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Figure 1: Our method allows local tone mapping of HDR video where the scene illumination varies greatly over time, in this case more than
4 logio units (c). Note that our method is temporally stable despite the complex motion of both the camera and the actor (b), and the resulting
tone mapped video shows strong local contrast (a). The plots show the logmean luminance of the HDR video and the mean pixel values of

the tone mapped video.

Abstract

Recent subjective studies showed that current tone mapping oper-
ators either produce disturbing temporal artifacts, or are limited
in their local contrast reproduction capability. We address both
of these issues and present an HDR video tone mapping opera-
tor that can greatly reduce the input dynamic range, while at the
same time preserving scene details without causing significant vi-
sual artifacts. To achieve this, we revisit the commonly used spa-
tial base-detail layer decomposition and extend it to the temporal
domain. We achieve high quality spatiotemporal edge-aware filter-
ing efficiently by using a mathematically justified iterative approach
that approximates a global solution. Comparison with the state-of-
the-art, both qualitatively, and quantitatively through a controlled
subjective experiment, clearly shows our method’s advantages over
previous work. We present local tone mapping results on challeng-
ing high resolution scenes with complex motion and varying illumi-
nation. We also demonstrate our method’s capability of preserving
scene details at user adjustable scales, and its advantages for low
light video sequences with significant camera noise.
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1 Introduction

New video technologies keep improving the quality of the view-
ing experience: display resolutions are moving up from HD to 4K,
frame rates in cinemas are increasing to 48fps and beyond, and
stereoscopic 3D is introducing depth as an additional dimension.
While through these advances the fidelity of the content in terms
of spatial and temporal resolution and depth has been gradually in-
creasing, the dynamic range aspect of video has received little atten-
tion until recently. However, this can be expected to change quickly
as modern high-end cameras (such as the Red Epic Dragon, Sony
F55 and F65, and ARRI Alexa XT) now can natively capture High
Dynamic Range (HDR) video up to 14 f-stops. Creatives are highly
interested in HDR video because it allows them to show more visual
detail and extend the limits of artistic expression. Consequently,
the entertainment industry is working towards HDR video pipelines
for delivering content to the end user, including related distribution
standards (MPEG and JPEG). However, the final element of the
pipeline is slightly lagging behind: despite the existence of a small
number of products and impressive research prototypes, consumer
level HDR display technology is not yet on the horizon.

Still, in the absence of displays that are capable of fully reproducing
the captured dynamic range, tone mapping of HDR video provides
a means of visualization and artistic expression. More specifically,
it may be desirable to reduce the dynamic range of captured HDR
content while both maintaining most of the visual details and not
hampering the picture quality by introducing visible artifacts. Re-
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cent subjective experiments on the state-of-the-art in HDR video
tone mapping [Eilertsen et al. 2013; Petit and Mantiuk 2013] re-
vealed that none of the current methods (including a camera re-
sponse curve) could achieve both goals at the same time.

In this work we propose a new HDR video tone mapping operator
(TMO) to help close the gap between the captured dynamic range
and displayed dynamic range. We build upon prior work in image
tone mapping that utilize base and detail layers. Such a decompo-
sition allows compressing the base layer’s dynamic range while the
local contrast remains intact in the detail layer. Different from prior
work, our decomposition utilizes spatiotemporal filtering through
per-pixel motion paths. This way, our method enforces tempo-
ral coherence and significantly reduces temporal artifacts such as
brightness flickering and camera noise without introducing ghost-
ing. As aresult, we enable local HDR video tone mapping that can
be art-directed without introducing visually significant artifacts.

The two main contributions of our work are the following:

e A temporally coherent and local video tone mapping method
that can maintain a high level of local contrast with fewer tem-
poral artifacts compared to the state-of-the-art (validated by a
subjective study).

e A practical and efficiently parallelizable filtering approach
specifically designed for tone mapping, that reduces halo arti-
facts by approximating a global solution through iterative ap-
plication (with a formal analysis of the filter’s halo reduction
property).

We show our method’s advantages both qualitatively through ex-
amples (Sections 5.1 and 5.4), and quantitatively through a con-
trolled subjective study (Section 5.2). We also demonstrate that our
method allows creative control over spatial and temporal contrast
(Section 5.5) through a simple user interface (Section 5.3). Finally,
due to temporal filtering we show that our method works especially
well for low light shots with significant camera noise (Section 5.6).
Next section continues with a brief discussion of the related work.

2 Background

HDR Image Tone Mapping has been extensively studied in com-
puter graphics. Here we give a brief introduction and refer the
reader to Reinhard et al. [2010] for a comprehensive overview of
the field. Since the early days of photography, reproducing the dy-
namic range of natural scenes on chemically limited negative has
been a big challenge. This problem has been reduced by adopting
an S-shaped tone curve that gradually compresses highlights and
shadows [Mantiuk et al. 2008], as well as utilizing techniques such
as dodging and burning during the photographic development pro-
cess to locally adjust the image exposure [Reinhard et al. 2002].
The disconnect between the technical aspects of tone reproduction
and the artistic concerns of photography has been addressed by the
Zone System [Adams 1981], which has been widely used since its
inception [Reinhard et al. 2002].

Reinhard et al. [2002] attempted to faithfully model this photo-
graphic tone reproduction process for digital HDR images. Their
method is known for its tendency to preserve the natural look of the
original scene. Another class of TMOs [Ferwerda et al. 1996; Pat-
tanaik et al. 2000; Reinhard and Devlin 2005] takes the naturalness
aspect one step further by modeling various aspects of the human
visual system and aiming to reproduce the scene from the eyes of a
hypothetical human observer.

A number of operators take an alternative approach where they fo-
cus on reproducing the original scene by preserving its local con-
trast. Images produced by such local (spatially-varying) TMOs can

often easily be recognized due to their characteristic look with re-
duced brightness differences between highlights and shadows, but
greatly enhanced fine scale details (our teaser shows an example).

It is worth noting that results of local and global TMOs can look
quite different, and some people have strong aesthetic preferences
for one type of tone mapping over the other. In this work, even
though we do not advocate any particular visual style, we focus on
local tone mapping because it is currently unresolved for video, and
is the more general problem among the two.

