
Transfusive Image Manipulation
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Figure 1: A trained artist makes detailed edits to a single source image (left) and our method transfers the edits to the 8 target images (right).

Abstract

We present a method for consistent automatic transfer of edits ap-
plied to one image to many other images of the same object or scene.
By introducing novel, content-adaptive weight functions we enhance
the non-rigid alignment framework of Lucas-Kanade to robustly han-
dle changes of view point, illumination and non-rigid deformations
of the subjects. Our weight functions are content-aware and pos-
sess high-order smoothness, enabling to define high-quality image
warping with a low number of parameters using spatially-varying
weighted combinations of affine deformations. Optimizing the warp
parameters leads to subpixel-accurate alignment while maintaining
computation efficiency. Our method allows users to perform precise,
localized edits such as simultaneous painting on multiple images in
real-time, relieving them from tedious and repetitive manual reappli-
cation to each individual image.
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1 Introduction

The process of editing photographs is nearly as old as photography
itself. Digital techniques in recent years have greatly expanded the
spectrum of possibilities and improved the quality of these edits.
Types of editing operations range from global tone adjustments, to

color histograms (e.g., [Cohen-Or et al. 2006]) to localized pixel
adjustments achieved by highly trained artists using specialized user-
interfaces and software (e.g., [Photoshop 2012]). With the increasing
availability of large digital photo collections, we currently witness a
growing demand to process entire sets of images of similar scenes,
taken from different viewpoints, exhibiting varying illumination, dy-
namic changes such as different facial expressions, and so on [Hays
and Efros 2007; Hasinoff et al. 2010; HaCohen et al. 2011]. As
pointed out by Hasinoff and colleagues [2010], the manual effort of
applying the same localized edit to a multitude of photographs of
the subject is often too great, causing users to simply discard some
images from a collection.

Many recent works have reduced the user effort required for making
image adjustments by using image content to intuitively propagate
sparse user edits to the entire image (e.g., [Levin et al. 2004; Lischin-
ski et al. 2006]). This is especially successful for the type of edits
which demand less detailed or precise direction by the user, and
therefore may be casually transferred to similar images or neighbor-
ing images in a video sequence [Li et al. 2010]. Such edits rely on
a layer of indirection to disguise imperfect matching or correspon-
dences. For example, in image colorization by sparse scribbles, the
chrominance channels produced by [Levin et al. 2004] may contain
discontinuities or may be matched incorrectly, but the final result
is still acceptable when composed beneath the original (and the
most perceptually salient) lightness channel. Recent works improve
upon the practicality of such methods, e.g., by supporting more
complex macros for photo manipulation that can be applied to larger
collections of images [Berthouzoz et al. 2011], but effectively edit
propagation is still supported only on a global scale rather than at
the pixel level.

In contrast, edits such as local deformations or hand-painted pixel
adjustments like the ones shown in Figure 1 may require tedious
hours of a trained artist. Because of this cost, it would be advanta-
geous to propagate such detailed edits to similar images of the same
subjects. The nature of these edits requires accurate, semantically-
meaningful sub-pixel matching between the relevant parts of the
images. Simple matching based on color and/or spatial proximity, as
used, e.g., in [Levin et al. 2004; Li et al. 2010], proves insufficient
for this task. General purpose matching techniques such as optical
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flow [Baker et al. 2011] fail due to significant variation in view
point, color and shape in loose image collections. Recent works
started employing advances in feature matching to propagate also
local image edits [Hasinoff et al. 2010; HaCohen et al. 2011], but the
applicability to pixel-level edits remains limited due to insufficient
flexibility, accuracy and smoothness of the matching.

