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Figure 1: We present a framework to automatically determine optimal parameters of hair simulation models from video footage such that the
simulation matches the motion of the real hair. This allows to simulate the same hairstyle under novel animations.

Abstract

Physical simulation has long been the approach of choice for generating realistic hair animations in CG. A constant drawback
of simulation, however, is the necessity to manually set the physical parameters of the simulation model in order to get the
desired dynamic behavior. To alleviate this, researchers have begun to explore methods for reconstructing hair from the real
world and even to estimate the corresponding simulation parameters through the process of inversion. So far, however, these
methods have had limited applicability, because dynamic hair capture can only be played back without the ability to edit, and
solving for simulation parameters can only be accomplished for static hairstyles, ignoring the dynamic behavior. We present
the first method for capturing dynamic hair and automatically determining the physical properties for simulating the observed
hairstyle in motion. Since our dynamic inversion is agnostic to the simulation model, the proposed method applies to virtually
any hair simulation technique, which we demonstrate using two state-of-the-art hair simulation models. The output of our
method is a fully simulation-ready hairstyle, consisting of both the static hair geometry as well as its physical properties. The
hairstyle can be easily edited by adding additional external forces, changing the head motion, or re-simulating in completely
different environments, all while remaining faithful to the captured hairstyle.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Virtual characters have many distinguishing features that define the
identity of the character. After the face, one of the most important
features is the hairstyle. Modeling and animating hair has been a
rich topic of research in computer graphics because creating believ-
able CG hairstyles is extremely complicated. A real-world hairstyle
consists of tens of thousands of hair strands with varying lengths,
thicknesses and material properties, all of which affect the shape
and the motion of the hair. On top of this, as hair moves it creates
thousands of collisions with varying levels of friction depending on
whether the hair is dry, wet, oily, or contains consumer hair prod-

ucts. All of these factors must be taken into consideration when
modeling and animating the hairstyle of a virtual character, as in-
consistencies in the hairstyle can contribute just as much to the infa-
mous uncanny valley as inconsistencies in the facial performance.

Animating all these complex effects by hand is impractical, and
so the traditional approach is to simulate hair physically. This ap-
proach allows the user to define physical parameters of the hair
strands and then computationally simulate how the hairstyle should
react to external forces such as gravity, head movement or wind.
Modern simulators can compute and handle complex interactions
such as collisions, friction and electrostatic forces and simulate
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thousands of hair strands. Since the result is a physically plausi-
ble dynamic hairstyle, simulation is currently the industry method
of choice for hair. One major drawback of hair simulation, however,
is that it can be very challenging to define the physical parameters
of the hair model in order to obtain a desired hairstyle with desired
motion. Determining the parameters for every fiber is impractical,
and typically animators resort to a single set of parameters for the
complete hairstyle. But even just selecting a single set of param-
eters to match a particular hairstyle is challenging and typically
requires a lot of trial and error, especially if the hair is for a digital
double of a real person.

To obtain specific hairstyles, recent research has focused on cap-
turing hair from the real world, following trends in facial perfor-
mance capture. Hair capture, however, is a much more challeng-
ing problem because the majority of the hair strands are occluded,
and hair usually has a shiny appearance which challenges existing
computer vision algorithms. Nevertheless, a few techniques have
emerged that can recover a static hairstyle from images. While
static hair capture removes the need to model a hairstyle, it still
leaves the animator with the challenging task of selecting appropri-
ate physical parameters for simulation if the hair is to be animated.
Some methods are able to reconstruct the motion of dynamic hair
from videos, however these methods can only play-back and re-
render the hair from different viewpoints without the ability to edit
the animation in any way. Without allowing artist control, the use-
fulness of current dynamic hair digitization methods becomes lim-
ited as additional forces cannot be added and motion adjustments
or collisions are not possible after the capture process.

The method proposed in this paper is fundamentally different in
that it does not present another capture algorithm with the goal of
acquiring a particular hair performance as accurately as possible,
but rather a data-driven parameter estimation method that finds the
optimal simulation parameters given a specific simulation method,
such that physically simulating the hairstyle reproduces hair mo-
tion that closely resembles the observed hair dynamics. The main
advantage of such an approach over pure capture methods is that
the observed hairstyle can not only be played back, but can be re-
simulated to create any other animation while remaining faithful to
the physical behaviour of the captured hairstyle.

The seminal work of Derouet-Jourdan et al. [DJBDDT13] pre-
sented a first step towards this goal, as they recover a simulation
hair model from images of a hairstyle at a static point in time under
gravity, which allows to animate the reconstructed hair using phys-
ical simulation. However, only considering the static state under
gravity does not guarantee to extract the correct physical properties
that will remain faithful to the observed hairstyle when in motion,
since hair geometry and physical properties are directly connected
and can only be separated under dynamics. As an example, demon-
strated in Fig. 2, several sets of very different physical parameters
can result in the same hairstyle under gravity, but very different
dynamic behavior given head motion.

We present the first approach to reconstruct truly “simulation-
ready" hairstyles, in that we produce both the geometry of a
hairstyle and estimate simulation parameters that reproduce the ob-
served dynamics as faithfully as possible given the chosen simula-
tion method. In order to cater to different existing hair simulation
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Figure 2: Simulation results with different physical parameters.
Here we show simulation results for three different sets of phys-
ical parameters, which yield the same static result under gravity
at time t0, but substantially differ under motion. As a consequence,
computing physical parameters from a static frame under gravity as
proposed by Derouet-Jourdan et al. [DJBDDT13] is not sufficient.

techniques, we present a general framework for dynamic param-
eter inversion, which aims to treat simulation as a black-box. Af-
ter minor initialization, our optimization method is agnostic to the
chosen hair simulation model, allowing to find optimal parameters
for virtually any hair simulation method, which we demonstrate on
two state-of-the-art hair simulation models; (1) the super-helices
model of Bertails et al. [BAC∗06] and (2) the discrete elastic rods
presented by Bergou et al. [BWR∗08]. We employ particle swarm
optimization (PSO) [KE95] and optimize for the simulation param-
eters of a number of guide strands by iteratively simulating and
computing a residual error to the observed dynamic hair, ultimately
minimizing an objective that takes into account the observed hair
orientation field, the approximate silhouette of the hair volume, and
the perpendicular strand tracking over time. The simulation model
serves essentially as regularizer in this optimization, and it depends
solely on the chosen model how closely the perceived hair motion
can be matched. Hair dynamics are extremely complex and gov-
erned by various elements, such as hair-hair collisions, hair-hair
friction, electrostatic forces, or hair-head collisions to name just
a few, and various simulators implement more or fewer of these
elements. Since the proposed dynamic inversion employs the sim-
ulator itself as part of the optimization, it will find parameters that
optimally match the target hair motion within the capabilities of the
simulator. The estimated parameters can then directly be used to
simulate the hair under novel head motion, in the presence of exter-
nal effects such as blowing wind, or artistically edited by adjusting
the simulation parameters to make the animated hair look more wet
or be more stiff due to hair products – all while remaining faithful
to the hairstyle of the actor. As such, this work represents a major
step towards practical hair modeling and animation.