One way of achieving local image tone mapping is by selectively
compressing the input HDR image in the gradient domain, and re-
constructing a reduced dynamic range image from the modified gra-
dients [Fattal et al. 2002; Mantiuk et al. 2006]. Another approach
is to decompose the HDR image into a base and a detail layer,
which respectively contain coarse and fine scale contrast [Durand
and Dorsey 2002]. The dynamic range reduction is achieved by re-
combining the detail layer with a tone compressed base layer. The
decomposition is often done using edge-aware filters in order to re-
duce the effect of the well-known halo artifacts, which appear near
strong image edges if the base layer compression is too strong. In
principle, our method is also based on a base-detail layer decompo-
sition using edge-aware filters (although we compute these layers
in a novel way). Therefore we review edge-aware filtering in the
following paragraph from a tone mapping perspective.

Edge-Aware Filtering is a fundamental building block for sev-
eral computer graphics applications including tone mapping. Mi-
lanfar [2013] gives an excellent overview of the many filtering ap-
proaches. HDR image tone mapping has been a popular applica-
tion among the edge-aware filtering methods published since the
establishment of edge-aware filtering based tone mapping [Durand
and Dorsey 2002]. However, the treatment of tone mapping among
these works has (understandably) been often brief, since the main
contributions of these works lie elsewhere. In the absence of ex-
tensive comparisons, it is difficult to reach any conclusions on how
well various edge-aware filters perform on HDR tone mapping.

Nevertheless, if the base layer is compressed strongly during tone
mapping, the bilateral filter [Tomasi and Manduchi 1998] has been
known to produce visible halo and ringing artifacts in the resulting
image. The Weighted Least Squares (WLS) filter [Farbman et al.
2008] has the advantage of preventing halo artifacts by minimizing
a function whose data term penalizes the distance between the orig-
inal and filtered image. On the downside, this approach requires
solving large numerically-challenging linear systems [Fattal 2009],
and involves the complex machinery of a multi-resolution precon-
ditioned conjugate gradient solver [Paris et al. 2011]. Still, WLS
has been used as the reference method in follow-up work due to the
high quality of its results [Fattal 2009; Gastal and Oliveira 2011].
The computation of the Edge-avoiding Wavelets [Fattal 2009] is
much simpler, however they have been shown to suffer from alias-
ing and generating irregular edges [Paris et al. 2011]. The Local
Laplacian Filter is capable of producing high quality results, how-
ever its authors point out the running time as the method’s main
shortcoming [Paris et al. 2011]. While recently a faster implemen-
tation became available [Aubry et al. 2014], the temporal stability
aspect is still an open question, and it is not clear how to extend
the method to the temporal domain. A number of other recent fil-
tering techniques [Gastal and Oliveira 2011; He et al. 2013] have
been shown to produce plausible tone mapping results in a limited
number of images and configurations, but have not been thoroughly
tested for halos and other tone mapping artifacts. Likewise, recent
work involving spatiotemporal filtering has neither been designed
nor tested for video tone mapping [Lang et al. 2012; Ye et al. 2014].

In this work we propose a practical and parallelizable filter designed



specifically for tone video mapping. The key properties of our filter
are its natural extension to the temporal domain and the reduction of
halo artifacts through iterative application (Section 4). Importantly,
we also present a formal discussion of our method’s halo reduction
property and its theoretical similarities to WLS (Section 4.4).

Video Tone Mapping has been a far less active field than image
tone mapping. A major obstacle for video tone mapping research
has been the absence of high quality HDR content available to the
research community, which has been partially addressed by the re-
cent developments in high-end cameras and other experimental sys-
tems [Tocci et al. 2011].

A number of TMOs comprise temporal components that allow
them to process HDR video. Among them, the global opera-
tors [Ferwerda et al. 1996; Pattanaik et al. 2000; Irawan et al. 2005;
Van Hateren 2006; Mantiuk et al. 2008; Boitard et al. 2012] includ-
ing the S-shaped camera response curve generally produce results
with good temporal coherency but low spatial contrast. On the other
hand, the local operators [Ledda et al. 2004; Bennett and McMil-
lan 2005; Benoit et al. 2009; Reinhard et al. 2012] often maintain
high contrast at the cost of more temporal artifacts. The advan-
tages and shortcoming of these operators have been discussed and
subjectively evaluated by Eilertsen et al. [2013] (we present a com-
plementary subjective study in Section 5.2).

Other work in video tone mapping [Kang et al. 2003; Ramsey et al.
2004; Kiser et al. 2012] focused on extending the photographic
TMO’s tone curve [Reinhard et al. 2002] with temporal filtering for
computing a temporally coherent key value. For such global TMOs,
the temporal coherence of the tone mapping results is shown to be
enhanced by simply ensuring the temporal smoothness in the TMO
parameter space (they could also benefit from automatic flicker de-
tection [Guthier et al. 2011]). However, like other global TMOs,
these methods are inherently limited in local contrast reproduc-
tion. Recent work by Boitard et al. [2014b] extends their previous
work [Boitard et al. 2012] on temporally coherent global tone map-
ping. The extension consists of segmenting each video frame (typ-
ically to 2 — 4 segments) and applying a global tone curve to each
segment individually. This way they introduce local adaptation at
a segment level at the cost of more complex processing involving
video segmentation. While they claim local brightness coherency,
the effectiveness of their method remains unclear since their user
study measures subjective preference rather than assessing tempo-
ral artifacts and/or local contrast reproduction. It is important to
note that the parameter smoothing approach employed in the afore-
mentioned methods is not an option for local tone mapping, where
temporal coherence has to be achieved in the image domain. Such
a temporal extension has been proposed for the gradient domain
image TMO [Lee and Kim 2007] that utilizes a block matching al-
gorithm between two consecutive frames. However, the effective-
ness of the extension is limited to the highest frequency temporal
artifacts due to the two-frames temporal neighborhood. Also, the
Poisson reconstruction step of gradient domain operator is costly at
high resolutions.

Subjective studies and surveys that evaluated the state-of-the-art in
HDR video tone mapping [Eilertsen et al. 2013; Petit and Mantiuk
2013] came to the conclusion that the problem is far from being
solved. As for future work, temporal models for avoiding artifacts,
and local processing for maintaining a high level of detail and con-
trast have been pointed out as two venues for improvement. In this
paper we address both challenges and propose a novel method for
temporally coherent local HDR video tone mapping.

3 Local HDR Video Tone Mapping

In this section we give an overview on the various aspects of the
HDR video tone mapping problem and describe the main computa-
tional steps of our method.