We propose an adaptation of the Lucas-Kanade (LK) frame-
work [1981] that takes advantage of recent advancements in au-
tomatic weight computation methods for handle-based deformation
techniques. The LK energy-minimizing matching framework is gen-
eral enough to encompass subpixel-accurate and smooth mappings,
and has been successfully employed in various application domains
such as model-based tracking [Baker and Matthews 2004] or op-
tical flow estimation for smaller, sequential displacements [Baker
et al. 2011]. Yet it has been less capable of handling complicated
matching between images with considerable variation. We optimize
our pixel matching functionM : p→ p′ in the reduced subspace
of maps described by the linear combination of affine transforma-
tions: p′ =

∑m
k=1 wk(p)Tkp, where wk(p) are carefully chosen,

spatially-varying scalar weight functions, and the affine transforma-
tions Tk are optimized by our framework.

We define the necessary scalar weight functions such that they
promise parametrizable smoothness and content-adaptivity. We
do this by reinterpreting images as manifolds, allowing us to directly
employ the automatic weighting technique of [Jacobson et al. 2011]
originally designed for shape deformation.

Working in this subspace is advantageous in two ways. First, it
provides a controllable balance between computational expense
and the expressiveness and accuracy of the mapping. Despite op-
timizing only the parameters of a few affine transformations, the
above content-adaptive weighted interpolation allows for mapping
functions that faithfully follow the shape even of complex objects.
Second, the reduced subspace acts as regularization which avoids
the common pitfalls and local minima issues found in optical flow
techniques. This allows us to match significant changes in illumina-
tion, viewpoint, non-rigid deformation, occlusions, and enables us to
accurately transfer edits of a source image to multiple target images.
Hence we name our framework “transfusive” image manipulation.

2 Related Work

Transferring pixel-level edits from one image to another requires
accurate mappings between corresponding image regions. Finding
such correspondences is a long-standing problem in many areas of
computer vision and graphics, and there exists a variety of basic,
general purpose correspondence estimation techniques ranging from
dense optical flow (e.g., [Zimmer et al. 2011]) to sparse features
(e.g., [Lowe 2004]). Techniques for optical flow computation and
dense feature tracking allow for sophisticated edit propagation in
video [Levin et al. 2004; Agarwala et al. 2004; Bhat et al. 2007;
Rav-Acha et al. 2008]. However, those methods can handle only
small image displacements and appearance changes [Baker et al.
2011] and hence are not suitable for the types of image collections
we are aiming at. Methods for stereo correspondence estimation
may cope with larger differences between views, but require camera
calibration and static scenes [Scharstein and Szeliski 2002], while
we would like to work also on uncalibrated images of non-rigidly
deforming subjects. Model-based tracking [Baker and Matthews
2004] can handle such deformations, but is generally restricted to
face tracking. Sparse feature matching and tracking [Lowe 2004;
Sand and Teller 2004] does not produce the dense correspondences
required for multi-view image editing applications. Using optical
flow in the SIFT domain results in a dense matching [Liu et al. 2008],
but the resulting warp is not smooth enough for detailed edit transfer.

For these reasons, a number of algorithms specifically designed
for applying edits to multiple images have been recently proposed.
For specific object classes, e.g., using face detectors or automatic
labeling based on learned features, photo manipulations such as
tonal adjustments or object removal have been successfully demon-
strated [Bitouk et al. 2008; Brand and Pletscher 2008; Berthouzoz
et al. 2011], but a general pixel-accurate mapping between images
as in Figure 1 is not supported. Hasinoff et al. [2010] combine vari-
ous complementary feature detectors, cluster those features whose
centers define a homography between images, and then use the ho-
mographies for edit transfers on large image collections. However,
as discussed in their paper, homography-based edits are limited to
relatively planar regions and cannot appropriately handle the non-
planar or non-rigid differences between images that we are aiming
at. HaCohen et al. [2011] present an extension to the PatchMatch
algorithm [Barnes et al. 2010] that enables partial, non-rigid image
correspondences with impressive results for applications such as
color, mask, and blur transfer between images, but it is optimized
towards those types of edits that do not require pixel-accurate corre-
spondences between large, user-defined regions. As we show in our
results, our approach complements these works by addressing some
of their fundamental limitations.

