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Figure 1: Our design tool allows users to create physical surfaces structured with decorative patterns. Given a base shape and pattern
exemplar (left), our method creates a distribution of stencils that are used to remove material from an otherwise solid surface. The result
(center, right) is a physical surface that combines user-controlled aesthetics and structural integrity.

Abstract
We present a novel method to design shells with artistic cutouts in a manner that produces a stable final result. The process
of stenciling, removing material with a fixed shape, is a particularly appealing way to introduce a decorative pattern into the
design of architectural structures, furniture, or household objects. However, removing material can easily weaken an object to
the point where its integrity is compromised, while purely functional distributions of cutouts lack the desired aesthetic compo-
nent. We tackle this problem by combining aesthetics, stability, and material efficiency in an optimization that determines the
distribution and scaling of these stencils in a way that complies as much as possible with both pattern and stability objectives.
We demonstrate the capabilities of our system on examples from architecture, furniture design, and decorative items, and show
how user interaction can be integrated to guide the aesthetics of the final result.

1. Introduction

From curved pavilions to monocoque furniture and household
items—thin shell structures integrate form and function at all scales
of everyday life. Apart from overall shape, one particularly appeal-
ing way to impart style onto a shell structure is by removing mate-
rial in decorative patterns. However, uninformed or too aggressive
removal of material can easily degrade the structural performance
of the shell and lead to failure. Topology optimization methods,
by contrast, have been very successful at creating organic struc-
tures with optimal stability in a broad range of engineering appli-
cations [DG14], including shell structures [HTG13]. But although
structurally-optimal, the aesthetics of the resulting patterns cannot
be controlled.

Rather than a trade-off, we seek a design tool that combines aes-
thetics, stability, and material efficiency in a synergistic way. To this

end, we introduce the concept of stencils—parametrized masks that
cut out material from an underlying solid surface. Inspired by re-
cent work on discrete element distribution [MWT11,RÖM∗15], we
propose an example-based method for describing stencil patterns
with custom shapes and arrangements. We formulate pattern cre-
ation as an energy minimization problem, allowing us to simulta-
neously optimize with respect to both aesthetic and structural goals.
Using this approach, designers can quickly create structurally-
sound shells with a broad range of decorative patterns, ranging
from regular and homogeneous distributions to irregular and het-
erogeneous patterns.

The technical core of our method is an optimization algorithm
that automatically determines stencil parameters in order to com-
ply as much as possible with both pattern and stability objectives.
Evaluating the stability objective and its derivatives requires solv-
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ing for the equilibrium state of the corresponding patterned shell,
and computing its derivatives with respect to the stencil param-
eters. When using meshes that conform to the boundaries of the
stencil, solving for static equilibrium can easily take several min-
utes. In order to afford interactive design iterations, we lay aside
computationally-expensive approaches based on conforming dis-
cretizations and remeshing operations. Inspired by material inter-
polation schemes in topology optimization [BS99], we instead per-
form all computations on the original surface mesh and scale the
elastic energy of its (membrane and bending) elements according
to the extent to which they are covered by stencils. Though ap-
proximate, this approach allows us to use a comparatively coarse
mesh with constant topology, which is essential for reducing the
time spent on parameter optimization to an acceptable level dur-
ing design iterations. Once a satisfying design has been found, the
user can verify its validity through simulation on a high-resolution
conforming mesh.

The formulation that we propose in this work is general with re-
spect to both aesthetic and structural goals, and it provides manifold
possibilities for the user to guide the aesthetic appeal of the design.
We illustrate this flexibility on a set of digital examples and phys-
ical prototypes that are representative of applications in industrial
and architectural design.

2. Related Work

Fabrication-Oriented Design Recent research in computational
design has looked into different ways to leverage state-of-the-art
fabrication methods, augmenting or replacing traditional geometry-
based design tools with fabrication-oriented methods. Several re-
searchers have proposed approaches to change the deformation be-
havior of objects [BBO∗10, PZM∗15, SBR∗15], introduce func-
tional mechanical properties into prints [PWLSH13, BWBSH14],
or design different forms of physical surfaces, including inflata-
bles [STBG12], plush toys [MI07], bead-work [IIM12], and wire-
mesh models [GSFD∗14].

Texture & Distribution Synthesis Computer graphics has a long
history of creating decorative patterns on digital surfaces. Example-
based texture synthesis methods use a small input exemplar to cre-
ate a seamless output in a larger domain; see for instance Wei et
al. [WLKT09]. In contrast to traditional pixel-based or voxel-based
textures, discrete example-based textures [IMIM08, LGH13] offer
more flexibility to modify a texture without destroying its appear-
ance, and is well suited for applications in digital fabrication.