3.1 Visual Trade-offs in Local Video Tone Mapping

Since HDR tone mapping often significantly reduces the input dy-
namic range, some of the scene contrast is inevitably lost during the
process. As such, local image tone mapping involves a visual trade-
off between fine and coarse scale contrast. If coarse scale contrast is
emphasized, the luminance difference between large image regions,
as well as highlights and shadows become more pronounced at the
cost of the visibility of the fine scale details. If, on the other hand,
fine scale contrast is emphasized, the relative reduction of coarse
scale contrast often results in a “flattening” effect.

Additionally in local video tone mapping, another similar trade-off
exists between spatial and temporal contrast. Consider an HDR
video clip that transitions from bright sunlight to a darker hallway,
and therefore has strong temporal contrast (Figure 2). One strategy
for tone mapping such a clip is to utilize the full dynamic range
independently at every video frame, such that both frame (a) and
frame (b) have sufficient brightness to reproduce most of the scene
details. This way one can maintain the tone mapped video’s spa-
tial contrast, with the side effect of reducing the sensation that the
hallway is much darker than the outside. Another (complementary)
strategy for tone mapping the same video is maintaining a certain
amount of the temporal contrast at the cost of less visible spatial
details during the hallway part.
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Figure 2: The visual trade-off between emphasizing spatial con-
trast (a, b) and temporal contrast (a, c). While in both settings
frame 38 remains the same (a), frame 265 can be adjusted to either
maintain spatial (b) or temporal contrast (c).

In our view, the aforementioned trade-offs are context dependent
and ultimately artistic decisions, and no tone mapping strategy is
inherently better than others in all possible scenarios. It is there-
fore desirable that the tone mapping algorithm offers the required
artistic freedom by providing explicit control over spatial contrast
at different scales, as well as temporal contrast. Importantly, the
tone mapping method should maintain a consistent level of image
quality, since the artistic freedom makes little practical sense if a
certain set of edits create visually noticeable artifacts. In that sense,
video tone mapping is especially challenging because the tempo-
ral dimension emerges as a new source of artifacts. In fact, high
temporal frequency artifacts such as brightness flickering, camera
noise, as well as any temporal inconsistencies of the TMOs are im-
mediately noticeable because of the human visual system’s proper-



ties. In particular, Eilertsen et al. [2013] noted that even very small
amounts of ghosting and flickering in the tone mapped HDR videos
are unacceptable in practice.

3.2 Tone Mapping Pipeline

Recent subjective studies revealed that local TMOs (which usu-
ally maintain local contrast) are temporally unstable [Eilertsen et al.
2013]. Similarly, naively applying image TMOs to individual video
frames has been found to produce strong temporal artifacts [Eilert-
sen et al. 2013; Boitard et al. 2014a]. Global TMOs with relatively
simple processing steps are found to be less susceptible to temporal
artifacts, however they lack the contrast reproduction capabilities of
local operators. The temporal instability of local TMOs underlines
the necessity of temporal filtering for local video tone mapping.
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Figure 3: Major processing steps of our method. Refer to the text
for details.

Since filtering in the temporal domain is notably more challenging
than in the spatial domain, one can assume that the scene is static
and filter through a straight line in the temporal dimension [Ben-
nett and McMillan 2005]. However this approach generates strong
ghosting artifacts as in practice the static scene assumption rarely
holds. In contrast, Lang et al. [2012] propose a general purpose ap-
proach that filters through each pixel’s path over time. The down-
side of their method is that the path computation is performed glob-
ally over the whole video sequence, which therefore needs to be
kept in memory. As such, this approach becomes infeasible for
longer video sequences at high resolutions. Similarly, for such se-
quences Ye et al.’s [2014] method is prohibitively expensive as it
is reported to require over a minute to process a 800 x 600 frame
(moreover this method is not designed for tone mapping).

Our approach, similar to Durand and Dorsey [2002] and many oth-
ers, uses the idea of decomposing each frame into a base and detail
layer by utilizing an edge-aware filter, but with the key difference
of filtering in the temporal dimension by utilizing optical flow. The
main processing steps of our method are depicted in Figure 3. In our
approach, the base layer is obtained by edge-aware spatiotemporal
filtering of an HDR video cube consisting of a center frame and a
number of its temporal neighbors. This way, we reduce the effect
of illumination changes over time and enforce temporal coherence
in the base layer. The computation of the detail layer also involves
filtering the input HDR sequence, but only in the temporal dimen-
sion. This way we effectively reduce temporal artifacts with low
amplitude and high temporal frequency (such as camera noise and
brightness flicker) without sacrificing spatial resolution. While still
retaining a contrast reproduction capability comparable to Durand
and Dorsey’s image tone mapping framework, we also suppress

halo artifacts commonly observed in such frameworks through our
shift-variant filter that approximates a global solution.

(a) HDR Frame (b) Temporal Nei hborhood

(c) Spati
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(g) Spatiotemporally
Filtered HDR Frame

Figure 4: Spatiotemporal filtering process of a single HDR frame
within a temporal window. Brighter colors in (c) and (f) indicate
higher permeability. Steps (c, d) comprise the spatial filtering,
whereas (e, f) comprise the temporal filtering.

The spatiotemporal filtering is performed on a temporal neighbor-
hood and uses forward and backward optical flow estimates to
warp each frame’s temporal neighborhood, such that their pixels
are aligned on a straight line in time dimension. The temporal fil-
tering proceeds only if the temporal alignment is predicted to be
reliable. This way temporal consistency is enhanced while mini-
mizing ghosting. While our method is not bound to a specific op-
tical flow algorithm, in our implementation we use Zimmer et al.’s
approach [2011]. We mostly used the method’s standard parameters
and spent no special effort for fine-tuning the optical flow results,
but rather focused on developing measures that detect optical flow
errors (discussed in Section 4.3).

Our method’s spatiotemporal filtering process is depicted in Fig-
ure 4. For a single input HDR frame I; in the log domain (a), we
consider a number of consecutive past and future frames as the tem-
poral neighborhood (b). The optimal size of the temporal neighbor-
hood depends on the content and flow quality, however we empiri-
cally found that 10 frames in each direction works well in our im-
plementation. Next, for each frame in the temporal neighborhood
we compute a permeability map (c) which controls the spatial dif-
fusion between neighboring pixels. The permeability map is used
as an input to the spatial filtering process (d) and prevents filtering
across strong image edges. Specifically, the spatial part of our fil-
tering involves iterative application of the shift-variant spatial filter

h® to the frame Jt(k), where k denotes the iteration, and Jt(o) =1I.
The (k 4 1)*" iteration result is computed as:

D = 3w (1= a0, )

where ) is a spatially and temporally varying weighting factor that
introduces a bias towards the original image (important for halo
reduction), and * denotes an ordinary shift-variant convolution with
filter h®. Our filtering approach is discussed in detail in Section 4.