2. Related Work
In most production settings, the modeling of realistic digital hair
is still a fairly manual effort relying on sophisticated 3D modeling
frameworks and often involves intuitive hair design tools [WBC07,
FWTQ07, YSK09, WWL∗13, YYCY14] or procedural hair gener-
ation techniques [WYZG09]. Due to the complex behavior and in-
tricate interactions of individual hair strands, physically-based sim-
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ulation [BAC∗06, SLF08, BWR∗08, BAV∗10, KTS∗14] is still the
method of choice for animating compelling hair despite a usually
tedious process of parameter tuning. A long thread of established
techniques has been investigated in [WBK∗07], trading off real-
ism and computational cost. State-of-the-art collision response al-
gorithms [KTS∗14] and solvers that capture non-smooth friction in
large hair assemblies [DBDB11] ensure realistic dynamic hair be-
havior. The idea of capturing hair directly from the real world is
a relatively new paradigm, and we review recent advances from a
modeling, animation, and simulation perspective.

Static Hair Digitization. As an effort to advance and scale the
production of digital humans, automatic 3D digitization techniques
have been introduced to generate realistic static hair models at
the strand level using various sensing techniques. Paris and col-
leagues [PBnS04] introduced a method that captures static hair
geometry by extracting the 2D orientation field of highlights us-
ing a moving light source with known positions. They later ex-
pand on this technique using multiple projectors and cameras to
capture both, shape and appearance of a wide range of complex
hairstyles [PCK∗08]. Herrera and colleagues [LHZW12] used ther-
mal imaging to handle issues caused by shadowing and anisotropic
reflectance and multiple macrophotographs were used by Jakob
et al. [JMM09] to capture individual hair fibers within a small
working volume. Because the slightest motion can deform hair,
synchronized multi-view stereo systems are particularly popular
since a subject can be instantaneously captured. Robust 2D ori-
entation filters [PCK∗08] have been developed to extract indi-
vidual strand structures from the raw images and to reconstruct
both short [BBN∗12] and long 3D hair strands [LLP∗12, LLR13,
HMLL14]. Due to complex occlusions and the intertwined geome-
try of many hairstyles, locally coherent wisp structures are discov-
ered by Luo et al. [LLR13] to bridge disconnected hair strands and
complete missing data. Even though visually pleasing strands are
re-synthesized from a scalp model, this local hair growing strategy
is sensitive to local minima and often produces implausible hair
strands, visible during animation. The data-driven method of Hu et
al. [HMLL14] uses physically-based hair simulations to generate
a database of structurally plausible samples and improved control
during hair digitization, which makes it suitable for animation pur-
poses as shown in this work. While the acquisition of 3D hair from
a single image [CWW∗12,CWW∗13,HMLL15,CLS∗15,CSW∗16]
or depth sensor [HML∗14] offers the most flexibility, they often
rely on manual guidance and non-visible regions have to be esti-
mated with data-driven techniques.

Dynamic Hair Capture. Techniques for acquiring complex hair
movements through optical sensing were introduced to address the
difficulty of tweaking simulation parameters and slow turnaround
time of producing realistic hair animation. In analogy to body mo-
tion capture systems, Ishikawa and coworkers track reflective mark-
ers on a few hair strands to animate the full hairstyle by interpo-
lating guide strand motions [IKSM07]. These markers can poten-
tially interfere with the hair motion and only coarse hair dynam-
ics can be recovered. The video-based technique of Yamaguchi et
al. [YWO08], which extends the work of Wei et al. [WOQS05],
can generate dynamic hair sequences that have consistent 2D ori-
entations with input images from multiple views, but is limited to

straight hairstyles as it enforces temporal coherence of the shapes
between frames. Dynamic hair capture has also been demonstrated
on a single-view video input using optical flow-based feature track-
ing [CWW∗13], but only simple hair motions can be obtained. Luo
and colleagues [LLW∗11, LLP∗12, LZZR13] exploit the consis-
tency of 2D orientation maps across multiple views to produce ac-
curate and temporally smooth hair surfaces as an intermediate rep-
resentation. Even though a wide range of highly complex hairstyles
were captured, the resulting strands suffered from flickering arti-
facts since they were synthesized independently for each frame.
Zhang and coworkers [ZTW∗12] used a mass-spring simulation
model to ensure the capture of temporally coherent hair motion, but
most high-frequency dynamics are lost. Furthermore, simulation
parameters are not optimized for the entire hairstyle, and therefore
they cannot re-simulate the result directly and create new anima-
tions with different head motions or additional external forces. The
state of the art work of Xu et al. [XWW∗14] introduces a robust
motion path analysis algorithm, which produces significantly more
complex hair motions while ensuring temporal coherence. While
impressive results were demonstrated, the recorded motions can
only be replayed exactly as captured, and complex interactions with
other objects (e.g., comb) are difficult to achieve. Consequently, the
benefits of purely captured hair animations are still dubious in pro-
duction.