We base our approach on the work of Ma et al. [MWT11], who
introduced a texture synthesis approach with a neighborhood-based
energy formulation, where shapes are represented by a collection of
points. As a central difference to this, our method operates on rigid
bodies, not points, and directly applies to curved surfaces.

Roveri et al. [RÖM∗15] recently introduced a similar texture
synthesis method that uses a more efficient matching approach, and
can also handle continuous structures.

Thin Shell Simulation The simulation of thin shells has been ex-
tensively used in computer graphics to animate cloth, but has also

started to find applications in computational design tools in recent
years, where it is used to predict and optimize for different types
of surfaces. Grinspun et al. [GHDS03] have introduced a widely
used shell model with hinge-based bending elements, which has
been further investigated and extended [GSH∗04, GGWZ07]. We
employ a modified version of this shell model in our simulation,
which scales the elastic energy with the fill ratio of individual ele-
ments to approximate the deformation behavior of small-scale de-
tails on a coarse simulation mesh. Another approach to account for
fine details has been proposed by Kaufmann et al. [KMB∗09], who
use an XFEM method with enrichment textures to augment the ba-
sis function of a regular FEM simulation and allows for detailed
cuts.

Structural Optimization & Surface Design Finding structures
with good mechanical properties has long been a central topic in
mechanical engineering. Topology optimization [BS03] has been
used to find structures that provide the least compliance, given a
fixed amount of material. Wu et al. [WDW16] have recently shown
that even high resolution topology optimization problems can be
solved efficiently.

In the computer graphics community, several papers have pro-
posed efficient methods to increase the stability of 3D printed
objects [SVB∗12, WWY∗13, LSZ∗14], using various approaches
to generate internal structures for closed objects, and Zhou et
al. [ZPZ13] presented a method to determine likely points of failure
in fabricated models.

Statics aware grid shells by Pietroni et al. [PTP∗15] are an exam-
ple of physics-based surface designs with an aesthetic component,
though the appearance is restricted to Voronoi patterns.

Two recent publications investigate the combination of aesthet-
ics and stability in objects with decorative patterns. Dumas et
al. [DLL∗15] use a voxel-based representation to remove material
from an object by projecting a binary texture onto a mesh. They im-
prove the stability of the object by inserting new connections into
the structure using a heuristic approach. In contrast, our approach
directly computes the effect of stencil parameters on the stability,
and also considers the aesthetic objective while improving the sta-
bility.

Our work is most closely related to Martinez et al. [MDLW15],
who directly combine appearance and compliance objectives in a
unified optimization. Their approach is based on traditional topol-
ogy optimization and tries to find an aesthetically-pleasing struc-
ture within a given stability bound, using a fixed amount of mate-
rial. Our approach also uses a combination of objectives, but works
on three-dimensional shells, and uses an energy-based stability cri-
terion without material constraints that allows us to keep the desired
texture appearance in non-critical regions of the model.

3. Overview

We propose a computational design tool for physical surfaces with
decorative cutouts, fulfilling both aesthetic and structural objec-
tives. Starting from a mesh representing the input surface, the user
first creates a decorative pattern that defines the aesthetic objective
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Figure 2: We show that our method can handle different types of textures. From left to right: (1) A distribution of apples using only our
packing objective. (2) An exemplar with irregularly placed flowers creates a packing-like distribution, and offers the possibility to fill in
missing stencils. (3) Using an exemplar with stencils placed in stripes, we can create a distribution with an anisotropic appearance. (4) An
exemplar with alternating, regularly placed circles results in a highly structured output. (5) A heterogeneous exemplar can be used to create
a more diverse result.

of the design (Sec. 4). This decorative pattern consist of a collec-
tion of stencils that are distributed across the surface according to a
texture objective in the form of an energy function. We explore two
options in this work: a packing scheme that places stencils on the
surface according to a quasi-blue noise random distribution; and an
example-based distribution scheme based on the principle of dis-
crete element textures [MWT11]. We also provide a set of tools
that allow the user to further control the distributions in terms of
local scaling and orientation fields.

The user then defines a force distribution on the surface that is a
conservative estimate of the expected loads. Furthermore, structural
goals are defined to either enforce a stability criterion in terms of
a fixed threshold on the maximum per-element energy density, or
to minimize the compliance of the structure for a fixed amount of
material. The aesthetic and structural goals provided by the user
give rise to objectives that are jointly minimized in order to obtain
optimal stencil parameters (Sec. 5).