Next, as the first step of the temporal part of the process in Figure 4,
we warp (e) the frames in the temporal neighborhood such that all
their pixels are aligned with the corresponding pixels of the input
HDR frame I;. The warping process uses forward and backward



optical flow'. For each pixel of a frame J,» with ¢’ > t we compute
the cumulated forward vector

t'—1

diy = Z dT*)(T+1) 2)

T=t

based on optical flow vectors d._,(,41) between neighboring
frames. Next, we warp all pixels of J;/ by shifting them in the op-
posite direction —d;_,;» which temporally aligns the pixels of Jy
with those in J;. This process is repeated in 2D for all pixels of all
future frames that are in the temporal neighborhood of J;. An anal-
ogous warping process is also repeated in the past direction using
the backward optical flow.

An inevitable problem with the warping process is the inaccuracies
due to the errors and limits of the optical flow. In order to prevent vi-
sual artifacts we compute a flow confidence map (f), which is anal-
ogous to the permeability map in the sense that it prevents the filter
support from growing across certain pixels. Differently, the flow
confidence map is used in temporal filtering, and is computed by
combining a photo constancy measure and a flow derivative mea-
sure (discussed later in Section 4.3). Finally, the spatiotemporally
filtered HDR frame (g) is obtained by applying the same filter that
performs the spatial filtering in the temporal domain, by simply us-
ing the flow confidence (f) as the permeability map.

We compute our base layer by applying all the steps depicted in
Figure 4 to the log luminance of the input HDR video. Addition-
ally, we also apply the temporal filtering steps (e-f) independently
to all color channels of the input HDR video, which is then used
for computing the detail layer (refer to Figure 3) similarly in the
log domain. Formally, we express the temporal filtering combined
with the aforementioned warping process as a simple shift-variant
temporal convolution:

(1xh%), = (Tn") 3)

where I; (t',p) = I(t', p + dy_y), i.e. I; is an image sequence, in
which each frame ¢’ is warped to t using the flow field d;_, . The x
operator denotes the shift-variant convolution with image warping.
The spatiotemporal filtering I x A°* differs from the temporal filter-
ing in Equation 3, in that the warped image Iis computed from the
spatially filtered image .J instead of I:

(1xn7), = (Joxn") @)

where J; (t',p) = J (t',p+ dy_). Having described and for-
mally expressed the temporal and spatiotemporal filtering opera-
tions, we can compute the base (B) and detail (D) layers as follows:

By = (Ixh™), and D;= (Ixh"), — Bs. 3)

Note that for computing D; in color images, B; is subtracted sep-
arately from each color channel of the temporally filtered source
HDR video. Once we compute the base and detail layers, we can
reduce the dynamic range of the input video without affecting the
scene details at selected scales. To achieve this, we first apply a
compressive tone curve to the base layer, and then recombine both
layers. A simple way of compressing the base layer proposed by
Durand and Dorsey. [2002] involves multiplying the log luminance
of the base layer by a compression factor. On the other hand, us-
ing tone curves such as Drago et al. [2003] or Reinhard et al. [2002]
gives greater control over the final look. In this work we used either
a compression factor ¢, or Drago et al.’s tone curve (controlled by

I'See supplemental material for an illustration of the warping process.

the bias parameter)” based on personal aesthetic judgement. That
said, other tone curves can be easily integrated to our method.

4 Edge-Aware Video Filtering

In the previous section, we presented our tone mapping pipeline
and discussed the steps involved in the spatiotemporal filtering pro-
cess, while treating the underlying filter formulation as a black box.
In this section we start by introducing a class of iterative filter-
ing methods and analyse them from a tone mapping perspective
(Section 4.1). We show that this practical formulation can easily
be adapted to perform the spatial (Section 4.2) and temporal (Sec-
tion 4.3) filtering steps we described earlier in Section 3. We also
discuss our filter’s relation to the WLS filter (Section 4.4), which
is often used as the reference against which new methods are com-
pared in terms of image quality. The main advantage of our paral-
lelizable filter with sub-linear runtime is that it generates visually
similar results to WLS even with a small number of iterations®, and
that it can be easily extended to the temporal dimension.

4.1 Filter Formulation

A number of anisotropic smoothing filters that are used for image
tone mapping [Farbman et al. 2008; Gastal and Oliveira 2011; Du-
rand and Dorsey 2002] can be expressed as a class of iterative fil-
tering methods, which can be represented by the iteration shown in
Equation 1. This iteration can be expressed in a slightly different
form as follows:

T =S b I+ Ay (L, = T),©
qeQ

where I, is the input image intensity at pixel position p at frame ¢
(we omit the frame indices in this and the following equations for
brevity), J,gk> is the corresponding diffusion result after k iterations
with J;O) = Ip, matrix H := {hp,} is a row-stochastic matrix,
i.e. all matrix coefficients h,, are between 0 and 1, inclusive, with
> o hwe = 1 Vp, and the set €2 contains all pixel positions of a
frame. The iteration consists of two parts, a sum that computes a
weighted average at pixel position p which we denote as diffusion
estimate, and a fidelity term [Mrazek et al. 2004; Nordstrom 1989]
whose impact is controlled by a parameter A and introduces a bias
towards the input image.

The fidelity term significantly contributes to the reduction of halo
artifacts in tone mapping applications. To provide some intuition
for this property, let us introduce the intermediate term diffusion
strength at a pixel p, and define it as kK, := 1/h,,. If the dif-
fusion strength &, is large (hp, < 1), then Jék“) is computed
by strong contributions from pixels J,gk) with ¢ # p. However,
if the diffusion strength x, is small (h,, ~ 1), then J,,Sk“) ~
(1- )\)J,Ek) + AI,, which means that the result does not depend on
pixel positions other than p and it represents a weighted average. In
particular, if the diffusion strength is small and A = 1, then

JED ~ 1, 7

In other words, a parameter A = 1 leads to a strong shift towards
the original image in areas with low diffusion strength.