Data-driven Simulation. Our work focuses on measuring sim-
ulation parameters from real-world dynamic hair performances
and to produce new hair animations under different environmen-
tal conditions. Techniques for measuring simulation parameters
have been developed in other domains, such as cloth [BTH∗03,
MBT∗12, WOR11] and soft body objects [BBO∗09, WWY∗15].
When it comes to hair, Twigg and Kačić-Alesić [TKA11] intro-
duced a method for static inversion of mass-spring systems, which
optimizes parameters such as the spring rest length so that shapes
represent the equilibrium when settled under gravity. Derouet-
Jourdan and collaborators [DJBDDT13] proposed the first work
to compute hair strand parameters based on the Super-Helices
model [BAC∗06]. Simulation parameters of hairstyles in static
equilibrium are estimated subject to gravity and frictional contact
for automatic simulation purposes. In addition to the assumption
that hair parameters are homogeneuous, these parameters cannot
be properly estimated solely from static geometry, since differ-
ent combinations of shape and physical properties could yield the
same result under gravity (see Fig. 2). We propose to disambiguate
these parameters by observing the hair in motion with a technique
that can compute hair simulation parameters for a given simulation
model by observing dynamic hair in the real world.

3. Capture and Preprocessing
Our goal is to capture the physical parameters of specific hairstyles
by observing the dynamic motion in the real world. In this section
we discuss our capture setup for acquiring video data, and describe
the preprocessing steps required to obtain initial hair geometry for
the first frame and extract the rigid head motion over time, which
are both required for the dynamic optimization procedure described
in Section 4. We also preprocess the input videos to obtain con-
straints for the dynamic optimization.
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Data Acquisition. Our method requires calibrated video refer-
ence of dynamic hair motion. We have no specific constraints on the
captured data, other than the hair should be well-lit and recorded
from sufficiently many viewpoints to see the complete hairstyle,
at a high-enough frame-rate to avoid severe motion blur. For the
hairstyles in this paper we use a multi-view array of ten cam-
eras recording at 35 frames-per-second, where two are dedicated
to track the head motion and eight are spread around the back and
sides of the hairstyle (see Fig. 3). The hair is evenly lit by LED
lighting strips. Note that for validating our method on small ex-
amples of individual hair strands (as described in Section 6) we
employed only two views.

Figure 3: Our capture setup consists of 8 video cameras spaced
evenly around the hairstyle, and 2 additional cameras tracking head
motion from front. The hair is uniformly lit using LED strips.

In addition to the video data we acquire a facial scan of the ac-
tor [BBS∗10] and align a full head model to the scan in order to
obtain a complete scalp for rooting the hair. We place a small num-
ber of markers (14) on the actor’s face in order to compute the per-
frame motion of the head from the two front cameras. The actor
maintains a neutral expression with closed eyes during acquisition.

Hair Initialization. Just as with traditional hair simulation for
animation, our optimization method for simulation parameters re-
quires the topology and initial geometry of the hair to be given as
input. We therefore wish to reconstruct the hairstyle at the starting
frame of the video, where the hair should be static. This is accom-
plished by starting with a multi-view reconstruction step to obtain
a 3D point cloud [Agi16]. In practice, one frame of ten viewpoints
with wide baselines is not sufficient to obtain a dense point cloud,
so we begin each sequence by rotating the actor as if on a turntable
to simulate many narrow baseline views, and then extract 100 refer-
ence views for reconstruction. From the point cloud data we recover
the 3D hair geometry using the state-of-the-art hair capture method
from multi-view images of Hu et al. [HMLL14], which provides
plausible hair synthesis for a wide range of possible hairstyles.
This geometry is then set as the initial geometry of the first frame.
Since the hairstyle can have tens or even hundreds of thousands of
strands, we follow the work of [DJBDDT13] as well as industry
practice, and extract a subset of guide strands in order to decrease
computation time. To this end, we group all the hair strands into

400 clusters via k-means clustering based on the root positions and
strand shapes as in Wang et al. [WYZG09]. For each cluster we
compute the center strand, which represents the shape of the cluster,
as well as the attachment point to the scalp. Throughout this work
we will simulate and optimize for only these 400 guide strands and
generate final hairstyles by interpolating the in-between strands, a
common practice in hair simulation. Fig. 4 shows the first-frame re-
constructed hair geometry using Hu et al. [HMLL14] and a subset
(100 for visualization) of the corresponding guide strands for two
actors.

Reference Photo Initial Reconstruction Guide Strands

Figure 4: From reference photos (left) we reconstruct initial hair
geometry (center) and extract a subset of guide strands (right).

Video Preprocessing. Our parameter optimization method will
be guided by constraints from the input videos of the dynamic hair
motion. To facilitate the optimization, we preprocess the videos to
make constraint computation faster. We argue that the overall ap-
pearance of a dynamic hairstyle projected into a 2D video can be
characterized by three main properties: (1) the orientation of hair
strands, (2) the approximate silhouette of the hair volume, and (3)
the general direction of motion of the strands from one frame to the
next. We therefore precompute orientation maps in each frame of
every video using oriented Gabor filters, which have been shown to
work well for identifying hair orientations [BBN∗12]. We choose
the highest filter response under 16 orientations for each pixel. Sil-
houettes are extracted using Video Snapcut [BWSS09], which al-
lows us to manually segment a small subset of key-frames and the
silhouettes are automatically propagated over time. Approximate
hair motion is computed using optical flow [BBPW04]. Since pro-
jected hair strands have high gradients orthogonal to the strand and
are virtually indistinguishable along the strand, we use only the
motion component that is orthogonal to the strand orientation as a
constraint. An example orientation map, silhouette and motion field
for one video frame are shown in Fig. 5.

Ultimately, the acquired data for our dynamic optimization in-
cludes a 3D head model with rigid motion per frame, initial 3D
guide strands attached to the head in a starting static pose, and a
multi-view array of orientation maps, silhouettes and perpendicu-
lar motion vectors for a dynamic hair sequence.
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Video Frame Orientation Silhouette Motion

Figure 5: Our optimization will use cues from the video frames.
The constraints include the 2D orientation of strands, the silhouette
of the hairstyle volume, and approximate motion vectors.

4. Dynamic Parameter Optimization
We now describe our data-driven approach to optimize hair simu-
lation parameters, by comparing simulated hair animations to ob-
served hair motion.

4.1. Physical Hair Simulation
As mentioned previously, physical simulation is the method of
choice for generating CG hair animations, and several hair mod-
els and simulation approaches have been proposed [BAC∗06,
BWR∗08, SLF08], each with their own particular strengths. A key
component of our work is that we design a framework for optimiz-
ing the parameters of virtually any hair model, by treating the sim-
ulation as an unknown function of a parameter set Φ. Our approach
is independent of the simulator and even the actual parameters, as
long as the resulting simulated hair can be evaluated as follows.