4. Stencil Patterns

We present decorative patterns on curved surfaces as collections
of stencils. In the following, we first lay down the representation
of stencils, then proceed to texture objectives and additional art-
direction mechanisms that allow users to create a variety of stencil
distributions.

4.1. Stencil Representation & Projection

Representation Stencils are discrete elements that live on a 3D tri-
angle meshM corresponding to the input surface. Each stencil is
defined by a 2D mesh S̄i describing a reference shape that is trans-
formed to its 3D counterpart Si according to the stencil’s position
qi, its normal ni, an orientation vector ti, and a scaling parame-
ter si. While all of these variables are required to fully determine
the stencil’s transformation, not all of them are actual degrees of
freedom. In particular, the position qi of the stencil has to lie on
the triangle mesh of the input surface, which we achieve through
projection. Furthermore, the normal ni is determined using Phong
interpolation of the vertex normal at the corresponding surface lo-
cation qi. Finally, the orientation vector ti is obtained by rotating

a vector from an underlying orientation field (computed with li-
bigl [JP∗16] using the approach described in [BZK09]) around
the normal ni. The effective degrees of freedom pi of a stencil are
thus defined by five parameters corresponding to its position, scale,
and scalar rotation value. We concatenate the parameters of all sten-
cils into a vector p.

Projection In order to compute the geometry of the stenciled
mesh, we have to project the transformed stencil meshes Si onto
the underlying surface meshM. For each stencil, we first orthog-
onally project the corresponding region of M onto the plane de-
fined by its position and normal. We then scale the distance be-
tween each vertex and the center such that Euclidean distances are
preserved, i.e., the projection is equidistant. Although less accurate
than geodesic distances, we found that the simpler Euclidean dis-
tance yields high-quality distributions, provided that the underlying
mesh is sufficiently smooth and stencils are comparatively dense.
Once projected into a two-dimensional subspace, overlaps between
Si andM as well as corresponding cuts forM can be computed
efficiently.

4.2. Pattern Objectives

We pursue a variational approach and cast pattern generation as
an energy minimization problem with pattern objectives P(p) that
measures the quality of a given stencil distribution. Our method
is flexible with respect to pattern objectives and we consider two
alternatives in the following.

Collision Objective In order for a distribution to be admissible,
we require that no pair of stencils may overlap. To this end, we
introduce a simple repulsive force model that resolves collisions
between stencils, which we detect using their bounding circles. If
interference between stencil i and j is found, we set up an objective
that penalizes overlap according to

Ocoll
i j = ((1+ s)(ri + r j)−di j)

2, (1)

where ri and r j are the bounding circle radii, di j = ||qi−q j|| is the
Euclidean distance between the stencils’ centers, and s is a safety
factor enforcing a lower bound on inter-stencil distance such that
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the resulting structure can be fabricated without running into prob-
lems with minimum feature sizes.

We use a similar approach to prevent stencils from moving off
the mesh when we use a model with open boundaries. If a stencil i
collides with the boundary, we introduce the objective

Obcoll
i = ((1+ s)ri−dik)

2, (2)

where dik is the distance between the stencil center and its nearest
point on the boundary.

Packing A simple yet visually-pleasing way of generating element
distributions is through random sampling. Our packing objective
aims to create uniform stencil distributions by maximizing the dis-
tance between neighboring stencils. For any pair i and j of stencils
with a stencil center distance di j smaller than a given neighborhood
size ε, we add an objective term that repels stencils according to

Orep
i j =

wi j

d2
i j
, (3)

where wi j = (ε
√

2π)−1e−d2
i j/(2ε

2) is a weighting factor depending
on the inter-stencil distance di j. In this paper, we set ε to 25% of
the length of the object. In order to encourage dense distributions,
we add a simple growth objective

Ogrowth
i =−si. (4)

The packing objective is then defined as

Ppack = ∑
i, j

(
Orep

i j +Ocoll
i j

)
+∑

i
Ogrowth

i . (5)

