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Abstract. Given a still image, humans can easily think of a sound asso-
ciated with this image. For instance, people might associate the picture
of a car with the sound of a car engine. In this paper we aim to re-
trieve sounds corresponding to a query image. To solve this challenging
task, our approach exploits the correlation between the audio and visual
modalities in video collections. A major difficulty is the high amount of
uncorrelated audio in the videos, i.e., audio that does not correspond to
the main image content, such as voice-over, background music, added
sound effects, or sounds originating off-screen. We present an unsuper-
vised, clustering-based solution that is able to automatically separate
correlated sounds from uncorrelated ones. The core algorithm is based
on a joint audio-visual feature space, in which we perform iterated mu-
tual kNN clustering in order to effectively filter out uncorrelated sounds.
To this end we also introduce a new dataset of correlated audio-visual
data, on which we evaluate our approach and compare it to alternative
solutions. Experiments show that our approach can successfully deal with
a high amount of uncorrelated audio.

Keywords: Sound suggestion, audio-visual content, data filtering

1 Introduction

Visual content interpretation is at the core of computer vision. Impressive re-
sults have been obtained for visual data over the last years, e.g., for classification
and recognition [57,29], segmentation [23], tracking and 3D reconstruction [1,9].
In comparison, learning relationships between audio and visual data is still a
largely unexplored area, despite exciting applications on joint audio-video pro-
cessing [17,6,13,37].

A fascinating example of joint audio-visual learning occurs daily in our lives.
When humans see an object, they can usually imagine a plausible sound that
it would make, due to having learned the correlation between visual and audio
modalities from numerous examples throughout their life. In this paper, we aim
to mimic this process, i.e. given an input still image, suggest sounds by inter-
preting the visual content of this image. Before proceeding further, it worths
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mentioning that the sounds associated to an image can be highly ambiguous or
even inexistent. For example, returning a sound for an image of a flower would
not make sense because a flower does not make sound. In the following, we only
consider images for which a sound can be associated.

Being able to output a sound for a query image has many practical applica-
tions in computer vision and multimedia, for example automatic Foley processing
for video production1 [19], image sonification for the visually impaired [44], and
augmenting visual content database with sounds and audio restoration [26].

One approach to generate sound from images is to synthesize audio using
physics-based simulation [19,11], however, this is still an open problem for general
objects. Instead, we define the sound retrieval task as learning the correlation
between audio and visual information collected from a video collection.

Video provides us with a natural and appealing way to learn this correla-
tion: video cameras are equipped with microphones and capture synchronized
audio and visual information. In principle, every single video frame captured
constitutes a possible training example, and the Internet provides us with a vir-
tually inexhaustible amount of training data. However, in practice there exist
a number of significant challenges. First and foremost videos often contain a
very high amount of uncorrelated audio, i.e., audio that does not correspond to
the visual content of the video frames. This is due to voice-over (commentaries,
speech, etc), background music, added sound effects, or sounds originating off-
screen. This high level of noise in the training samples causes difficulties when
employing standard machine learning techniques. An additional challenge is that
an object might be naturally associated with different sounds, so we would like
to learn and capture a multi-modal solution space. Furthermore, evaluating the
quality of suggested sounds is also not trivial due to the difficulty in acquiring
ground truth image-sound correspondences.

So, given an image, how can we find a sound that could correspond to this
image? As the input to the training phase of our method, we take a collection
of unstructured, casually captured videos with corresponding audio recordings.
A key observation in our method is that while the input videos may contain a
significant amount of uncorrelated data, i.e., images whose audio is uncorrelated
(commonly due to added voiceover or music), these uncorrelated examples will
not share any common features. On the other hand, the true visual and audio
examples will be recurring across multiple videos.

In the rest of this paper, we use the term “correlated” audio-visual examples
to refer to pairs of video frames and their associated audio segments whose audio
corresponds to the visual content of the video frame. These audio segments
are called “clean” since they should correspond to uncorrupted audio segments,
i.e., free from background noise, added music or voiceover for example.