Let us define a generic hair strand as a 1D curve in space, dis-
cretely sampled at regular intervals along the curve. Each sample
point xi contains an orientation oi, which represents the tangent to
the curve at xi. Accounting for motion over time t, and combining
samples from all hair strands, the complete hair animation can be
characterized by S = {xt

i ,o
t
i}. Our optimization method will aim

to produce an optimal set of parameters Φ such that the simulator
will generate a result S that closely matches the observed hairstyle
under the measured head motion. Our goal is similar to the work
of Derouet-Jourdan et al. [DJBDDT13], but it is very important to
note that we go beyond inverting static hairstyles by considering
the dynamic motion of the hair in our optimization, which is es-
sential for guaranteeing that the estimated parameters will remain
faithful to the observed hairstyle under motion. Next, we describe
the energy function that we minimize in order to achieve this goal.

4.2. Data-Driven Hair Evaluation
Given a simulated hair animation that corresponds to a captured
video sequence, we can evaluate the suitability of the parameter set
used for simulation by formulating an error function over all strands
S, given the video data constraints computed in Section 3. Note
that our goal is not to obtain an exact strand-by-strand reconstruc-
tion of the observed performance such as Xu et al. [XWW∗14],
but rather obtain a feasible set of simulation parameters Φ that will
allow plausible re-animations of the hair in different scenarios.

We formulate the difference between simulated and observed
hair motion as an energy term that we minimize. Specifically,

E(S) =
N f

∑
t=1

Nν

∑
ν=1

Eview(S, t,ν), (1)

where N f is the number of video frames and Nν is the number of
viewpoints. For each viewpoint ν we evaluate the error for only the
visible strand points {x̃i}t with corresponding orientations {õi}t at
time t, which we denote as S̃t . For ease of notation, we omit the
viewpoint index ν. Visibility is computed by the simple heuristic of
checking occlusion with the head model from the viewpoint. The
error for a single viewpoint is thus defined as

Eview(S̃t) = Eorient(S̃
t)+λ1Eflow(S̃t)+λ2Esilh(S̃

t), (2)

where the first term is an orientation term to ensure that the pro-
jected strand orientations at the current time follow the correspond-
ing orientation map. This orientation error can be described as

Eorient(S̃
t) =
|S̃t |
∑
i=1

(
1−

∣∣〈ôt
i ,Ot(x̂t

i)
〉∣∣) , (3)

where x̂t
i and ôt

i are the projections of the sample point x̃t
i and orien-

tation õt
i onto the image plane, and Ot is the orientation field com-

puted in Section 3. Both orientation vectors are normalized, and
〈·, ·〉 denotes the inner vector product. The second term in Eq. 2 is
a flow term to ensure that the motion of the strand points follow the
approximate motion field F t , also from Section 3, and is defined as

Eflow(S̃t) =
|S̃t |
∑
i=1

∥∥∥(x̂t
i− x̂t−1

i

)
−F t(x̂t

i)
∥∥∥2

. (4)

Finally, the third term is a silhouette term, which constrains the
projection of the strands to fill the hair region of the image, since
the overall volumetric shape of the hairstyle in motion is an impor-
tant cue for its appearance. The silhouette term is defined over all
silhouette pixels {si}t in the image, and attempts to minimize the
distance to the closest projected hair strands as

Esihl(S̃
t) = ∑

s∈{si}t

min
x̂∈S̃t
‖s− x̂‖2 . (5)

Note that this term does not prevent the hair from extending be-
yond the silhouette, but in that case the orientation term (Eq. 3) will
be very poorly satisfied for those strands.

The result of this evaluation is an error metric that quantifies
how well the simulated dynamic hairstyle S matches the captured
hair animation. Since the flow term and the silhouette term are
measured in pixels, their influence can be independently down-
weighted through λ1 and λ2, respectively, to better match the ori-
entation term, which is constructed as an inner product. In our
examples shown later, we operate on 1MP video frames and use
λ1 = 0.01 and λ2 = 0.01.
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4.3. Optimization
Given a captured hair sequence and the error function described in
Section 4.2 we can now optimize for the simulation parameters Φ

that will yield a hairstyle animation that closely matches the input,
and also allow the hairstyle to be simulated for new animations.

Inverting a dynamic hair simulation directly is a daunting task,
as the complex interplay of hair motion including collisions, con-
tacts and friction makes the problem highly non-linear and non-
continuous. Furthermore, there is no such thing as a single best hair
simulation model, and over the past years different models with
different properties and simulation parameters have evolved. In or-
der to cater to as many simulation methods as possible, we lever-
age particle swarm optimization (PSO) [KE95], a general compu-
tational method that iteratively solves optimization problems with
respect to an objective function. The main benefit of using PSO for
this task is that it is a form of “black-box" optimization, in that PSO
is oblivious to the actual function being optimized. The overall ap-
proach of PSO is to maintain a population of candidate solutions,
named particles, and iteratively evolve the particles in the parame-
ter search space towards other particles that found better solutions
to the objective function. After a fixed number of iterations, the best
fitting particle (i.e. the one with lowest objective error) is chosen as
the solution to the optimization.

In our solution, each particle is a simulator that initializes a phys-
ical model given the 3D reconstructed hair from Section 3, and gen-
erates a hair animation S given the captured head motion and the
current parameter guess Φ. The result of the optimization will be
the physical parameters that minimize our objective. Using this ap-
proach is very powerful, as it allows us to optimize for any sim-
ulation model, with any set of physical parameters. Furthermore,
if the simulation models hair-hair interaction, such as friction, the
optimization will also find suitable parameters for the inner fully
occluded hair strands, since every strand indirectly influences the
overall perceived motion. The obvious drawback over optimization
methods that compute analytic derivatives is convergence speed
and hence computation time, as many simulation runs may be re-
quired to achieve optimal parameters. We will assess convergence
behaviour in Section 6 and discuss computation time in Section 7.