Discrete Element Textures The packing objective can be used to
create visually pleasing distributions as shown, e.g., in Fig. 2, (1).
However, while the user can control the shape of the stencil, the
distribution is homogeneous and its structure cannot be controlled.
In order to provide more artistic control over the resulting distri-
butions, we turn to an example-based approach inspired by Dis-
crete Element Textures (DET) [MWT11]. DET was developed to
synthesize and improve the distribution of points with arbitrary at-
tributes. It works by matching points and their neighborhoods in an
output distribution to neighborhoods in a user-provided exemplar,
and then computes updates that aim to improve the match between
output and input. In our case, we approximate each stencil as a sin-
gle point, and encode the scale and type of the stencil as attributes.
Letting N(i) denote the neighborhood of stencil i, its corresponding
energy is defined as

ODET
i = ∑

j∈N(i)
‖(qi− q̂ j)−T(q′i−q′j)‖2+‖r j−r′j‖2+ξ(1−δt jt′j ),

(6)
where q̂ j is the distance-preserving projection of the position of
stencil j into the tangent plane of stencil i, q′i and q′j are the po-
sitions matched in the exemplar for both stencil, T is the transfor-
mation from the exemplar to the tangent plane of stencil i, and r j
and r′j are the scales associated with stencil j and its match, re-
spectively. Furthermore, t j and t′j are the types of stencil j and its
match, and δt jt′j is the Kronecker delta indicating whether t j and t′j
are identical, such that the expression ξ(1−δt jt′j ) adds a penalty of
ξ if the stencil types do not match. Similar to the packing objective,

we augment the DET objective by a term that explicitly penalizes
collisions.

As can be seen in Fig. 2 (2–5), example-based stencil distribu-
tions allow users to create a wide range of decorative patterns with
distinct aesthetic appeals.

4.3. Initialization

An adequate initial distribution of stencils is important to ensure
that our optimization approach (Sec. 5) will converge to a desir-
able solution. We found that especially for the DET objective, a
good initialization is crucial, and moreover, copying patches from
the input exemplar to the output, as suggested in the original pa-
per [MWT11], rarely led to good results in our examples.

We instead opted for an incremental initialization strategy sim-
ilar to [IMIM08]. We start by randomly selecting a point in the
input exemplar, and then copy the neighborhood patch around this
point onto a random location in the output domain. We then com-
pute the DET matching from the output domain to the input exem-
plar, with the constraint that we do not match any patches in the
input exemplar that are at the boundary of the domain. This is a
one-way matching that does not include a penalty for stencils in
the input neighborhood that are not matched to the output domain.
However, we can use the neighborhood in the exemplar to estimate
which stencils we could add to the output domain, by determining
the stencils that are not matched. Adding unmatched stencils into
the output domains, given that the overlap with existing stencils
is not significantly larger than our threshold, allows us to expand
the region covered by stencils. By iteratively applying this inser-
tion scheme, we grow an initial stencil distribution that ultimately
covers the whole model.

The nature of our packing objective simplifies the initialization
in cases where only this objective is activated. In such a case, we
simply use a Poisson disk sampling strategy.

4.4. User Control

Apart from the shape of the stencils and their arrangement, we also
provide additional tools that allow the user to control the aesthet-
ics of the resulting pattern through sizing and orientation fields.
In order to control the orientation of the stencils, we augment the
computation of the orientation field by an objective that asks the
resulting field to locally align with user-defined sketch directions
(see Fig. 3, left).

Another way of stylizing the pattern is to prescribe an inhomoge-
neous scaling field across the surface; see Fig. 3, right. We provide
a simple brush tool that allows the user to paint the desired stencil
sizes directly onto the surface. For the DET objective, these sizing
values are used to scale the exemplar when computing the match-
ing energy (6), whereas for the packing objective, the scale of the
stencil is simply set to the sizing value at the corresponding loca-
tion.

5. Structural Optimization

Apart from aesthetic goals, a central requirement when design-
ing functional surfaces is to satisfy structural constraints, i.e., con-
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Figure 3: Users can control the orientation field through sketching
(left) and locally adjust the size of the stencils using a brush tool
(right).

ditions relating to the stability of the design. While the criteria
that can be used to quantify stability are manifold, we focus on
two common variants of structural optimization based on energy-
density constraints and compliance minimization. For both of these
approaches, we must compute a) the equilibrium state of the struc-
ture, b) the change in equilibrium state induced by a change in pa-
rameters, and c) the parameter values that lead to a desired equilib-
rium state. We explain these steps in the following.