Based on this assumption, we develop an unsupervised filtering approach that
automatically identifies significant audio-visual clusters via a mutual kNN-based
technique, and then removes the uncorrelated visual-audio examples from the
video collection. This filtering is performed offline, once, and results in a clean

1 https://en.wikipedia.org/wiki/Foley_%28filmmaking%29

https://en.wikipedia.org/wiki/Foley_%28filmmaking%29
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collection of correlated audio-visual examples that can then be used to retrieve
a sound corresponding to the input query image. This approach to output a
sound for a query image from a video collection corrupted with uncorrelated
data constitutes the main contribution of our work. Given a query image, we
can then output a corresponding sound by looking up the most similar visual
features in the filtered collection and returning its corresponding audio segment.
This retrieval step is conducted online at interactive rates.

2 Related Work

Our paper deals with audio and visual content. We will first review works which
are related to either modality, and then works on joint audio-visual content.

2.1 Visual Content

Visual Classification and Recognition Recent works have demonstrated impres-
sive results for visual classification and object recognition (see review in [57]). A
possible approach for our sound retrieval problem would be to classify the query
image using one of these classification techniques (e.g., assign it a “phone” la-
bel), and then return the sound of this query label from examples in a certain
dataset. If a clean sound database with ground truth labels was available, this
could be done simply as a lookup problem using query labels derived from image
or video classification [57,29,7,61,64]. While such sound databases exist nowa-
days (e.g., freesound.org), the main drawback of this approach is that building
and expanding such a database requires a considerable amount of manual and
time-consuming work to label and monitor all samples, and moreover, not all
types of sounds are available in these databases. In contrast our goal is to develop
a fully automatic and unsupervised approach that can mine data from arbitrary
unstructured video collections.

Another option would be to identify a video frame from the collection that is
visually similar to the input query (e.g., using distance between image appear-
ance descriptors [15,49,58]), and then output the audio segment of that video
frame. However, outputting the sound of a video frame selected from visual
similarity (obtained via image labels in a classification framework or via image
descriptors) might return uncorrelated audio (see our evaluation) since a poten-
tially large amount of audio tracks in the video collection might not be correlated
with the observed visual content.

Representative Images Doersch et al. [20] find visual cues (e.g., patches) repre-
sentative for some cities by relying on a database of images with ground truth
GPS labels. Instead, we aim for an unsupervised approach and our input is a
collection of unlabeled videos.

Some other works are dedicated to creating clean image collections. For ex-
ample, Elor et al. [3] aim to obtain a clean set of images (and their segmentation).
In contrast, our work is dedicated to learning image sounds from videos, which
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requires to consider both visual and audio modalities, in order to reliably retrieve
an appropriate sound for a query image.

Another option could be to build on methods that identify canonical images
from an image collection [60,14]. However, it is not clear how to extend these
methods to multiple modalities in our application scenario.

2.2 Audio Content

Audio Synthesis An approach to output sound of a given image could be to
synthesize the audio corresponding to the image, e.g., using physics-based sim-
ulation [19,11,68,69,10,54]. However most of these techniques are dedicated to
specific objects (e.g., fire) and cannot be generalized due to the task complexity.

Audio Classification, Recognition and Retrieval Audio analysis has been studied
for a long time [2], and many products are now available on the market, for
example Siri and Google Now for speech recognition, or Soundcloud, Spotify,
and Shazam for music data. Audio classification techniques [35] could be used
to label sounds in a video, but this does not solve our problem since the query
image has no sound. One option would be to detect and ignore the frames of
the video collection with particular audio, for example tutorial speeches or back-
ground music, and then apply the above approach. However it would require the
construction of a handcrafted list of heuristics and will not be able to deal with
the numerous forms of uncorrelated audio.

2.3 Audio-Visual Content

Audio Source Localization in Images Some works [30,4,27] use the audio and
visual signals of an input video to identify which pixels of the video “sound” by
associating changes in audio with visual motion changes. Since these approaches
are designed to return pixel locations in videos, it is not clear how they can be
extended to learn the sound of an image and output a sound given a still image.