5. Application to Simulation Models
To demonstrate the effectiveness and universality of our optimiza-
tion procedure, we show its application to two well-known state-of-
the-art hair simulation models; the super-helices model of Bertails
et al. [BAC∗06] in Section 5.1, and the discrete elastic rods model
proposed by Bergou et al. [BWR∗08] in Section 5.2. Once opti-
mal simulation parameters are found, they can be used to simulate
the hairstyle under any novel input animation. In Section 5.3 we
describe how the simulated guide strands are interpolated to a full
hairstyle, which is then rendered to generate the final visuals.

5.1. Super-Helices

In this section we first give an overview of the super-helices model
of Bertails et al. [BAC∗06] and then show how to use it with the
proposed dynamic parameter inversion.

Model Description. The super-helices model is defined for a sin-
gle hair strand, which is divided into N helical segments. Each seg-
ment is parameterized by three values: twist (κ0) and two orthogo-
nal curvatures (κ1 and κ2). Thus the entire strand has 3N parame-
ters denoted as q, the generalized coordinates of the strand. Given
coordinates q(t) for the strand over time t, it is possible to recon-
struct the full animation of the strand.

To simulate a strand physically and generate an animation q(t),
several mechanical properties are required. The first of which are
the values of q under no external forces, deemed qn and called
the “natural curvatures and twist". These 3N parameters define the
curliness of the strand, where values of zero yield straight hair, and
non-zero values give more wavy or curly strands. In addition, the
mechanical properties include the bending stiffness for both cur-
vature directions and the torsional stiffness, typically expressed as
two scalar values (known as Young’s modulus and Poisson’s ra-
tio). While the original model defines uniform stiffness over the
entire strand to avoid lengthy parameter tuning, we can allow per
segment stiffnesses in order to, for example, model hair that be-
comes frizzier towards the tips, since our values will be optimized
automatically, yielding an additional 2N parameters. Finally, each
strand contains an additional parameter defining the volumetric
mass ρ, the cross section of the strand given by two radii η1 and
η2, a viscous air drag coefficient ν, and an internal friction coeffi-
cient γ1, all of which are constant across the segments of the strand.
In addition to the original super-helix model we add a per-strand
hair-hair friction coefficient γ2, a hair-head friction coefficient γ3,
and a cohesion coefficient τ that controls how closely the velocities
of nearby guide strands should match. In our implementation, we
use a more approximate and simpler model without Coulomb fric-
tion compared to Derouet-Jourdan et al. [DJBDT13] to decrease
computation time (please refer to Choe et al. [CCK05] for more
details of these hair interaction forces). We found that these addi-
tional parameters give the simulator more flexibility to match ob-
served real world hair. In total, the complete hairstyle is governed
by (5N +8)G parameters, where G is the number of guide strands.

A strand is simulated by solving the equations of motion of a
super-helix to get q(t) given the mechanical parameters, a starting
point q(0) with corresponding head geometry and root attachment
points, the time-varying head motion, and the known gravity direc-
tion. Elaborating further on the model, the equations of motion or
the simulation approach is beyond the scope of this paper, and we
refer to Bertails et al. [BAC∗06] for more details.

Model Initialization. So far we have captured the static hair of
the first video frame as a set of piecewise linear segments repre-
senting the G guide strands, together with the initial head geom-
etry. In order to initialize the simulation model we have to con-
vert the guide strands into super-helices. We use the floating tan-
gent algorithm introduced by Derouet-Jourdan et al. [DJBDT13],
which approximates each strand by a smooth super-helix consist-
ing of N segments. For the datasets in this paper we use N = 5 for
short hairstyles, and increase the number of segments up to N = 10
for longer, curlier hairstyles. The resulting super-helices define the
configuration of q, i.e. the topology of the hair, and specifically
they represent q(0), the starting point of our simulation. Note that
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the natural curvatures and twist qn are still unknown, as the cap-
tured guide strands are reconstructed under gravity and contacts.

To finish the initialization we compute the root attachment points
of the strands on the head model, plus define a coordinate frame for
the first segment of each super-helix at each attachment point. We
set the gravity vector based on the initial head position.

Parameter Optimization. We are now ready to optimize
the physical simulation parameters. Our parameters include the
Young’s modulus per strand segment, as well as the mass ρ, the
hair-hair and hair-head friction coefficients γ2 and γ3, and the co-
hesion coefficient τ per guide strand, yielding a parameter vector
Φ ∈ R(N+4)G. We fix the Poisson’s ratio (0.48), the two radii η1
(5e−5m) and η2 (5e−5m), as well as internal friction γ1 (1e−10kg ·
m3 · s−1) and air drag ν (1e−5kg · (m · s)−1) for all hairstyles as
suggested by Bertails et al. [BAC∗06]. The natural curvatures and
twist qn will be solved for as described below.

For our PSO-based optimization we initialize a swarm of par-
ticles, each one a thread that will run an instance of the simula-
tion with a different guess of parameters Φ

∗. Before simulating,
each particle must compute qn, which can be determined given
the static hairstyle of the first frame q(0) and the parameters Φ

∗

through static inversion. Similar to the recent work on static hair
inversion [DJBDT10, DJBDDT13] we estimate the qn that pro-
duces q(0) under known gravity vector, hair-head collisions and
hair-hair interactions. Instead of optimizing the interaction forces
as well [DJBDDT13], we pre-compute them by using the explicit
hair interaction models with γ2 and γ3.

The particle now has everything required to simulate the
hairstyle given the sequence of tracked head motion. The result
is a set of configurations q(t), which can readily be converted to
our representation of a hairstyle animation S by sampling the re-
constructed super-helices at regular intervals. We empirically found
that a spacing of 3mm per sample provided sufficient points to eval-
uate the animation, and adding more samples only increased com-
putation time. The particle finally determines the suitability of the
parameter set Φ by evaluating Eq. 1. Given the residuals of all par-
ticles, the particles are re-initialized with a new set of parameters
and the process is repeated using traditional particle swarm opti-
mization [KE95].

For the results in this paper we use 31 particles, optimizing over
50 video frames for 400 iterations. To accelerate the convergence
of our algorithm, we employ a two-step method. In the first 200
iterations, we estimate the Young’s modulus as a uniform value per
strand in order to reduce the dimensionality of the problem. In the
next 200 iterations we relax this constraint to allow Young’s mod-
ulus to vary along the strand, using the estimated uniform value as
the initial guess. Allowing the Young’s modulus to vary spatially
is beneficial to account for the fact that a single guide strand repre-
sents a collection of fibers of different length. The fitted parameters
produce a plausible match to the observed hairstyle in motion, and
can be immediately used for additional simulations with different
external forces, as we will show in Section 6.