5.1. Simulation

Following standard practice in graphics, we opt for a computational
model that combines constant strain triangles (CST) for in-plane
deformations and discrete shell elements for bending. Both types of
elements rely on a discrete surface representation in terms of a tri-
angle mesh, comprising m faces Ti and n vertices x = (x1, . . . ,xn)

T ,
with x j ∈ R3. For the membrane part, we use a simple St. Venant-
Kirchhoff material whose strain energy density Ψ is defined as

Ψ =
µ
2

tr(EtE)+λtr(E)2 , (7)

where µ and λ are (thickness-dependent) material parameters, E =
1
2 (F

tF− I) is the 2× 2 Green strain tensor, and F ∈ R3×2 is the
deformation gradient; refer to, e.g., Skouras et al. [STBG12] and
the textbook by Bonet and Wood [BW97] for details. Using CST
elements for discretization, the strain energy density is constant
across the element and the membrane energy simply follows as
W memb

i =
∫

Ωi
Ψ =AiΨ, where Ωi is the parameter domain of ele-

ment i and Ai its undeformed area.

Complementing the CST elements for membrane deformations,
bending elements are formed by pairs of edge-adjacent triangles.
The corresponding energy is defined as

W bend
i j = kb

(
θ(x)− θ̄

)2 Ai j

hi j
, (8)

where θ and θ̄ are the dihedral angles in the deformed and unde-
formed configuration, respectively, hi j is a geometry factor, and
Ai j =

1
3 (Ai +A j) (see [GHDS03]). Note that kb is a dependent

coefficient that is computed from the material parameters λ and µ
as well as the thickness of the element according to [GGWZ07].

5.2. Extension to Stenciled Shells

Perhaps the most obvious way to apply this computational model
to the case of thin shells structured with decorative cutouts would
be to use a triangle meshes that conforms to the boundaries of the
stencils. However, this approach would require a high-resolution
mesh that would drastically increase the time needed to compute
equilibrium state—and it would be prohibitively expensive when
used at the core of our optimization algorithm. We therefore turn
away from conforming meshes and instead maintain a compar-
atively coarse mesh, each of whose triangles Ti we endow with
an additional fill-ratio variable αi corresponding to the degree to
which the element is overlapped by stencils. In order to compute
the overlap between a given triangle and a stencil, we first project
the triangle into the tangent space of the stencil. We then compute
the intersection polygon using the Sutherland-Hodgman clipping
algorithm [SH74]. The ratio between the area of the overlap and
the area of the projected element is then subtracted from the trian-
gle’s fill ratio.

Given fill ratios for all triangles, we compute the strain energy
for membrane elements by integrating the density only over the part
of the elements that is not covered by stencils. As the deformation
per CST element is constant, computing the energy of a stenciled
element amounts to a simple scaling operation, i.e.,

Ŵ memb
i j (x,α) =

∫
Ω̂i

Ψ = αiAiW
memb
i (x) (9)

where Ω̂i is the parameter domain of the stenciled element and
Âi =

∫
Ω̂i

1 = αiAi its area. With similar reasoning, we define the
energy of a stenciled bending element as the corresponding energy
of the solid element scaled by the geometric mean of its two trian-
gles,

Ŵ bend
i j (x) =

√
αiα jW

bend
i j (x) . (10)

Using the geometric mean ensures that the energy vanishes if one
of the triangles is completely cut out. The total elastic energy of the
stenciled surface is obtained as the sum of element-wise energies,
i.e.,

Ŵ el = ∑
i

Ŵ memb
i + ∑

(i, j)∈H
Ŵ bend

i j , (11)

where H is the set of edge-adjacent triangle pairs. We avoid
ill-conditioned elastic stiffness matrices by enforcing a minimum
value of 10−4 for all fill ratios αi.

Finally, in order for the surface to be in equilibrium, the sum of
internal forces fel =− ∂Ŵ el

x and externally-applied forces fext has to
vanish in all nodes, i.e.,

fi(x,α) = fel
i (x,α)+ fext

i = 0 ∀i . (12)

5.3. Optimization

We assume that the structural goal of a design can be quantified in
terms of an objective function S(α,x(α)) with explicit dependence
on both position and material fill ratios. As detailed above, the latter
depend explicitly on the stencil distribution, i.e., α = α(p). In order
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to improve the structural objective, we consider its gradient with
respect to the stencil parameters,

dS(α,x(α))
dα

=
∂S(α,x(α))

∂α
+

∂S(α,x(α))
∂x

dx
dα

. (13)