Audio Suggestion from Visual Content Audio suggestion from visual content
is mainly performed in the context of music recommendation (e.g., for a series
of pictures [62], picture slideshows [22,36] or videos [38]), and music synthe-
sis [42,47,16,66] for artistic performances. Outputting (or recognizing) speech
from videos has been studied in the particular context of lip reading [48,43,67].
Some methods are also dedicated to cross-modal learning [24]. In contrast to
these works, we are interested in finding a real-world sound (e.g., rather than
musical backing) corresponding to a query image. This application requires finer
scale retrieval, and notably different datasets. Closely related to our goal is the
recent work of Owens et al. [50] which synthesizes impact sounds of objects for
silent videos. Our work and theirs were conducted independently and in parallel.
Their method estimates the feature representation of audio given a video using
a recursive neural network and selecting the most similar example from their
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video collection. Their video collection only contains correlated, clean and non-
overlapping sounds that were acquired by a user manually hitting the objects
with a drumstick. In comparison, we consider an unstructured video collection
which in practice contains a high amount of uncorrelated audio. Our proposed
approach can process this corrupted collection and returns a clean version, which
could be used as an input training set by these methods.

3 Proposed Approach

We first discuss preprocessing steps (visual and audio descriptors, low audio
frames), the core filtering step, and finally describe the retrieval step.

3.1 Preprocessing

We first normalize the videos such that they all have the same resolution, frame
rate and audio sampling rate. We remove low audio frames and then compute the
descriptors of the remaining visual and audio data, as discussed in the following.

Low Audio Pre-Filtering In practice, only few frames per video actually contain
sound related to the visual content. Many of the other frames have a rather
low volume or just contain background noise, which we first filter out. This
pre-filtering is an effective way to reduce the amount of data to be subsequently
processed. To filter out the audio segments of such frames, we use the Root Mean
Square (RMS) audio energy computed over short windows [56], and simply keep
the audio segments with RMS scores above the median RMS of each video. For
reference, on the video collection used in this paper (Sec. 4.1), about 65% of the
frames are filtered out.

Audio Descriptors To describe audio data, we employ the popular Mel-Frequency
Cepstral Coefficients (MFCCs) [45], which are commonly employed descriptors
in audio analysis, description and retrieval [39,51,65]. We compute the audio de-
scriptor of a video frame by the MFCC feature over a temporal window centered
at that frame. Since sounds might have different durations, we consider multiple
temporal windows, and then concatenate these (multi-scale) MFCC features [18].
In practice, we used 5 windows of lengths 1, 3, 5, 7, 9 times of a frame duration
(i.e., 40ms to 360ms for 25fps videos).

Visual Descriptors Recent works showed that reliable visual descriptors for mid
to high level image information can be obtained by deep learning [53,21,58,28].
These works also showed that such feature descriptors effectively generalize to
different tasks and image classes that they were originally trained on. Based on
these impressive results, we compute the visual descriptor of each frame of the
video collection by Caffe [28] using a network trained for image classification.
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Joint Audio-Visual Features Every video frame and its associated audio segment
from the video collection (after the low audio pre-filtering) constitutes a training
sample. We combine both the audio and visual features to create a weighted
joint audio-visual feature space. Let si be the i-th audio-visual sample and S =
{s1, . . . , sn} be the set of n audio-visual samples. Each si consists of a pair of
corresponding (normalized) visual and audio descriptors, respectively written
fV
i and fA

i . The distance between two audio-visual samples in the combined
space is defined as a weighted sum of both modalities [5]:

d(si, sj) = wV d(fV
i , fV

j ) + wAd(fA
i , fA

j ) (1)

where the adjustable weights wV and wA allow us to tune the clustering proce-
dure described in the following.

3.2 Clustering of Correlated Audio-Visual Samples

After having a reduced set of frames with audible audio segments, we now aim
to identify the correlated pairs of frames and audio segments, and filter out the
uncorrelated ones. We achieve this by finding significant clusters of correlated
samples in the audio-visual feature space. Straightforward clustering in our joint
audio-visual feature space, e.g., using mean-shift or similar techniques, is not
practical, as we need to deal with a significant amount of outliers. We instead
propose to use mutual kNN, which has been shown to be particularly effective
for identifying the most significant clusters [41,40,3].