5.2. Discrete Elastic Rods

As a second example, we show how our dynamic inversion strat-
egy can be applied to the discrete elastic rods model of Bergou et
al. [BWR∗08]. Since the proposed dynamic inversion strategy is
agnostic to the underlying simulation method, optimal simulation
parameters can be found in the same way as for the super-helices
model, even though the two models are conceptually very differ-
ent (i.e. one is continuous the other discrete). The major difference
between these two models are the number of parameters to be op-
timized and the static inversion problem. We will first briefly de-
scribe the discrete elastic rods model and then elaborate on these
differences.

Model Description. A discrete rod (hair strand) consists of a cen-
terline r with n vertices x0, ...xn−1 and n− 1 straight edges. Each
rod has 4n−1 degrees of freedom (DOF) (3n for vertices, and n−1
for the angle of rotation θ relative to the natural Bishop frame for
each edge). As internal forces we consider twisting, bending, as
well as stretching, which leaves each segment with four physical
parameters: twist (κ0), two orthogonal curvatures (κ1 and κ2) and
rest length (l0). To simulate a strand animation r(t), we first com-
pute all the internal and interaction forces as well as any external
forces acting on the rod. Then, by solving for the velocity of each
vertex and the rotation angle at each segment, we can update the
strand shape in the next time step. For more details on the model,
we would like to refer the reader to Bergou et al. [BWR∗08].

Model Initialization. The discrete representation of hair strands
as piecewise linear curves renders model initialization straightfor-
ward. In our implementation, we resample each hair strand into
1cm long segments. As in the previous model, we only consider
guide strands for simulation, yielding a total G rods to be simulated
for the full hairstyle.

Parameter Optimization. Our optimization parameters for dis-
crete elastic rods include the Young’s moduli per five strand seg-
ments, as well as the mass ρ, the hair-hair and hair-head friction co-
efficients γ2 and γ3, and the cohesion coefficient τ per guide strand
as detailed above, yielding a parameter vector Φ ∈ R((n−1)/5+4)G.
Since the rods have many more segments than the super-helices
(n� N), we chose to estimate the Young’s modulus over 5 seg-
ments, yielding a similar discretization.

Static inversion takes place the same way as described above for
the super-helices model, with the difference that now the stiffness
matrix is banded. We solve for κ0, κ1, κ2 and l0 for each segment
to ensure the hairstyle is static under gravity in the absence of any
other external forces.

5.3. Hair Interpolation and Rendering

Throughout simulation and optimization we follow the standard
practice of reducing computation time by operating only on guide
strands, which represent just a subset of the hairstyle. In order to
create realistic complete hairstyles we return to the dense set of
captured strands reconstructed by Hu et al. [HMLL14] in Section 3,
represented as piecewise linear hair strands H, and we also return
to the piecewise linear strands G from which the super-helices and
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discrete rods were generated. The simulation provides the motion
of the guide strands in G, and these strands will be used to interpo-
late the motion of the rest of the hairstyleH. Since the time-varying
head position is known and the root points of all hair strands as
well as the initial coordinate frame of the first segments remain
fixed, obtaining per-segment coordinate rotations is sufficient to
reconstruct all the hairs in H. Thus, we aim to interpolate rota-
tions from the guide strands. We adopt a linear blend skinning
approach [LCF00] for the interpolation, which is similar to the
method of Chai et al. [CZZ14]. For each Hi in the initial video
frame we find its k0 nearest guide strands {Gi} and use them as
skeletons, where each edge segment between two vertices is con-
sidered as a bone. For each edge segment ` j in Hi we search for
the k1 nearest bones among all {Gi} and compute skinning weights
based on the distances. Then, for every point in time, we blend the
rotations of the k1 bones according to the weights to get the rotation
of ` j. The final hairstyle is reconstructed by following the segments
in order from root to tip and applying the rotations per segment, and
then rendered using the method of Marschner et al. [MJC∗03]. We
use k0 = 2 and k1 = 4 for all results in this paper.

As a final caveat, after generating the simulation results using the
optimized parameters it is sometimes apparent that the initial static
reconstruction of Hu et al. [HMLL14] can create some hair strands
that are actually longer than the real counterparts. Identifying the
exact strand lengths from hair at rest is a very challenging problem,
but when animated the difference in length becomes more visible.
For this reason, after observing the simulated result we typically
return to the initial static hair reconstruction and manually apply
a “virtual haircut" to shorten strands whose excessive length only
became apparent during motion. After cutting, we re-run the opti-
mization to ensure we obtain the optimal parameter set.

6. Results and Evaluation
We start by evaluating convergence properties and performance of
the proposed algorithm, first on synthetic data, followed by exper-
iments on real single hair strands. Then we show results on full
hairstyles for two different subjects, with different hair lengths. In
this first part, results are computed using the super-helices model
such that they can be easily compared to one another for analy-
sis. In a second part we then compute results with both models to
show the generality of the approach, and how it enables the simu-
lation methods to optimally approximate the captured hair anima-
tion within their respective limitations. Our results demonstrate that
the method succeeds at recovering simulation parameters from cap-
tured input videos, which not only resemble the captured animation
but allow to simulate the hairstyle under any novel input animation,
including external forces such as wind.