A fundamental framework for many techniques related to accurate
alignment or matching of image regions is the Lucas-Kanade (LK)
method [Lucas and Kanade 1981; Baker and Matthews 2004]. We
present an extension of this framework that performs matching in
a linear blend skinning (LBS) subspace that drastically reduces the
degrees of freedom compared to techniques like optical flow, while
improving the flexibility and accuracy of the matching and thereby
enabling pixel-accurate edit transfer between images.

Key to our LBS extension of the LK method is a new type of content-
adaptive weight functions that define the regions of influence for
each degree of freedom on the image. Various different types of such
weight functions have been proposed in the past for applications
such as image colorization [Levin et al. 2004], edge-aware editing of
tonal values [Lischinski et al. 2006], edge-aware multiscale image
representation [Farbman et al. 2008], or interactions between distant
pixels [An and Pellacini 2008] (see the surveys in e.g. [Li et al.
2008; Farbman et al. 2010]). However, as we demonstrate in our
comparisons, the lack of higher-order smoothness renders those
formulations unsuitable for computing accurate, smooth mappings
for pixel-level edit transfer between images. We therefore propose
extending the bounded biharmonic weights (BBW) of Jacobson et
al. [2011], originally developed for LBS deformation of geometric
shapes, to content-adaptive BBW that respect image edges while
preserving the required higher-order smoothness guarantees. Similar
edge-aware weights have been used to reduce degrees of freedom
(e.g. [Fattal 2009; Fattal et al. 2009]), but the locality and sparsity
properties of our weights are more suitable for detailed warps.

These weights in combination with our linear blend skinning formu-
lation of the LK method are the key components for our accurate
multi-view edit transfer.

3 Method

Our goal is to transfer edits from a source image Is to target images
It, t = 1, . . . , N . To achieve this we find an optimal map Mt

which takes pixel coordinates p ∈ Is to some new pixel coordinates
p′ ∈ It. In general we may consider maps over the entire source
domain, but typically our edits on the source are restricted to a
particular subregion Rs ⊆ Is. We allow this region of interest to
be fuzzy, defined by the mask function r(p) ∈ [0, 1], reaching 1
at pixels fully inside the region of interest and fading to 0 at the
boundary of Rs. We define the optimality of our map in terms of a



robust error norm φ which measures the difference in color values
between each source pixel p and the corresponding pixelMt(p).

Ideally we would optimize over all possible maps, but this is far
from tractable. Instead, our method works within the subspace of
warp functions spanned by the linear combination of a small number
of affine transformations:

M(p) =

m∑
k=1

wk(p)Tkp. (1)

In character animation, this subspace of deformations is called linear
blend skinning (LBS). Working in the LBS subspace makes the
optimization computationally feasible, and when carefully designing
the minimization process and the weight functions wk, this subspace
proves to be sufficiently expressive. It leads to accurate and intuitive
warps, which have the required balance between smoothness and
content-adaptiveness necessary for successful edit transfer.

It is important to note that despite its simplicity Eq. (1) describes
a vast space of expressive warps. Because each weight function
wk varies over the domain, the resulting warps are in general far
more interesting than constant or even piecewise affine transforma-
tions. The same applies to the blends of other per-weight function
parameters like bias and gain parameters described in Section 3.4.

3.1 Warp Optimization in LBS Subspace

To achieve a consistent transfer between images, we need a highly
accurate alignment of corresponding image regions. A powerful
tool for computing such an alignment is the Lucas-Kanade (LK)
algorithm and its extensions [Baker and Matthews 2004]. The basic
LK procedure computes the parameters of a warp functionM by an
iterative minimization of the color mismatch between Is(p) and the
corresponding warped pixels in some target image It(M(p)):

arg min
M

∑
p∈Is

r(p)φ (It(M(p)), Is(p)) . (2)

For φ one typically employs some robust error norm for increased
robustness to image inconsistencies like occlusions. Specifically,
we employ adaptive thresholding with spatial coherence approxima-
tion [Baker and Matthews 2004]. Linear appearance changes can be
accounted for within the same framework to compensate for changes
in illumination during the matching, detailed in Section 3.4.