Contrary to conventional kNN, two nodes of a mutual kNN graph are con-
nected if and only if their k-nearest neighbor relationship is mutual, i.e., if they
are in each others’ k-nearest neighbor set [8]. The clusters are then obtained by
computing the connected components of the mutual kNN graph. In our applica-
tion, we construct a graph where there is a node per audio-visual example, and
an edge between two nodes if their feature descriptors are part of the k-nearest
neighbors of each other, where the distance is defined at Eq. 1. We ignore small
clusters as noisy examples can randomly create small mutual neighbor clus-
ters [40].

The above mentioned weights for the audio and visual features in combina-
tion with the mutual kNN procedure allow for an iterative approach to remove
uncorrelated samples. Let each mutual kNN cluster Cl over the set S be defined
as:

Cl = {Sl ⊆ S|si ∈ N (sj) and sj ∈ N (si),∀(si, sj) ∈ Sl} (2)

where N (si) is the set of the k nearest neighbors of si according to the feature
descriptor distance at Eq. 1. When iteratively exploring the clustering and with
dynamic weights, we obtain a set of clusters such that

Ctl = {Sl ⊆ Ct−1l |si ∈ Nwt(sj) and sj ∈ Nwt(si),∀(si, sj) ∈ Sl} (3)

where Ctl is a cluster obtained at iteration t, with C0l = S and 1 ≤ t ≤ T . To
emphasize that the relative weights (wV and wA) might evolve along time at
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Eq. 1, we write Nwt(si) the set of the k nearest neighbors of si obtained with
the weights wt = (wt

V , w
t
A) at iteration t.

If the influence weights wt are fixed then the final clustering is obtained after
one iteration, i.e., T = 1. If the influence weights can evolve, then the clustering
at the current iteration is performed on the clusters of the previous iteration in a
hierarchical manner. Depending on the weights and number of iterations, Eq. 3
may correspond to one of the following instances:

– T = 1 and wV = wA = 1 represent a one-step mutual-kNN on the joint
audio-visual space. It simultaneously considers both visual and audio modal-
ities. We call it “joint”. The intuition for this joint space clustering is that it
could potentially retrieve multiple sounds for visually similar images (e.g., for
a same object), as their different joint audio-visual features will tend to clus-
ter in multiple clusters.

– T = 2, with w1
V = 1 and w1

A = 0 at the first iteration, and then w2
V = 0 and

w2
A = 1 at the second iteration. It represents a hierarchical two-step mutual

kNN approach where the first step provides visual clusters, and the second
step clusters the audio for each visual cluster. We call it “V+A”.

– T = 2, with w1
V = 0 and w1

A = 1 at the first iteration, and then w2
V = 1

and w2
A = 0 at the second iteration. It represents the inverse of the above

strategy: i.e., first audio clustering, and then clustering the visual features
associated to each audio cluster. We call it “A+V”. The intuition is to favor
objects which are the most common for a given sound, thus is related to the
notion of finding objects with unique sounds.

Concretely, the “joint” strategy performs one mutual kNN on the visual and
audio descriptors, and returns a set of clusters. Ideally, each computed cluster
contains examples that are similar both visually and audio. This is illustrated in
Fig. 1b. For clarification of the two-step process, let’s consider “V+A”. In the
first step, we compute visual clusters, and in a second step, for each visual cluster,
we compute the clusters on audio features associated to this visual cluster, as
illustrated in Fig. 1a. In the first step, we want to find clusters containing similar
looking objects or scenes. For this, we apply a first mutual kNN on the visual
features. After the first iteration, we obtain clusters containing elements with
mostly similar visual features, but varying audio features. Therefore, given a
mutual kNN visual cluster, we apply a second mutual kNN to detect the audio
features uncorrelated to this visual cluster and remove them.

Interestingly, experiments will show that “joint” is outperformed by the
strategies “V+A” or “A+V”, each of these strategies “V+A” and “A+V has
its own strengths, and the target application context determines the most rele-
vant strategy.