As discussed earlier, local tone mapping methods often suffer from
halo artifacts that appear near strong image edges, especially if the
input dynamic range is strongly compressed. The property shown in

2Formula presented in supplemental material.
3Refer to the supplemental material for a visual comparison.
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Figure 5: Base layers computed from a stimulus signal (a). The
stimulus signal is composed by a step function that is modulated
with a sine wave of increasing frequency (a chirp signal) and Gaus-
sian noise. In (b) and (c), corresponding detail layers and tone
mapping results are shown, respectively. Tone mapping is per-
formed by compressing the base layer from (a) and keeping the cor-
responding details from (b). After one iteration, only fine scale de-
tails (the Gaussian noise) are present in the detail layer (this result
is identical for all \), while after 50 iterations also medium scale
details (from the sinusoidal wave) are added to the detail layer.
Note that X = 1 significantly reduces the halo artifact, i.e. the
overshooting on both sides of the step edge in (c).

Equation 7 is therefore highly desirable near strong edges, because
it significantly reduces halo artifacts by shifting the filtered result
towards the original input. Based on these observations we con-
clude that our instantiation of the filter shown in Equation 6 should
use A = 1 and it should have a low diffusion strength in areas close
to strong image edges.

Figure 5 shows filtering results for different settings of A on a repre-
sentative 1D example (we use our instantiation of matrix H that will
be introduced in the following section). Note that in the case A = 0,
strong edge-aware smoothing creates significant halo artifacts in the
tone mapping result. These artifacts are substantially reduced in the
case A = 1, since the filtering result is biased towards the stimulus
signal in the area close to the step edge.

The bilateral filter [Durand and Dorsey 2002] and the domain trans-
form [Gastal and Oliveira 2011] correspond to an instantiation of
Equation 6 with A = 0. However, the WLS filter [Farbman et al.
2008] uses A = 1 as will be shown in Section 4.4.

Note that the result of each iteration step in Equation 6 can be ef-
ficiently computed in parallel since every J,()]€+1> can be computed

independently of other J,EIH'I). Such a parallelized implementation
leads to an overall runtime of O(k|€2|) where || is the total num-
ber of pixels and k is the number of iterations. Even faster runtimes
are possible depending on the structure of H, which we discuss in
the following section. Furthermore, Perron-Frobenius and Markov
chain theory [Meyer 2001] show that the iteration converges to a
non-trivial solution for 0 < A < 1 if all hp, # 0. This allows
us to approximate the convergence result by stopping the iteration
after a reasonable number of iteration steps, which depends on the
particular instantiation of matrix H in Equation 6.

4.2 Spatial filtering

In this section, we discuss how to perform the spatial filtering step
described in Section 3 using the filter formulation from Equation 6.
More specifically, while considering our conclusions from the pre-
vious section, we construct an iteration matrix H that leads to the
smoothing results required for tone mapping after a low number of
iterations. Thus, H has to perform a strong edge-aware diffusion per
iteration, while having a low diffusion strength close to significant
image edges, and A should be 1. We observe that a strong edge-
aware diffusion can be achieved even with a single iteration, if all
pixels within a connected region of similar color contribute to the
diffusion result at all pixels of that region [Cigla and Alatan 2013;
Lang et al. 2012; Gastal and Oliveira 2011].

We derive H using permeability weights (mentioned earlier in Fig-
ure 4-c). We define the permeability between a pixel p = (pa, py)
and its right neighbor p’ = (p, + 1,p,) as a variant of the
Lorentzian edge-stopping function [Durand and Dorsey 2002]

ay —1
Fp 1= (1+ ) : )

The permeability between p and its right neighbor pixel is close to 0
if the absolute value of the corresponding color difference is high,
and it is 1 if the difference is low. The parameter o indicates the
point of transition from large to low permeability, while o controls
the slope of the transition around o. In this work we used o = 2
and a o in the range 0.1 — 1. Similar to [Cigla and Alatan 2013], we
use these permeability weights to define the permeability between
two arbitrary pixels p and q as

I, — I
g

1 1 . pP=q
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Tpg 1= ;:f;_ ir(n,py) L P < Gz, Dy qy . (9)
=g " (n.p,) Pz > qzs Py = Qy
0 : otherwise

Thus, the permeability between two pixels p and q of the same row
is large if the permeability between each pair of neighboring pixels
on the path between p and q is large. In particular, the permeability
between p and q is significantly reduced, if there is a pair of neigh-
boring pixels along the path with low permeability (e.g. a strong
vertical edge between pixels p and ¢). The permeability between
pixels of different rows is defined to be zero. To obtain a stochastic
matrix H := {h,q }, we normalize these weights according to

™
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where w is the image width. Note that the diffusion strength
1/hpp tends to become smaller in the neighborhood of strong ver-
tical edges since the permeability to all pixels on the other side of
the edge is close to zero. The iteration matrix H is derived from
weights describing inter-pixel permeability in the horizontal direc-
tion (Equation 8). Analogously, we also derive another matrix for
permeability in the vertical direction. We denote the corresponding
matrices Hy and H,.

Spatial filtering is conducted according to Equation 6 by alternating
between Hy, and Hy, for each k£ and using A = 1. After each iteration,
the direction of diffusion is changed which allows a fast diffusion of
intensities in connected regions of similar color [Lang et al. 2012;
Gastal and Oliveira 2011]. Figure 6 shows a spatial filtering result
and a visualization of the corresponding permeability map.

Due to the structure of the iteration matrices, diffusion is conducted
either only in horizontal or only in vertical direction. Thus the over-
all runtime (on a parallel architecture) is O(kw + kh) where w is



Figure 6: Edge-aware spatial filtering using permeability map.
Brighter colors in the permeability map indicates higher perme-
ability.

the width and h is the height of image I and k is the number of iter-
ations. Thus, in cases where the total number of iterations is signifi-
cantly smaller than (wh)/(w + h), the runtime becomes sub-linear
with respect to the total number of image pixels.

In practice, we observed that after a small number of iterations
the filtering results became visually equivalent*. Our unoptimized
Matlab implementation (using the Paralle] Computing Toolbox) re-
quires 19 ms for computing the permeability map, and 12 ms for
a filtering iteration (comprising both vertical and horizontal steps)
for a megapixel color image on a current consumer PC.