It is clear from the above expression that computing the gradient re-
quires the map between positions x and material fill ratios α, which
is given by Eq. (12): a combination of material fill ratios and de-
formed positions is admissible if and only if it corresponds to an
equilibrium state, i.e., f(x,α) = 0. Consequently, for an admissible
change in material fill ratios it must hold

df
dα

=
∂f
∂α

+
∂f
∂x

dx
dα

= 0 , (14)

and therefore

dx
dα

=− ∂f
∂x

−1
∂f
∂α

. (15)

We can thus compute the derivative of x wrt. α by solving a sys-
tem of linear equations, whose matrix is given by the Hessian of
the elastic energy of the surface. It is worth noting that Eqs (14-
15) are interchangeably referred to as the implicit function theorem
or sensitivity analysis. Finally, since we ultimately solve for sten-
cil parameters, we compute dS

dp by applying the chain rule to (13)
and use finite differences to numerically approximate the required
derivatives ∂α

∂p .

The formulation presented above provides flexibility for differ-
ent structural objectives S and we consider three examples in the
following.

Energy-Density Objective A natural structural goal for a design is
to ask that a given expected load should not lead to failure. Struc-
tural failure is typically indicated by a stability criterion that, de-
pending on the type of material, depends on deformation, stress,
or energy density. Without loss of generality, we opt for a criterion
based on per-element energy density

Wi =
1
Âi

Ŵ memb
i +∑

j

Âi

3Â2
i j

Ŵ bend
i j , (16)

with Âi j =
1
3 (Âi + Â j), and define a corresponding structural goal

as

Sstab(α,x(α)) = 1
m ∑

i

{
1
2 (Wi(α,x(α))−β)2, ifWi > β

0, else,
(17)

where β is a threshold value indicating the energy density beyond
which structural failure is likely to occur.

In many cases, the materials used in a design will dictate specific
threshold values that must not be exceeded. However, another way
of optimizing the stability of a design is to minimize the maximum
per-element energy density. We implement this strategy as an it-
erative scheme, each of whose steps update the current value of β

to the average computed from the top y% of the elements with the
highest energy density, where y can be chosen depending on the use
case. See Sec. 6 for an example.

Compliance Objective Instead of adding material in order to push
the stability criterion below a given threshold, an alternative ap-
proach is to seek a distribution of a given amount of material in
order to maximize the stiffness of a structure or, equivalently, min-
imize its compliance with respect to given loads. This conventional
way of topology optimization typically aims to minimize the work
done by externally-applied forces, but is often expressed by an
equivalent formulation based on the total internal energy of a given
structure. We define a corresponding structural objective as

Scomp(α,x(α)) =
m

∑
i=0
AiWi(α,x(α)), (18)

which is complemented by an additional constraint Carea(α) =

∑iAi−∑i Âi(α) = const., requiring that the total area of all sten-
cils be constant. In order to incorporate this constraint into our op-
timization method, we project the gradient of the combined (struc-
tural and aesthetic) objective onto the space of admissible direc-
tions, i.e., orthogonal to the constraint gradient. The constraint is
enforced during every update of the stencil parameters.

5.4. Numerical Solution

With both the stability and pattern objectives in place, we com-
pute optimal stencil parameters through minimization. Thanks to
the equilibrium conditions (12), the positions x are implicit func-
tions of the material fill ratios α, which in turn are explicit functions
of the stencil parameters p. We thus define the joint objective as a
function of the stencil parameters,

J(p) = wSS(x(p),α(p))+wPP(p) , (19)

where wS and wP are scaling parameters.

In order to minimize J, we use L-BFGS-B [BLNZ95], a Quasi-
Newton method that combines analytically-computed gradients
with a limited-memory BFGS approximation of the Hessian and
bound constraints. We additionally employ line search in order to
ensure monotonic decrease in the objective. This approach allows
us to optimize for all continuous stencil parameters at the same
time. For the stencil type, which is the only discrete stencil param-
eter, we use the update scheme proposed in [MWT11] that selects
the stencil type based on a majority vote among the stencil’s neigh-
bors. Note that in order to use line search correctly, we need to
ensure that our simulation is always in equilibrium, i.e., we need to
update the simulation for any change in stencil parameters.

6. Results

6.1. Validation

Simulation with Scaled Energy Densities Our elastic simulation
using scaled energy densities is inspired by simulation approaches
from topology optimization [BS99], where the scaling of the energy
density of each element is a function of its fill ratio. We check the
validity of our simulation, which extends this approach to hinge ele-
ments that include two fill ratios, by ascertaining that for increasing
mesh resolutions, the simulation converges to a regular simulation
using a conforming mesh. Figure 4 shows that this convergence can
indeed be observed, and moreover, that even for coarse resolutions,
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our approach provides an adequate approximation of a simulation
on a conforming mesh.