3.3 Audio Retrieval

The above filtering provides a clean collection of correlated visual-audio exam-
ples. Given a query image, we now output a sound for this image by retrieving
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(a)

(b)

Fig. 1: Illustration of the filtering step. (a): two-step mutual kNN hierarchical
approach on visual and then audio feature space (“V+A”). (b): mutual kNN
approach on the joint audio-visual feature space (“joint”). For illustrative pur-
pose and a better understanding, instead of showing the audio signal, we write
an onomatopoeia of the sound. In (a), the audio (resp. image) is not used in the
visual (resp. audio) clustering step, and thus the sound onomatopeias (resp. the
images) are greyed out.

an appropriate sound from this collection. The filtered clean collection allows for
an efficient and robust procedure for the retrieval step: we compute the visual
feature of the query image, look for the nearest neighbor of this visual feature in
the clean collection, and output its corresponding audio segment. In practice, by
storing the timestamp and video index of each example of the clean collection,
we can access that video at that time, which allows to output its associated
sound segment with any preferred duration set by the user.

Depending on the application or context, we might want to return a list of
M > 1 sounds (rather than a single one). For this, we can return the top M
sounds, i.e., the M nearest neighbors, for a user to select the preferred sound via
an interactive interface. In case the user wants various sounds, we increase the
variety of the sound outputs by retrieving M ′ > M examples from the filtered
collection (i.e., more than the number proposed to the user) and then suggesting
a canonical subset of M of these retrieved audio segments via spectral clustering
on the audio features [59].

4 Results

Evaluating whether a suggested sound corresponds to the input image is a diffi-
cult task. For example, given a door image, we expect to hear a “door” sound, but
how can we decide if the suggested sound is indeed a sound of a door or not? The
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Fig. 2: Representative images of the different categories of the introduced dataset.

class information is not sufficient due to extra sounds, background noise, etc, as
mentioned earlier. Several video datasets exist for various purposes [61,55,32,25]
but they either have no sound or do not provide ground truth correlated audio-
visual data. Therefore, to evaluate the results, we create a dataset with “clean”
sounds and known categories (Sec. 4.1). We analyze different aspects of filtering,
and further evaluate our approach with a user study.

We invite the readers to refer to our project website to access our dataset as
well as representative results of sound suggestions from query images.

4.1 Dataset

We manually collected several videos with minimal background noise and clean
object sounds using a GoPro camera. The key advantage of this collection is
that it provides a good estimate of the ground truth and also permits us to au-
tomatically measure and compare the accuracy and robustness of our approach.

We recorded videos for 9 different categories of image-sound pairs: keyboard
typing, washing dishes, door opening and closing, walking on stairs, vacuum
cleaner, drink toasting, using a binder, trams and cars. To reproduce real case
scenarios, the videos were acquired from multiple viewpoint perspectives, both
indoor and outdoor, with some overlap in visual and audio modalities (e.g., po-
tentially similar appearance of street in trams and cars). Representative images
from the different classes are shown in Fig. 2. Each category contains between
10 and 20 videos, with durations between 15 and 90 seconds, providing a set of
about 150,000 examples of correlated audio segments and video frames.

We split up the samples into training and test sets such that no video has
corresponding samples in both sets at the same time, and apply cross-validation
over multiple splits. The training and test sets respectively contain around 80%
and 20% of all the samples.

4.2 Experiments

Implementation Details The framework is implemented in Matlab (mutual kNN,
etc) along with VLFeat modules (e.g., for nearest neighbor queries via approxi-
mate Nearest Neighbor). The parameters of the filters are set by cross-validation.
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Our experiments are conducted on a desktop computer equipped with an Intel
Core i7-960 at 3.2Ghz, 24GB RAM and a NVidia GTX 980Ti graphics card.
Computing the visual descriptors using Caffe [28] takes about 5s per minute of
video. The low audio pre-filtering step (Sec. 3.1) takes about 40ms per minute
of audio. After this step, we have a collection of around 54,000 audio-visual ex-
amples. The mutual kNN approaches on this collection take about 15 minutes.
The retrieval step for a query image over the filtered collection takes about 0.1s,
which allows interactive use.