We reduce the search space of this optimization by only consider-
ing warpsM defined by weighted linear combinations of a small
number of affine transformations (see Eq. (1)). If the per-pixel
weight functions wk are precomputed then the only parameters of
this subspace are the elements of the affine transformation matrices
Tk ∈ R2×3. That is to say, if we have m pairs of weight functions
and transformations, then this space is parameterized by only 6m
degrees of freedom. Our optimization then becomes:

arg min
Tk, k=1,...,m

∑
p∈Is

r(p)φ

(
It

(
m∑
i=1

wk(p)Tkp

)
, Is (p)

)
. (3)

This new class of warp functionsM can be readily integrated into
the standard “forward additive” variant of the LK algorithm. In
practice, however, this variant of LK is computationally inefficient,
as it requires a re-computation of the Hessian matrix at each iteration
of the algorithm. Instead we derive an alteration of the highly
efficient “inverse compositional” variant of LK to search over our
parameterized subspace (see, e.g., [Baker and Matthews 2004] for
details about the different variants of LK).

In the “inverse compositional” LK a different incremental warp
update is utilized, in which the roles of Is and It are exchanged
compared to Eq. (2). This enables highly efficient implementations
since the Hessian and other expensive steps can be precomputed.
However, the sought global warp has to be iteratively composed
with the following update rule:

M(p)←M(p) ◦∆M(p)−1, (4)

where ∆M is a warp update computed in every iteration [Baker
et al. 2011]. Inserting Eq. (1) gives us:

M(p)←

[
m∑

k=1

wk(p)Tkp

][
m∑
`=1

w`(p)∆T`p

]−1

(5)

where ∆Tk are the updates to the affine transformation matrices Tk.
We may use the distributive property to rewrite this as:

=

m∑
k=1

[
wk(p)Tk

[
m∑
`=1

w`(p)∆T`

]−1]
p. (6)

In general, the required inversion of the inner term might lie outside
the LBS subspace. However, if our weights are sufficiently content-
aware, localized and smooth, we can project the inverse back into
that subspace. To do so, we make the following approximation by
replacing ∆T` with ∆Tk in the inner sum:

≈
m∑

k=1

[
wk(p)Tk

[
m∑
`=1

w`(p)∆Tk

]−1]
p. (7)

To understand the reasoning behind this approximation let us con-
sider the influence of a particular transformation and weight function
pair (Tk and wk) on some pixel p. We can distinguish the following
three cases:

1. Pixel p is dominated by the weight function wk, i.e., ∀` 6=
k : w`(p) ≈ 0. In this case, the influences of all other
transformations ∆T` with ` 6= k on p are negligible and only
the contribution for ` = k remains in the inner sum.

2. Pixel p has a low weight wk(p) ≈ 0. Consequently, neither
the associated transformation Tk nor the inner sum have a
significant influence on p and may be neglected.

3. Pixel p is influenced by multiple constraints, i.e., wk(p) > 0
for some set K of k’s. If we assume that our weights are
content-aware, then they should fall-off quickly near edges and
we may deduce that p is located within a smoothly varying
image region in Is. Further, it can be expected that the cor-
responding target region in image It is smoothly varying as
well. By replacing ∆T` in the inner sum of Eq. (7) with some
∆Tk, k ∈ K, we make the assumption that, in such smoothly
varying image regions, constraints with overlapping weight
functions undergo a similar transform between images.

Thanks to this approximation, Eq. (7) can now be further simplified
by recalling that the weight functions sum up to one at every pixel,
resulting in its final form:

M(p)←
m∑

k=1

[
wk(p)Tk [∆Tk]−1]p. (8)

The inner sum of weighted affine transformations has been reduced
to a single transform that is easily inverted. Despite the approxima-
tion to the true inverse warp update, this solution robustly converges
to a pixel-accurate matching even in challenging cases (see Figure
1) and it is very efficient to compute.