Physical Validation We validate that our optimization improves
the stability of an object by performing a load test on a stenciled
plate, shown in Figure 5. For the design and experiment, we fix
one end of the plates, and apply a load on the center of the other
end. The plate with the pattern-optimized stencil distribution shows
the largest deflection, and the energy- and compliance-optimized
stencil distributions show improved performance. The compliance-
optimized distribution uses a fixed material constraint in this exper-
iment, and the limited amount of material redistribution possible
without any stencils overlapping explains the slightly better perfor-
mance of the energy-optimized distribution.

Coarse Simulation vs. High-resolution Simulation For all our
results that we fabricated, we compare our coarse simulation to a
high-resolution conforming mesh. Figures 6, 7, 9, and 8 show that
we capture the global energy density distribution well, while small
local stress peaks along the boundaries of stencils might exceed the
maximum energy density computed by our simulation.

6.2. Physical Results

We designed a number of results for different applications, which
were 3D printed using selective laser sintering with a polyamide
material (PA12). We show both the pattern-optimized results,
which only use the pattern objective for the optimization, as well
as the stability-optimized results that use both pattern and stability
objectives. For all stability-optimized examples, we set the energy
density threshold β to a fraction of the maximum energy density
Wmax of the non-stenciled mesh to ensure that we create a mean-
ingful scenario for our optimization. We show the statistics and per-
formance of our examples in Table 1, and parameters in Table 2.

Chair and Table The chair example in Figure 6 and the table ex-
ample in Figure 8 we both designed by fixing the bottom vertices
of the model, and then applying a load on the seat and back rest for
the chair, and on the table top for the table.
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Figure 4: The convergence of elastic energy for simulations with
our scaled energy density approach and simulations with a con-
forming mesh, for different mesh resolutions, specified by the max-
imum area of a mesh element. The simulation is performed on a
thin, square, horizontally oriented, unit-sized sheet with a single
circular stencil, with fixed outer boundaries and deformed by self-
weight. Left: The elastic energy of both simulations. Right: The ra-
tio between the elastic energies.

Figure 5: Comparison of the deflection of plates with circular sten-
cils, before and after running the stability optimization. The plates
were fixed on one side, and a weight was attached to the opposite
side.

Fruit Bowl We also tested our method on alternative boundary
conditions. The fruit bowl in Figure 9 has been designed to hang
by a wire attached to its top, and the load case is a force pulling on
the bottom of the bowl.

Pavilion Figure 1 and Figure 7 show the result of applying our
method to an object under self-weight. In this case, the stencil dis-
tribution not only locally influences the stiffness, but also changes
the load, and can have a global effect on the stability. Since the op-
timization considers the interplay between stencil parameters and
the physical simulation, it automatically removes material from the
top part of the pavilion in order to lighten the load on the base of
the structure.

For this case of an object under self-weight, our approach of
setting a fixed threshold for the energy density might be too re-
strictive. Rather, we would like to perform a minimization instead
of a thresholding, with the assumption that any reduction in en-
ergy density will be beneficial. As an exercise, we performed an
adaptive optimization: At the beginning of an optimization, we set
the threshold to the median energy density. Whenever we reach
an optimal solution, we check whether the median energy density
changed. If so, we continue the optimization with the new thresh-
old. Figure 7 shows the result of this adaptive optimization, which
shows more extreme changes to the stencils than the regular opti-
mization.

6.3. Interactive Design Session

The accompanying video contains an interactive design session,
where a user adjusts the orientation and scaling fields during the de-
sign phase. This design session also shows that we can use our ini-
tialization approach (Sec. 4.3) to fill in holes in the pattern, which
improved the appearance for this specific example. We run the ini-
tialization algorithm on the existing distribution whenever the opti-
mization converges, and then restart the optimization if the number
of stencils changed.

c© 2016 The Author(s)
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



C. Schumacher, B. Thomaszewski & M. Gross / Stenciling: Designing Structurally-Sound Surfaces with Decorative Patterns

Figure 6: Comparison of energy densities between our coarse simulation mesh (second and fourth picture) and a high-resolution conforming
mesh (third and fifth picture) for the texture-optimized chair (left pair) and the stability-optimized chair (right pair). Energy densities around
the threshold β are shown in green, with higher densities in red and lower densities in blue. The pattern exemplar and load case are given
on the left. The stability-optimized chair has been 3d printed (right).