In terms of memory consumption, each visual-audio example is described by
a 4096-dimension visual descriptor and 5×13 = 65 dimension multi-scale MFCC
audio descriptor. Using single-precision floating-point format (4 bytes), each GB
can store about 64,000 visual-audio samples. The additional memory footprint
of k-d trees is comparatively small.

Comparison To evaluate our filtering approach, we compare it to an “unfiltered”
approach that outputs audio segments from the video collection without the
correlation filtering step (Sec. 3.2), i.e., it returns the sounds of the most visually
similar images in the original collection. As a general sanity check, we also apply
a random selection of audio segments from the video collection (“random”). For
fair comparison, we prefilter out the silent frames for all methods (Sec. 3.1).

Dataset Corruption To measure the robustness of the methods to uncorrelated
data, we corrupt the collection with uncorrelated audio examples. We do this by
replacing a certain amount of audio segments by other audio segments randomly
selected from a video set. We define the corruption ratio as the percentage of
frames from the input video collection whose audio has been corrupted (also
called percentage of uncorrelated visual-audio examples).

Evaluation Fig. 3a shows the overall classification rate on our dataset for the
different approaches. It is measured as the number of correctly estimated classes
over the number of tested frames: the estimated class is obtained by the classes
associated to the m = 5 output audio segments and then majority vote; in case
of tie, then random class.

Note that the aim of this paper is not to categorize images/videos into classes:
here, we are using the classification rate to measure whether the retrieved sound
corresponds to the input image by checking if the retrieved sound comes from
the expected class in a relatively clean dataset.

First, the best classification rate when there is no uncorrelated data is around
70%. The gap between this rate and the ideal 100% accuracy is mainly due to
similarity in the visual and audio descriptors: some classes share descriptor sim-
ilarities in audio and/or visual space (e.g., trams and cars in a street environ-
ment). The classification rate of the random choice baseline starts at around 11%
as excepted since the dataset contains 9 classes, and its classification rate con-
tinues diminishing when the percentage of uncorrelated data increases. “A+V”
starts at around 52% and gives the lowest performance for a small percentage of
uncorrelated audio. The performance of the unfiltered baseline starts relatively
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Fig. 3: Comparison of methods with respect to the amount of uncorrelated data.
It indicates that different weighting strategies are appropriate for different con-
texts. The “V+A” strategy allows us to retrieve sounds of a query image reliably
up to a high degree of corruption (see (a)). In contrast, the “A+V” strategy
manages to better filter out noise overall (see (b)).

high at around 68% but quickly drops down when the percentage of uncorrelated
data is higher than 20%.

The “V+A” strategy provides the best overall performance: it starts at
around 70%, remains relatively stable up to about 50% of uncorrelated data,
and then continues providing the highest performance up to about 65% of un-
correlated data. This suggests that this strategy is robust to large amounts of
uncorrelated audio, and is a relevant method for such application context. For
higher amount of data corruption, it is slightly outperformed by “A+V” and the
classification rate of the filtered approaches drops to the level of the unfiltered
baseline. With such an extreme amount of data corruption, the assumption that
the dominant audio-visual correlation is the correct sound might not hold any-
more for several classes, i.e., the very numerous uncorrelated examples might
lead to another dominant but wrong correlation. For instance, this occurs in the
example of the volcano videos with helicopter sounds that is discussed later.

