS

This paper presents a novel semi-automatic video object
segmentation based on a click-and-drag interface to select
regions from segmentation hierarchies. The main contributions
are the following:
(i) We optimize the state-of-the-art hierarchical segmentation
algorithm to find a good point in the quality-speed trade-off.
(ii) To make the interface very responsive, we propose a
contour-based representation of the hierarchies.
(iii) To minimize the needed interactions, we keep track
both the selected regions and the ones avoided, and we take
advantage of it. We also propose a mask tracking algorithm.
(iv) We release a new ground-truth data set [24] of object
annotations for the evaluation of video object segmentation
algorithms.
In consequence, our approach provides very accurate results,
it is very responsive, and the human interaction is minimized.
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