3.1% 6.25% 12.5% 25% 50% 100%

Figure 2: Left to right: The user-input region of interest Rs on the Young Man. We visualize a selected content-aware bounded biharmonic
weight function optimized on various downsamplings of the domain. We see diminishing returns past 12.5%, and thus use this resolution for all
our remaining examples.

3.2 Content-Aware Bounded Biharmonic Weights

Our strategy for optimizing Eq. (8) relies on strong assumptions
about the weight functions wk used in our subspace reduction.
Namely we assume that our weights possess the following properties:
The weights should be sensitive to image content and propagate to
similar image areas, dropping at salient image edges. The weights
should be local, i.e. have limited spatial interaction range (see
the analysis and discussion of Farbman et al. [2010]). Globally-
supported weight functions would complicate the multi-view match-
ing due to the difficult control of global image warping. The weights
should be smooth (at least C1) everywhere to achieve smooth warp-
ing in smooth image regions [Jacobson et al. 2011], see also Figure 8.
The weights should be limited to the [0, 1] range. Otherwise, input
constraints would have counterintuitive effects, as also demonstrated
in [Jacobson et al. 2011] for deformations.

As summarized in Table 1, existing methods do not have all of these
properties, in particular smoothness at fixed values. We therefore
extend the smooth bounded biharmonic weights (BBW) [Jacobson
et al. 2011] to incorporate image content-awareness. In the following,
we first provide a brief summary of the basic BBW for completeness,
and then describe our generalization.

Classic BBW. The BBW have been introduced for realtime de-
formation of 2D images and 3D shapes. Each weight function wk

is associated with a handle Hk, which is a region (or just a single
point) in the domain fully controlled by that weight function. Hence
wk attains the value of 1 on Hk and 0 on all other handles. The
weight functions are defined by optimizing the Laplacian energy
subject to constant bound constraints:

arg min
wk, k=1,...,m

m∑
k=1

1

2

∫
Is

(∆wk)2 dxdy (9)

subject to: wk|H`
= δk`, k, ` = 1, . . . ,m (10)

m∑
k=1

wk(p) = 1 ∀p ∈ Is (11)

0 ≤ wk(p) ≤ 1, k = 1, . . . ,m, ∀p ∈ Is. (12)

Assuming the 2D region of interest domain Rs is discretized with a
triangle mesh Ω with n vertices, the discrete optimization problem
for the weight functions wk ∈ Rn may be written as follows:

arg min
wk

m∑
k=1

wT
kQwk, (13)

subject to the above constraints (10)-(12). The coefficients matrix
of the energy is the discrete biharmonic operator Q = LM−1L.
The matrices L and M are the stiffness matrix and the diagonal
mass matrix, respectively, of the discretization mesh Ω [Pinkall and
Polthier 1993]:

Table 1: Properties of different weight functions. Harmonic is a
representative for methods such as [Levin et al. 2004; Lischinski
et al. 2006], Global represents [Farbman et al. 2010] and related
approaches that use global affinity, BBW is [Jacobson et al. 2011],
and Biharmonic represents unbounded biharmonic interpolation
[Finch et al. 2011].

Property Ours Harmonic Global BBW Biharmonic
Content-awareness X X X
Local interaction X X X X
Smoothness X X X
Boundedness X X X X

Lij =


− 1

2
(cotαij + cotαji) if j ∈ N (i)

−
∑

l∈N (i)

Lil if i = j

0 otherwise

Mii = Voronoi area around vertex i,

where N (i) is the set of mesh neighbors of vertex i, and αij is
the angle opposite of the directed edge from i to j on the incident
triangle lying to the left of the edge (if it exists).

The weights resulting from this optimization enjoy smoothness guar-
antees of a fourth-order energy minimizer, and also locality, bound-
edness and interpolation properties mentioned above.