Filtering Accuracy In addition, we also measure the quality of the filtered col-
lection, i.e., what is the percentage of clean examples contained in the output
filtered collection according to the percentage of uncorrelated data in the input
collection. The results are shown in Fig. 3b. The best performance is obtained by
the “A+V” strategy. For example even when the input collection contains 70%
of uncorrelated audio (i.e., only 30% of the audio correlates to the visual signal),
it manages to provide a filtered collection with 66% of correlated audio-visual
examples. It shows that it can successfully identify and filter out the uncorre-
lated examples, and thus can provide a cleaner version of the input collection,
even in presence of a high amount of uncorrelated data. “A+V” can then be
considered the strategy of choice for the application context of obtaining a clean
filtered collection.
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It is true that some correlated examples also have been filtered out. We apply
a conservative filter approach on purpose in order to increase the probability of
obtaining a clean collection, i.e., composed of only (or at least mainly composed
of) clean correlated audio. In turns, this allows us to retrieve correct sound for
a query image. To further evaluate this, we conducted additional experiments
compiled in Fig. 4. Fig. 4a suggests that the accuracy of our approach is rather
stable with respect to the input collection size, once a certain amount of examples
(around 20,000) is available. Fig. 4b illustrates that the filtered output collection
size grows with respect to the input collection size in a dominant linear manner.
On the whole this scalability analysis suggests that our approach can provide
a larger (filtered) collection of correlated audio-visual examples from a larger
input collection (potentially corrupted by uncorrelated audio data).
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Fig. 4: Evaluation of the classification rate (a) and output collection size (b) with
respect to the input collection size (i.e., before filtering) with different rates of
uncorrelated data. These experiments indicate that the accuracy (classification
rate) is stable after a certain collection size (a) and the output collection size
increases with the input collection size (b).

User Study For further evaluation, we also conducted a user study. 15 partici-
pants were shown an image and a 2-second audio segment, and then were asked
to respond to the statement “This audio segment corresponds to the visual con-
tent of this image” by choosing a response from a five-point Likert scale: strongly
agree (5), agree (4), neither agree nor disagree (3), disagree (2), or strongly dis-
agree (1). We tested 10 (randomly selected) images per class, over the 9 classes
of our dataset, which results in 90 images per participant. For each image, we
prepared 3 different possible image-audio pairs for questioning by varying the
audio track according to the following three methods: ground truth (i.e., the
sound associated to this image in the clean dataset), “V+A” mutual kNN, and
the unfiltered version. To mimic practical scenarios, we corrupted 60% of the
audio samples of the training dataset for mutual kNN and the unfiltered version
(the ground truth is untouched).
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Fig. 5: Evaluation by user study. Overall, our audio-visual filtering approach suc-
cessfully competes with method retrieving sound from the most visually similar
video frames (see “unfiltered”).

Fig. 5 shows that our filter approach is constantly better than the unfiltered
approach overall, in agreement with Fig. 3a. 19% and 43% of the responses re-
spectively obtained without and with our filtering step were “agree” or “strongly
agree”. It suggests that our filtering approach can deal with uncorrelated data
and provide a better quality of the suggested sound.

Limitations and Future Work As demonstrated by the experiments, our ap-
proach is able to handle datasets containing uncorrelated audio and improves on
naive classification-based solutions. Our approach can constitute a baseline in
follow-up comparisons. Exciting research opportunities exist to further improve
the performance for highly uncorrelated data. We assume that sounds that most
often co-occur with specific objects are likely caused by the object visible. This
assumption holds for many cases, but it can still fail when the majority of videos
of an object contain a common uncorrelated sound. For example, when learning
the sound of volcanoes, most of the videos we used were recorded from helicopters
and contained a continuous helicopter sound in the background. Therefore our
method learned to associate volcano images with helicopter sounds. Also, we
intentionally applied a conservative approach to increase the probability of ob-
taining a clean collection. The downside is that it might limit the variety in the
output collection and thus in the retrieved audio sets.

We additionally observed some limitations in our descriptors. For example,
trams and cars videos were often confused due to their visual similarity (street
scene). While we used existing feature descriptors trained for image classifica-
tion, learning a descriptor designed for this specific task of audio retrieval could
possibly improve result quality. Our visual descriptors are computed globally
over the whole image. To deal with objects covering only a small part of the
image, different kinds of descriptors should be used and/or in combination with
object localization [57] or using saliency information [52]. This would enable, for
example, an image to be associated with multiple different sounds, each derived
from one or more objects in the scene. The user could also interactively specify
which detected objects or which parts of the image to consider.