Synthetic Validation. We validate the proposed method using a
synthetic hairstyle, which gives us ground-truth geometry and al-
lows us to quantitatively assess the performance. Also, in this case
we know that the animation can be matched by the simulation,
which is not always the case for real data where the simulation
method only approximates the many effects that influence the hair.
To this end we simulate and render a short animation of 200 frames
using G = 100 guide strands. The rendered images then serve as
the only input to our method, as if we were to operate on captured
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Figure 6: We validate our method on a synthetic dataset and show
that we can accurately recover simulation parameters that repro-
duce the same input animation. The top row shows the input images
to our optimization, the middle row shows a rendering of a simula-
tion with the recovered parameters, and the bottom row shows the
3D error color coded from blue (0mm) to red (50mm).
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Figure 7: Here we show the input Young’s modulus (top) for the
synthetic dataset in Fig. 6, color coded from blue (0GPa) to red
(10GPa), and we visualize the error of our recovered Young’s mod-
ulus (bottom) which is on a scale of 0 to 3GPa, as illustrated by the
color bars.

imagery. As can be seen in Fig. 6, the re-simulated result with the
estimated parameters (middle row) resembles the ground-truth in-
put (top row) very well. This is corroborated by the Euclidean error
computed on the guide strands and visualized in the bottom row.
In Fig. 7 we visualize the error between the original and recovered
Young’s moduli and show that overall our method finds reason-
able parameters and not just parameters that yield a similar motion.
Since our measurement is in a 2D scenario, our estimated parame-
ters are only accurate with respect to projection of the hairstyle in
the rendered images and as a consequence, the recovered parame-
ters are not exactly identical to ground truth.

Convergence Analysis. In order to gain some intuition on the
error surface of the objective function, and how suited the cho-
sen optimization strategy is to find its minimum, we conduct a
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Figure 8: We assess the convergence of our algorithm on the syn-
thetic dataset by varying the swarm size, i.e. the number of parti-
cles. We first generate 127 random parameter vectors, and for each
test that involves k particles, we pick the first k vectors as initial
values. The left plot shows the total energy residual per strand over
all 200 frames, and the right plot the average 3D distance to ground
truth per vertex. The two are clearly correlated, which means that
minimizing the proposed objective function indeed yields similar
3D hair motion. Furthermore, the plots show that swarms with more
than∼30 particles exhibit similar convergence properties, which is
why we use 31 particles in our experiments.
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Figure 9: We test the convergence of our algorithm w.r.t. different
initial values using the synthetic dataset. Each run consists of 31
particles with random initial parameter values and all successfully
converge to similar low energy states. This indicates that the energy
landscape is suited for PSO optimization.

series of convergence experiments on the synthetic data described
above. The first experiments investigate the influence of the swarm
size (number of particles) on convergence. As can be seen from
Fig. 8 small swarms converge slowly and fail to find a low min-
imum. Swarms with more than ∼30 particles perform similarly
well, which is why we use 31 particles for optimization. The second
batch of experiments gives an intuition of the smoothness of the
objective function. Following from the previous experiments, we
randomly initialize three different swarms of 31 particles each. As
can be seen in Fig. 9, all three swarms exhibit very similar conver-
gence behaviour and converge to similar low-energy states, which
is a strong indicator that the objective function is well suited for the
proposed optimization method. Finally, in Fig. 10 we investigate
how close the estimated parameters resemble the input parameters.
As can be seen, the parameter residual is reduced during optimiza-
tion which indicates that there is a strong correlation between pa-
rameters and objective residual. This would for example be less ob-
vious if the parameters would be highly redundant since then very
different parameters could produce similar output animations.

Single Strand Experiments. Adding a level of complexity over
synthetic validation, we conduct a series of experiments on sin-
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Figure 10: These two plots show the progression of the parameter
vector residual during optimization. As can be seen, the residuals of
all parameters are being reduced during optimization, which indi-
cates that the optimization indeed gets close to the global optimum.
Note that the curves show the averaged convergence over all three
runs displayed in Fig. 9 and that the y-axis has been scaled per
parameter as indicated in brackets.

Initial Frame Frame 14 Frame 27 Frame 56

Figure 11: The top row shows input frames used to estimate the
simulation parameters, with which the strand is simulated (bottom
row). As can be seen, the simulation results closely match the input.

gle, real hair strands. While the simulation method may already not
model all the physical effects that govern the animation, at the very
least we can ensure that the initialization is accurate and we know
the exact motion at the root of the strand, both of which will be less
accurate for the full hairstyle. Fig. 11 shows our result for a single
hair strand. Starting from the intial frame on the left, the method
recovers parameters that yield a very similar motion of the strand
when re-simulated (bottom row). We estimate the motion of the
root by tracking the position of the blue ball.

The main advantage of our technique over pure capture meth-
ods is that the recovered parameters can now be used to simulate
the strand under any novel animation. Fig. 12 shows a novel input
animation on top, and our simulated result at the bottom, this time
given only the motion of the blue ball as input. As can be seen, the
simulation closely resembles the reference images, even though the

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Hu et al. / Simulation-Ready Hair Capture

Initial Frame Frame 26 Frame 33 Frame 52

Figure 12: To validate that the properties estimated in Fig. 11 are
meaningful in that they allow the simulation to extrapolate to novel
animations, we simulate the strand under a different animation.
The simulation again visually matches the reference frames very
closely.

parameters were retrieved from a different clip and we only use the
motion of the root as input.

Finally, we show that we can recover different physical param-
eters for hair that has been treated with different products. Fig. 13
shows three strands with different properties; treated with a stiff-
ening varnish (left), wet with water (center) and dry (right). The
method successfully retrieves these properties and can thus cap-
ture the physical appeal of hair, as demonstrated in Fig. 14, where
one strand is simulated three times with the different properties ex-
tracted with the three different treatments. To better show the dif-
ference, we overlaid the three strands in pink (varnish), blue (wet),
and yellow (dry). It is clearly visible how the varnish hair for ex-
ample is much stiffer and exhibits a very different motion style.

Full Hairstyle Results. Lastly, we show results on complete
hairstyles for four different subjects with hair of different length.
For all subjects we use G = 400 guidestrands. Fig. 15 shows in-
put images and simulation results using the super-helix model for a
short and medium-length hairstyle and Fig. 16 for a long hairstyle
using discrete elastic rods. The simulation parameters are esti-
mated from the first 50 frames only, and extrapolation to subse-
quent frames additionally validates the recovered parameters. Even
though the two simulation models are fundamentally different, the
proposed framework succeeds at finding suitable parameters for
both since it is agnostic to the actual simulator used.

In Fig. 17 we recaptured the shorter hairstyle after applying hair
product to it. Specifically, we applied hair spray to the right half
of the head, which increases stiffness in that area. As can be seen,
our method recovers the fact that the two sides exhibit different
stiffness, which can be seen on the right where we visualize the

Initial Frame Frame 16 Frame 30 Frame 71

Figure 13: This figure shows three different strands that exhibit dif-
ferent physical properties (from left to right: with varnish, wet, and
dry). The simulations with the estimated parameters shown in the
bottom row match the input images.