Content-Aware Metric. The BBW weights are obviously not
content-aware, but notably, their definition depends solely on the
handle locations Hk and the Riemannian metric of the domain Rs,
imposed by the biharmonic operator. We propose to manipulate this
metric in order to adapt the weights to the image content. We map
the geometry of the discretization mesh Ω into a higher-dimensional
feature spaceRD , such that it becomes a 2-manifold in that space.
For each vertex v ∈ Ω, we concatenate some attributes to its 2D spa-
tial coordinates as additional dimensions. For example, expressing
the image colors at the vertices in CIELAB color space, we obtain a
5-dimensional embedding:

v(x, y)→ (x, y, sl l(x, y), sa a(x, y), sb b(x, y)). (14)

The scaling factors s∗ are necessary because color value coordinates
are not readily proportional to Euclidean pixel coordinates, and
furthermore allow for varying the sensitivity of the weights to image
content. In all our examples we used s∗ = 16. See Figure 2 in
[Jacobson and Sorkine 2012] for a detailed comparison of choices
for this parameter.

Computing optimized weights over the obtained 2-manifold in fea-
ture space will provide us with the desired properties, including
content-awareness. For instance, in the case of the L*a*b* feature
space above, strong image edges will become steep creases in the



5D 2-manifold, making the travel distance on the manifold across
the edge long, such that the weight function will have an abrupt
derivative across the edge.

To define the BBW optimization problem in feature space, we simply
need to adjust the discretization of the bi-Laplacian operator Q =
LM−1L to the Riemannian metric of our image domain embedded
in the RD feature space, i.e., we need to adapt the matrices L and
M . The matrix entries have the same formulas of cotangents and
areas, but of the mesh triangles embedded inRD . Angles and areas
are often defined via cross products, but this is troublesome in high
dimensions. Instead we use the lengths lij , ljk, lki of the three sides
of a triangle Tijk to extract the necessary quantities (since lengths
are easy to compute in any dimension). The triangle area Aijk is
given by Heron’s formula:

Aijk =
√
r(r − lij)(r − ljk)(r − lki) (15)

where r is the semi-perimeter 1
2
(lij + ljk + lki). Cotangents of the

given angles are revealed via trigonometric identities as:

cot(αij) =
l2jk+l2ki−l2ij

4Aijk
, cot(αjk) =

l2ki+l2ij−l2jk
4Aijk

,

cot(αki) =
l2ij+l2jk−l2ki

4Aijk
. (16)

A similar derivation is given in [Meyer et al. 2003]. With these
elements we construct and solve the BBW optimization over our
image surface inRD .

Note that we essentially discretize the weight optimization prob-
lem using finite elements, thus we enjoy a large degree of mesh
independence and convergence under refinement. We typically take
the mesh Ω to be the regular (triangulated) pixel grid limited to the
region of interest Rs, but it is possible to adaptively mesh the image
domain, for example based on an importance sampling density, and
our algorithm remains the same. In contrast, previous formulations
of weight optimization (e.g. [Lischinski et al. 2006]) usually use
finite differences and work on regular pixels grids only. More details
on this content-aware metric are available in our technical report
provided in the supplemental material.

Implementation details. Solving for the weightswk as described
above amounts to sparse quadratic programming (QP) with constant
inequality constraints. We utilize the MOSEK solver [Andersen and
Andersen 2000]. Also, following [Jacobson et al. 2011], we solve
for each weight function separately, dropping the partition of unity
constraint (11) and then normalizing the weights to sum up to 1 (see
supplemental material for pseudocode of the whole pipeline).

Solving on meshes with the fine resolution of our source image
can be too expensive for interactive performance. Fortunately our
weights are resilient to changes in discretization resolution. We
may thus downsample our image before optimizing our weights and
then upsample each weight function to full resolution using bicubic
interpolation. Downsampling too much eventually has a smoothing
effect and changes the support regions of each function, however we
see diminishing change in the values and supports of our weights as
the discretization approaches full resolution (see Figure 2).

3.3 Generating Seed Locations

In the original formulation of BBW, the weight functions are meant
to be attached to user-specified handles Hk. These handles are
placed by the user directly onto regions she intends to control. Our
weights, on the other hand, are hidden from the user, and we auto-
matically choose seed locations — where weights are respectively
constrained to 1 and 0.