14 M. Solèr, J-C Bazin, O. Wang, A. Krause, A. Sorkine-Hornung

An extension of our work is to explore how to apply the audio-visual corre-
lation for the converse target problem, that is given an audio segment, suggest
pictures or videos. Beyond multimedia entertainment application, it could also
be used to augment audio database with visual contents.

Our implementation allows the user to choose the duration of the suggested
sounds (Sec. 3.3). Different sounds can have different durations, for example
short toasting sound and longer passing car sound. Therefore an interesting
research direction is to learn the duration of sounds and automatically output
the sound with the appropriate duration.

An exciting direction is to investigate the use of motion descriptors [33,31] in
addition to visual appearance descriptors. This would eventually permit to learn
and cluster the different “motion sounds” of an object, for example the sounds
of a door opening or closing, or the sounds of a car speeding up or slowing down.

Over the course of this work, we often wondered “what is a good sound
corresponding to an input image?”. In this paper, we used the notion of “signif-
icant” sounds [40,41] (i.e., sounds that are the most common for visually similar
images) and conducted evaluation on several aspects of applications (Sec. 4.2).
However, the answer to this question can be different for other applications. For
example, one might rather be interested in finding “discriminative” sounds [20]
(e.g., the hoot of an owl which is unique to that animal) or even “stereotype”
sounds (e.g., an old creaking door which is potentially not accurately reflecting
the daily life reality) [12,34]. These might be valid answers to the question and
would require specific approaches to be explored in follow-up work.

5 Conclusion

In this paper, we investigated the problem of suggesting sounds for query images.
Our approach takes a single image as input and suggests one or multiple audio
segments issued from a video collection. One of the main challenges when solving
this problem is the high amount of uncorrelated audio in the video collection.
Therefore our main contribution is an approach to filter the data by using both
audio and video modalities. The main goal of the filtering step is to filter out
the audio segments which do not correlate with the image contents.

We conducted experiments that show that our filtering approach can success-
fully identify and filter out uncorrelated data, which in turn provides a filtered
collection of correlated audio-visual examples. In addition to the application of
sound suggestion from query images, this filtered clean collection could also be
used as a knowledge prior for various tasks related to video classification or
action recognition [29,7,61,64] or to build semantic audio database [63,46].

Moreover the user study results indicate that the sounds retrieved by our
approach mainly correspond to the image content. Therefore we believe that
our approach opens up new possibilities in the context of audio generation in
accordance with visual content.
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52. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: Contrast
based filtering for salient region detection. In: CVPR (2012)

53. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf:
An astounding baseline for recognition. In: CVPR Workshop (2014)

54. Ren, Z., Yeh, H., Lin, M.C.: Example-guided physically based modal sound syn-
thesis. TOG (SIGGRAPH) (2013)

55. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie descrip-
tion. In: CVPR (2015)

56. Rubin, S., Berthouzoz, F., Mysore, G., Li, W., Agrawala, M.: UnderScore: musical
underlays for audio stories. In: ACM UIST (2012)

57. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: ImageNet large
scale visual recognition challenge. IJCV (2015)

58. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat:
integrated recognition, localization and detection using convolutional networks. In:
International Conference on Learning Representations (2014)

59. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI (2000)
60. Simon, I., Snavely, N., Seitz, S.M.: Scene summarization for online image collec-

tions. In: ICCV (2007)
61. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions

classes from videos in the wild. CRCV-TR-12-01 (2012)
62. Stupar, A., Michel, S.: Picasso - to sing, you must close your eyes and draw. In:

International Conference on Research and Development in Information Retrieval
(SIGIR) (2011)

63. Turnbull, D., Barrington, L., Torres, D.A., Lanckriet, G.R.G.: Semantic annotation
and retrieval of music and sound effects. IEEE Transactions on Audio, Speech &
Language Processing (2008)

64. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: ICCV
(2013)

65. Wenner, S., Bazin, J.C., Sorkine-Hornung, A., Kim, C., Gross, M.: Scalable music:
Automatic music retargeting and synthesis. CGF (Eurographics) (2013)

66. Wu, X., Li, Z.: A study of image-based music composition. In: ICME (2008)
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