Figure 7: Comparison of energy densities for the pavilion model. The top row shows our coarse simulation mesh, the bottom row a high-
resolution simulation on a conforming mesh. We show four different scenarios: The pattern-optimized pavilion (left), the energy density-
optimized pavilion with a single energy density threshold (center left) and an adaptive energy density threshold (center right), and the
compliance-optimized pavilion with a fixed material constraint (right). Energy densities around the threshold β are shown in green, with
higher densities in red and lower densities in blue. The pattern exemplar and final fabricated model are shown in Figure 1.

Model Objective #s #v #vsim t [s]

Chair
Pattern-only

436 1927 520
4.1

Energy density 12.1

Table
Pattern-only

462 1418 581
2.0

Energy density 21.2

Bowl
Pattern-only

185 1529 772
0.8

Energy density 16.6

Pavilion

Pattern-only

310 937 381

4.2
Energy density 43.4
Energy density (adaptive) 150.8
Compliance 5.1

Table 1: Performance statistics. The table shows the number of
stencils, the number of vertices for the underlying mesh and the
simulation mesh, and the runtime t for all our fabricated examples.
The runtime is measured from initial distribution to convergence
(for the pattern-only objective) or from a pattern-optimized solu-
tion to a stability-optimized solution (for all other objectives).

7. Conclusion

We introduced a novel method to design stenciled surfaces that
combines aesthetics and stability. We have shown that we can effi-

Model wS wP β s rN

Chair 103 1 0.7Wmax 0.2 0.3
Table 104 1 0.5Wmax 0 0.3
Bowl 200 1 0.8Wmax 0.1 0.3
Pavilion 500 1 0.2Wmax 0.2 0.3

Table 2: Parameters used for our examples: Scaling parameters wS
and wP, energy density threshold β as a function of the maximum
energy density Wmax, collision safety factor s, and the neighbor-
hood radius rN relative to the dimensions of the input exemplar.

ciently predict regions of failure and automatically optimize a sten-
cil distribution to create stable objects with high visual fidelity.

7.1. Limitations and Future Work

While we can predict regions of failure, we cannot guarantee that
our best solution will be able to avoid these, as either the load case
or the texture objective could prevent a feasible solution. In such
cases, we can provide feedback to the user that would ideally lead to
adjustments in the load case or texture objective parameters, though
including more sophisticated ways to decouple the appearance and
stability objectives is an interesting direction for future work.
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Figure 8: Comparison of energy densities between our coarse sim-
ulation mesh (left) and a high-resolution conforming mesh (right)
for the pattern-optimized table (top) and the stability-optimized
chair (middle). Energy densities around the threshold β are shown
in green, with higher densities in red and lower densities in blue.
The pattern exemplar and load case are given on the top. The
stability-optimized table holds a billiard ball (bottom).

Our fill ratio-based simulation approach allows us to efficiently
approximate the deformation behavior of a stenciled model. While
we have shown that with increasing resolution, the simulation re-
sult converges to the solution obtained from a conforming mesh,
for practical resolutions, our approach might not able to capture
any highly anisotropic deformation behavior introduced by sten-
cils with very thin features. XFEM [KMB∗09] or a homogenization
method [KMOD09] could be used to achieve a better approxima-
tion in these cases, at the cost of computational efficiency.

All computations of positions and distances of stencils are per-
formed in Euclidean space, and while this has not lead to any prob-

Figure 9: The pattern exemplar and load case of the bowl exam-
ple (top left), and the final fabricated result (top right). In the bot-
tom part, we compare the energy densities of our coarse simulation
mesh (left) with a high-resolution simulation on a conforming mesh
(right) for the pattern-optimized (middle) and stability-optimized
bowl (bottom). Energy densities around the threshold β are shown
in green, with higher densities in red and lower densities in blue.

lems in the examples we showed, our projection approach cannot
guarantee injectivity, which might lead to unsatisfactory results in
the case of folded meshes. Incorporating geodesic distances could
prevent artifacts in such situations, though a sufficiently fast and ac-
curate computation of geodesic distances is necessary to preserve
our current level of efficiency.

Our current stencil representation is sufficient to generate a va-
riety of interesting appearances. However, the stencils are not re-
quired to be rigid objects, and incorporating advanced methods
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to modify the stencils would increase the expressiveness of our
method.

Finally, our general optimization-based approach allows us to
easily integrate additional pattern and stability objectives, e.g., con-
sidering geometric features for the stencil distributions or minimiz-
ing displacement instead of energy density.
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