Figure 14: Applying the parameters estimated from the strands with
different physical properties (Fig. 13) to the same strand clearly
shows how the physical properties influence the style of the anima-
tion and that we can successfully capture such properties. For vi-
sualization purposes, the three simulation runs are overlaid in pink
(varnish), blue (wet), and yellow (dry).

estimated Young’s modulus on the guide strands, the parameter that
represents stiffness.

As discussed earlier, the main advantage of the proposed ap-
proach over pure capture methods is that the recovered parameters
may be used to simulate the hair under novel input head animations
and external forces as shown in Fig. 18, where we apply a wind
force to the actors after optimizing for the hair properties. In the
top row, we show the actor with longer hair, and in the bottom row
we show two versions of the actor with shorter hair, the one with
firming hair product on the side of his head and one without. Here
we can clearly see the benefit of capturing the physical parameters
that match the specific hairstyle of the actor.

The ability to estimate hair properties and apply them to novel
animations is of central importance for practical applications,
but of course the accuracy at which an animation can be repro-
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Frame 0 Frame 54Frame 37 Frame 79

Frame 0 Frame 57Frame 19 Frame 60 Frame 133

Frame 145

Figure 15: We show simulations with the super-helix model using the physical parameters that resulted from our dynamic optimization. Note
that we optimized over the first 50 frames of each sequence, and the remaining frames additionally validate that our parameters are plausible.

Frame 0 Frame 49 Frame 84 Frame 130

Figure 16: This figure shows results using the discrete elastic rods model. Just as in Fig. 15, simulation parameters are estimated from the
first 50 frames only and the remaining frames additionally validate that the recovered parameters yield plausible simulations.

duced depends on the capabilities of the simulation method. When
comparing to the state-of-the-art hair capture method of Xu et
al. [XWW∗14] (Fig. 19), it is obvious that the chosen simulation
method cannot reproduce the animation at the same level of accu-
racy. Thus, if simply playing back a captured animation is desired,
then dense hair capture methods (i.e. Xu et al. [XWW∗14]) are cur-
rently the best option. However, since the proposed optimization
framework is agnostic to the actual simulator, employing a more

sophisticated simulator in the future would yield improved repro-
duction of the hairstyle.

This dependency on the simulator is nicely shown in Fig. 20
where there are clearly small differences between the two simu-
lation models employed. Overall, however, both resemble the input
motion well since our optimization strategy will determine param-
eters such that the resulting simulation matches the input animation
as closely as possible globally.
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Figure 17: Here, the right half of the hairstyle has a firming hair
product, and our method is able to determine a largely different
bending stiffness (Young’s modulus), as visualized on the right.
Young’s modulus on the left side stays within [1, 10GPa], which
has the same order of magnitude as real hair, while the right side
has much larger values because of the firming hair product.

Adding External Wind

Rest Frame Without Hair ProductsWith Hair Products

Figure 18: After acquiring parameters we can simulate with addi-
tional external forces, and the simulated hair will remain faithful to
the captured actor. The top row shows three animation frames from
one actor with strong wind. The bottom row shows that the same
wind force applied to the short-haired actor with and without hair
product gives very different (and expected) behavior.

7. Conclusion
We present a new framework for simulation-ready hair capture - a
method to automatically estimate dynamic hair simulation parame-
ters by observing real hair motion. The resulting parameters can be
used to re-simulate the captured hair, and also to edit the animation
by changing the head motion, the physical properties of the hair
such as wetness, and external forces such as wind.

In comparison to current state-of-the-art methods for parameter
estimation of hair, ours is the first to consider its dynamics and fit
parameters to captured hair in motion, which, as we have shown,
is essential for obtaining reliable parameters. The suggested dy-
namic inversion is agnostic to the underlying simulation method,
which we demonstrate using two state-of-the-art simulation mod-
els, super-helices [BAC∗06] and discrete elastic rods [BWR∗08].
We show that our method can estimate parameters for both mod-
els, such that the simulated results closely resemble target real-
world hairstyles, even though the models are fundamentally dif-
ferent. Our method also has potential for mass-spring simulation

Reconstructed
[Xu et al. 2014]

Input Image Simulated
[Ours]

Figure 19: Our method can be applied to other hair capture setups,
such as the input of Xu et al. [XWW∗14], which was recorded for
space-time reconstruction. Our simulated hair has comparable mo-
tion but can be completely edited or re-animated after capture.
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Figure 20: Our dynamic inversion can be readily applied to other
hair simulation models. Here we show an application to the super-
helices model [BAC∗06] (middle row) and the discrete elastic
rods [BWR∗08] (bottom row) on the same input data (top row).
Since the two models have different capabilities, there are clear dif-
ferences in the results, but overall the simulations match the input
animation well since our optimization finds optimal parameters for
both, such that they match the real world hairstyle.

models [SLF08]. We would like to explore the problem of static
inversion for mass-spring systems and incorporate this model into
our pipeline in the future.

The main limitation of our method is computation time, since a
full dynamic simulation must be solved for every particle evalua-
tion, over several particles, across many iterations. In practice, this
was accomplished on a compute cluster using 480 cores (30 nodes
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for the particles with 16 cores each for multi-threaded simulation).
Still, optimizing over 50 frames for 200 iterations of PSO requires
approximately 40 hours. Improving the convergence time of this
approach is a primary topic of future work. As we have the ability
to collect accurate 3D hair motion and their simulation parameters
at scale, we wish explore data-driven and learning algorithms to
predict these parameters directly.

We note again that our goal is not to recover the strand-by-strand
reconstruction of the observed hair motion, and so the re-simulated
animations with the optimized parameters may not perfectly match
the inputs, in particular if the hair configuration goes outside of the
simulation model that is used. However, the resulting hair proper-
ties computed in this work recover plausible motions and allow for
artistic editing as mentioned above, and our framework can be im-
mediately used to estimate parameters for even more sophisticated
simulation models as they are developed in the future. A key feature
of our framework is that it is generic, and can be applied to differ-
ent physical models independent of the actual simulator. As such,
this work represents a major step towards practical hair modeling
and animation.
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