4.3 Temporal filtering

An important advantage of our filter formulation from Equation 6
is that it can easily be adapted to also perform the temporal filtering
step in our tone mapping pipeline discussed in Section 3. Differ-
ently in temporal filtering, diffusion is conducted along the tempo-
ral dimension over the warped temporal neighborhood (Figure 4-¢)
with only one iteration. The permeability weights are computed in
the same way as in the spatial filtering using the Lorentzian edge-
stopping function variant (Equation 8). While their computation is

Photo

Figure 7: Photo-constancy measure limits permeability near warp-
ing errors, but still allows filtering over temporal paths with small
color differences.

the same as in the spatial domain, the interpretation of the perme-
ability weights is slightly different in the temporal domain. In the
temporal domain the permeability is additionally affected by the
warping errors within the temporal neighborhood. The direct ex-
tension of the permeability weights to the temporal domain, where
the weights are obtained by applying Equation 8 to the color dif-
ferences between consecutive frames, can therefore interpreted as a
photo-constancy measure (Figure 7). The photo-constancy measure
limits the permeability at strong temporal edges, as well as regions
that are erroneously warped due to incorrect optical flow.

While we observed that the photo-constancy measure can be tuned
to stop temporal filtering at most warping errors, we found that
such a conservative configuration also stops at the temporal arti-
facts, which defeats the purpose of the temporal filtering. Our so-
lution is to introduce another measure that penalizes flow vectors
with high gradients (Figure 8), as it is a good indication of com-
plex motion and the flow estimation tends to be erroneous in such
regions [Mac Aodha et al. 2013].

4A visual comparison is presented in supplemental material.
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Figure 8: Flow gradient measure penalizes flow vectors with high
temporal gradient, providing an additional means to prevent warp-
ing artifacts.

Both the photo-constancy and the flow gradient measures are nor-
malized by Equation 8, and the final permeability is obtained by
multiplying the two. This way, the photo-constancy constraint can
be relaxed which allows regions with temporal artifacts to be per-
meable. The parameter values of both constraints depend on the tol-
erance to warping errors, desired level of temporal smoothness and
the quality of flow. In our implementation, we empirically found
that setting o to 0.1 for photo-constancy, and to 2 for flow gradi-
ent measures, while keeping @ = 2 results in sufficient temporal
filtering while still suppressing warping artifacts.

4.4 Relation to the WLS filter

Finally, we investigate the theoretical relation between the WLS fil-
ter, which is known to create anisotropic smoothing results of high
quality [Fattal 2009; Gastal and Oliveira 2011], and our permeabil-
ity weights-based smoothing method. WLS smoothing is uniquely
defined as the solution of the following linear system

I, =Jp + Z apq (Jp — Jq), (11)
q€N4(p)

where I, and J, are pixel values of the input image and the
smoothed output image, respectively, N4 (p) is the 4-neighborhood
around pixel p, and a,, are the smoothness weights as defined in
[Lischinski et al. 2006]

A
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Apart from differences in notation, this is the same equation sys-
tem as shown in the original article [Farbman et al. 2008]. The
authors solve the equation system using a multi-resolution precon-
ditioned conjugate gradient solver, but they also indicate that the
same solution can be obtained iteratively with a Jacobi iteration.
The corresponding Jacobi iteration is [Meyer 2001]

(k)
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This iteration is an instance of Equation 6 where X is 1 and the
iteration matrix H has the coefficients

apq/ (1 + ZT€N4(17) am) q € Na(p)
E Y (1 Seamar) o a=p 09
0 : otherwise

Hence, WLS uses a bias term with A\ = 1 which reduces halo ar-
tifacts, and it smoothens the input image by iteratively diffusing
intensities in a small 4-neighborhood. Our method uses also a bias
term with A = 1, but in contrast to WLS it uses a significantly larger
diffusion range per iteration which is controlled by permeability
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Figure 9: Comparison of our method with current TMOs capable of processing videos. For each method, we show two representative frames
and plot the mean pixel values (tone mapped) and logmean luminance (HDR) over time. Note that the HDR plots are shifted and compressed

by an exponent for presentation.

weights. In our method, by alternating the direction of diffusion
between horizontal and vertical directions with each iteration, pix-
els are diffused in potentially large image regions after only a few
iterations. However, although both smoothing methods converge
against mathematically different solutions, filtering results are vi-
sually similar in practice?.

5 Results

Our video tone mapping method was developed by necessity for a
film production. Similar to Eilertsen et al. [2013], our experience
with the state-of-the-art in video tone mapping yielded unsatisfac-
tory results. Our newly developed method has been successfully
used in a professional post-production workflow at FullHD and
2880 x 1620 resolutions. Excluding I/O, our unoptimized Mat-
lab implementation of the full tone mapping pipeline requires on
average 3.445 seconds to process a color frame at FullHD resolu-
tion, and 6.465 seconds at 2880 x 1620 resolution on a current
desktop computer. The computation time of our method scales ap-
proximately linearly with the resolution of the input HDR video.

The results in this section have been generated by using the default
parameter values presented in Sections 3 and 4, with the excep-
tions of o® (that controls spatial permeability) and the tone curve
parameters (either the compression factor ¢ or the bias parameter
of the adaptive logarithmic tone curve, depending on which method
was used). Since the spatial permeability and tone curve parame-
ters mainly govern the aesthetics of the tone mapped content, their
values can be set up to personal taste. For generating the results in
this section and the supplemental video we used o® = [0.1, 1] and
bias = [0.2,0.5] whenever we used the adaptive logarithmic tone

curve. When we desired a stronger dynamic range compression, we
utilized the log curve with the compression factor ¢ = [0.2,0.4].
We also conservatively set the number of spatial filtering iterations
to 20. (Performance benchmarks have been obtained with these
settings and temporal neighborhood size 21.)

In the remainder of this section, we first qualitatively compare our
method’s results on the publicly available HDR video data provided
by Eilertsen et al. [2013] (Section 5.1). On the same public data
set we also performed a controlled subjective study, which vali-
dates our initial claim that our method maintains a high level of
local contrast with fewer temporal artifacts compared to the state-
of-the-art (Section 5.2). After briefly discussing user interaction
(Section 5.3), we present our main results obtained from process-
ing HDR footage shot with an Arri Alexa XT camera at FullHD or
2880 x 1620 resolutions® (Section 5.4). Finally we present exam-
ples on how our method allows control over spatial and temporal
contrast (Section 5.5), and demonstrate the advantage of using our
method in low light HDR sequences (Section 5.6).

5.1 Comparison with Other Methods

In Figure 9 we show a qualitative comparison between a number
of current tone mapping operators on the publicly available Hall-
way [Eilertsen et al. 2013; Kronander et al. 2013a; Kronander et al.
2013b]. In addition to the provided tone mapping results, we gen-
erated another sequence by running the Bilateral TMO using stan-
dard parameters. Presenting a concise and meaningful visual com-
parison between multiple video TMOs is challenging for various
reasons. In Figure 9, we show for each video two representative

SRefer to the supplemental video for more results.



frames to demonstrate its ability to show local contrast, as well as a
plot of the mean brightness of both the HDR and the tone mapped
sequences over time, which is helpful for investigating temporal
coherence.

The brightness flickering problems of local methods Retina
Model [Benoit et al. 2009] (a), Color Appearance [Reinhard et al.
2012] (b) and Virtual Exposures [Bennett and McMillan 2005]
(c) can be observed from their mean brightness plots. The Lo-
cal Adaptation [Ledda et al. 2004] (d) operator performs better in
terms of temporal coherence due to its temporal filtering. However,
since the temporal filtering does not utilize motion paths, its results
show strong ghosting artifacts (See the wall at the bottom image
in Figure 9-d). Consistent with the observation that local image
tone mapping operators generate strong temporal artifacts [Eilert-
sen et al. 2013], the mean brightness plot of the Bilateral TMO [Du-
rand and Dorsey 2002] shows notable fluctuations over time. The
mean brightness plots of the remaining operators Temporal Coher-
ence [Boitard et al. 2012], Display Adaptive [Mantiuk et al. 2008]
and Camera TMO [Eilertsen et al. 2013] suggest less temporal arti-
facts. The downside of these operators is their limited local contrast
reproduction capability due to their spatially-invariant processing.
On the other hand, we configured our TMO to emphasize local spa-
tial contrast while also maintaining the temporal contrast between
the beginning and the end of the sequence. Our tone mapping result
remains temporally coherent similar to the global operators even
though we strongly amplify the local contrast of the sequence (e).

We also compared our technique with Boitard et al.’s [2014b] recent
segmentation based temporal coherency method applied to Ram-
sey et al. [2004] and the recursive domain transform filter [Gastal
and Oliveira 2011] (Figure 10)®. The results show that Boitard et
al.’s [2014b] method tends to underutilize the available display dy-
namic range and generates dark frames with relatively low contrast
similar to their earlier work [Boitard et al. 2012] (see Figure 9-
g). The mean pixel value plots show fluctuations (notably between
frames 100 and 130) even for the Ramsey et al. [2004] version
which is a global TMO. Note that our method is relatively stable
at the same interval despite being local and therefore more suscep-
tible to temporal artifacts. Finally, our method reproduces temporal
contrast (Section 3.1) of the source HDR video better. Our result
preserves the transition from the bright exterior to the darker hall-
way by modulating the mean luminance accordingly, whereas this
transition is diminished or reversed in Boitard et al.’s [2014b] re-
sults.

5.2 Subjective Study

While the qualitative comparison in Section 5.1 is useful as an
overview and helps to put the many TMOs into perspective, it cer-
tainly does not capture all the aspects relevant to the evaluation of
video tone mapping. For example, while not apparent from Fig-
ure 9, most operators tend to show camera noise in their results.
To that end, we did a pair of controlled subjective rating studies to
compare our method with others in terms of local contrast repro-
duction and the absence of temporal artifacts. The studies respec-
tively had 20 and 19 paid participants mainly consisting of college
students. The stimuli consisted of 11 tone mapped sequences for
each of the 4 HDR video sequences in our test set. The HDR video
sequences and, whenever available, the tone mapped results were
obtained from the public data set by Eilertsen et al. [2013] (Hall-
way, Hallway2, ExhibitionArea and Students sequences were used).
The tone mapped videos for the Bilateral TMO [Durand and Dorsey

Boitard et al.’s [2014b] results for the Hallway sequence were made
public after the conditional acceptance of this publication and therefore have
been evaluated separately in Figure 10.
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Figure 10: Comparison of our method with Ramsey et al. [2004]
and Gastal et al. [2011] (recursive filtering version) combined
with Boitard et al.’s [2014] segmentation based temporal coherency
method (both provided by Ronan Boitard). The dashed lines denote
the min and max of each frame’s averaged pixel values over the test
sequence. Our method uses the display dynamic range more effi-
ciently and causes less temporal artifacts. Note also that Gastal et
al. [2011] with Boitard et al. [2014] reverses the temporal contrast
of the sequence.

2002], the Gradient Domain TMO [Fattal et al. 2002] and the WLS
TMO [Farbman et al. 2008] were generated from the source HDR
videos using default parameters. Also, the results of our method
have been generated using identical parameters for each video.

The study was performed through an interface similar to Petit et
al. [2013], and the subjects were asked to rate each video (presented
on a NEC MultiSync 2490WUxi? display) on a scale from 0 to 10,
in a first experiment for their local contrast reproduction, and in a
second and separate experiment for the absence of temporal arti-
facts. Note that these questions directly assess our primary claim
from Section 1 that our method is capable of maintaining a high
level of local contrast with fewer artifacts compared to the state-of-
the-art. Thus, we collected 88 data points for each subject. In a
training session before each experiment, the participants were ex-
plained the concepts of local contrast and temporal artifacts. While
there were no time limitations to our study, the average subject fin-
ished in approximately 30 minutes.
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Figure 11: Average ratings and 95% confidence intervals from our
user study.

The average ratings and the bars showing 95% confidence inter-
vals are shown in Figure 11. We performed One-factor Analysis
of Variance (ANOVA) with repeated measures to analyze both ex-
periments. The main effects were statistically significant for both



the local contrast (p < .001) and temporal artifacts (p < .001)
using Greenhouse-Geisser adjusted degrees of freedom. Pairwise
comparison of video processing methods was conducted using Bon-
ferroni’s post-host test. For the contrast reproduction experiment,
our method was assessed to have a significantly higher (p < .05)
contrast than all methods except WLS. For the absence of tem-
poral artifacts experiment, our method similarly was assessed to
have significantly fewer (p < .05) artifacts than all methods except
the Temporal Coherence TMO. The similarity in local reproduction
with WLS is expected because of our filtering approach’s connec-
tion to WLS (Section 4.4). Since WLS is an image TMO however,
it scores significantly lower with respect to the absence of temporal
artifacts. On the other hand, we note that the Temporal Coherence
TMO, that scores highest in the second experiment tends to pro-
duce dark frames (See Figure 9-g), which might have effected the
visibility of the temporal artifacts. For the same reason, it gets a
low average score in the local contrast reproduction experiment.

To conclude, the findings of the subjective study as well as the qual-
itative comparison in Section 5.1 suggest that our method is capable
of producing results with high local contrast with a similar level of
temporal coherence as the global operators.

5.3 User Interaction

HDR tone mapping is an artistic process that often involves ex-
perimentation through trial and error. As such, any tone map-
ping software is expected to give the user visual feedback at in-
teractive rates while tone mapping parameters are being changed.
The dilemma is that inter-
active video editing on cur-
rent standard hardware at high
resolutions is challenging to
achieve beyond simple opera-
tions. Our solution for inter-
active editing consists of the
offline pre-computation of the
base and detail layers required

for tone mapping, followed by
and interactive editing session
where the user adjusts tone

Figure 12: A screenshot from
our user interface during edit-
ing process.

mapping parameters through

a simple user interface (Fig-

ure 12). While most of the artistic decisions can be deferred until
after the pre-computation step, the user needs to select the o° pa-
rameter that controls the base layer smoothness a priori. That said,
we found that our two-step tone mapping workflow to work well
in practice, as o° and temporal filtering parameters can efficiently
set by trial and error on a small number of representative frames.
Overall, despite its simplicity, we observed that user interface no-
tably facilitated the creative side of the tone mapping process in a
post-production environment.

5.4 Local HDR Video Tone Mapping

The main application of our method is local video tone mapping.
Figure 13, our teaser and the supplemental video show our method’s
results produced from HDR sequences obtained with an Arri Alexa
XT camera at FullHD or 2880 x 1620 resolution’. The input video
sequences contain complex motion and strong changes in scene il-
lumination. Despite that, our method maintains a temporally stable
mean brightness over time, as well as high local contrast.

"Due to their high contrast, our results are best viewed on a computer
display. Printed versions may not be representative of the intended results.

5.5 Spatial and Temporal Contrast Adjustment

Local tone mapping allows producing various visual styles by ad-
justing the spatial scale of the detail layer. Figure 14 shows results
of two o® values where one emphasizes fine scale spatial details
(right), and the other produces a more balanced result (left).

Figure 14: Similar to local image TMOs, our method allows the
user to adjust the emphasis given to fine scale details. Left image
is generated with 0° = 1, whereas the right image with o = 0.1
(extreme parameter settings have been used for illustration). In the
right image, note how coarse scale details (e.g. shadows) become
less pronunced at the cost of emphasized fine scale details.

Our framework also allows explicit control over the temporal con-
trast (discussed in Section 3.1) of the tone mapped video. One
possibility when tone mapping HDR sequences with high temporal
contrast to apply strongly compressive tone curve, which reduces
the dynamic range of the whole sequence such that it fits into the
display dynamic range without generating any over or under ex-
posed regions. However, such a tone mapping that significantly re-
duces temporal contrast may sometimes be undesirable. The other
option of applying a less compressive tone curve, on the other hand,
may generate strongly over or under exposed frames (Figure 15, top
row). This can easily be remedied in our framework using a bright-
ness compensation factor that controls the brightness of each frame.
Since our method’s base layer is temporally stable, such a bright-
ness compensation factor can be modulated by the inverse of the
logmean luminance of the spatiotemporal base layer without caus-
ing brightness flickering (Figure 15, bottom row).

Without Brightness

With Brightness
Compensation

—— With Brightness Compensation
o —— Without Brightness Compensation
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Figure 15: The brightness compensation applied as a function of
logmean value of our method’s temporally coherent base layer can
be used to limit the temporal contrast in tone mapping configura-
tions where a strongly compressive tone curve is not desired.

5.6 Tone Mapping of Low-light Sequences

Tone mapping video sequences shot in low-light scenes is often dif-
ficult due to the camera noise. TMOs can not distinguish camera
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Figure 13: Representative local tone mapped frames from two sequences (a, d). Despite the high local contrast and strong dynamic range
compression, our method maintains a temporally stable logmean luminance over time (b, e). The input HDR videos that span more than 4

logio units are visualized in false color (c, f).

noise from scene details, which means that as scene details become
more visible during the tone mapping process, so does the noise.
Due to the denoising effect temporal filtering involved in our tone
mapping pipeline, our method is especially suitable for such low-
light sequences. Figure 16 shows an example where the TMO sig-
nificantly amplifies camera noise (a), which can be somewhat sup-
pressed by denoising the HDR frame before applying tone mapping
(b). The advantage of our method is that our results are comparable
to the latter without the need of an extra denoising step (c).

6 Discussion

While our method does not offer the final solution to the open prob-
lem of local HDR video tone mapping, we believe that it takes a
big step forward by significantly advancing the state-of-the-art and
paves the way for the (much needed) future work in this field. As
the entertainment industry is moving towards HDR video pipelines,
we think that the relevant research can be stimulated by further ad-
vances in filtering techniques geared towards tone mapping appli-
cations, and the emergence of high quality public HDR video data.

Our method is not without limitations. As an example, for artis-
tic reasons it is desirable to have multiple detail layers at differ-
ent contrast scales. Due to the many technical challenges involved
in obtaining even a single detail layer, we deferred a multi-scale
approach to future work. Also, as with every optical flow based
method, our technique is always susceptible to visual artifacts due
to the inevitable errors in the flow computation. Even though the
outcome of our subjective study (Section 5.2) suggests that these

artifacts can be suppressed to a reasonable level, we still feel that
our method can be improved by using additional and more sophis-
ticated flow confidence measures (e.g. by utilizing machine learn-
ing [Mac Aodha et al. 2013]). Finally, our method currently pro-
vides only a basic means for controlling chrominance in the form
of a saturation slider, which we hope to address in future work.

7 Conclusion

We presented a local HDR video tone mapping method, that can
significantly reduce the input dynamic range while preserving lo-
cal contrast. Our key difference is the use of a temporal filtering
through per-pixel motion paths, which allowed us to achieve tem-
poral stability without ghosting. We formulated an edge-aware fil-
ter that is applied by iterative shift-variant convolutions, and shares
the same halo suppression properties with the WLS filter, which
allowed us to efficiently realize our tone mapping framework. We
presented qualitative and subjective comparisons to the state-of-the-
art which resulted favorably for our method. We showed results
produced with various tone mapping configurations from challeng-
ing HDR sequences, and presented a simple yet effective user in-
terface. Finally we noted the advantage of our method in low-light
HDR sequences.



Figure 16: A frame-by-frame tone mapping using the bilateral TMO results in significantly visible camera noise (a), which can be reduced
by denoising each frame before tone mapping using external video editing software, as an example we use The Foundry NUKE (b). On the
other hand, our method can achieve comparably low noise levels without an extra denoising step.
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