Image courtesy Jason Jenkins

Figure 3: Left to right: The user-input region of interest Rs on the
Skinny Pug. We visualize seed locations (yellow dots) for various m
values. The content-aware bounded biharmonic weights are shown
for a selected seed (black dot).

Our content-aware metric ensures that our weights fall off at salient
image edges, so we design a method to choose seed locations in a
manner that approximates uniform distribution over the region of
interest Rs and places them away from strong edges. We compute
the gradient magnitude of the source image and by applying heat
diffusion on its values create a confidence image. We then iteratively
take the m highest confidence locations, updating the confidence
map after each selection by subtracting a Gaussian kernel with
standard deviation

√
|Rs|/(πm). See Figure 3 for a comparison of

this distribution method for various numbers of weights m.

Many other distribution methods could be used instead, such as
blue noise or dithering techniques; however, our simple method
has the advantage of choosing exactly m locations, as well as its
computation efficiency and simple implementation.

3.4 Per-Weight Function Bias and Gain

In addition to the robust error norm φ we could easily employ two
additional degrees of freedom to account for global bias and gain
[Baker and Matthews 2004]. However, in general different pixels
will undergo different appearance changes, so ideally we would
introduce bias and gain parameters per pixel. Just like the warp
parameters, though, this becomes intractable. Fortunately, the weight
functions we have just described are perfect candidates as blending
functions for parameterizing a space of pixel-wise bias and gain
changes. The same properties listed in Table 1 needed for high-
quality spatial deformation in the warp functions make our content-
aware BBW weights well-suited for blending appearance parameters.
Smooth lighting variations can be handled as well as discontinuities
in illumination, despite that we only introduce a pair of bias and
gain parameters per weight function. In practice this simply means
replacing Is(p) in Section 3.1 with:

Is(p) +

m∑
k=1

wk(p) (akIs(p) + bk)) (17)

where ak and bk represent the bias and gain corresponding to weight
wk. These new degrees of freedom are determined during opti-
mization as in [Baker and Matthews 2004]. Results with varying
illumination are shown in Figures 1, 4, 6, 8, 10, 11.

3.5 Initialization

We employ an iterative optimization which needs an initial warpM0

parameterized by initial affine transformations T 0
k . A standard ap-

proach is to use the identity transformation for each and to employ a
coarse-to-fine strategy for handling large image displacements. How-
ever, the nonlinear nature of our energy causes slow convergence
for such trivial initial guesses, and basic coarse-to-fine approaches
may fail to converge for complex mappings with many image details.
Instead we initialize using a sparse set of SIFT features [Lowe 2004]
as follows.
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Figure 4: Left to right: The source image of the Bear is edited by a professional artist. Our method finds a good match and transfers the edits
faithfully despite significantly different lighting. The matching of [HaCohen et al. 2011] (NRDC) is discontinuous, fragmenting the edits. The
method of [Zimmer et al. 2011] (Optical Flow) struggles with the large displacements, failing to find the alignment.

We use the method of [Lowe 2004] to find SIFT features in the
source and target images and find strong correspondences by using
the distance ratio test from source to target and target to source. In
the ideal case, there are many correct matches all over the region
of interest Rs. We use the Delaunay triangulation T of the source
feature locations and the mapping of this triangulation to the matched
target feature locations to define a piecewise-affine map MSIFT.
Before computingMSIFT, nodes causing triangle flips in the target
mesh are classified as outliers, removed from consideration, and
the map is recomputed. In extreme cases where there are too few
matches, one may manually add corresponding points to source and
target. Note, however, that neither the SIFT features nor optional
manual correspondences are hard constraints (they are only used for
the initial guess) and therefore they do not have to be particularly
accurate.

We then project the piecewise affine map MSIFT to the space of
maps spanned by our degrees of freedom, i.e., we find T 0

k that best
reproduceMSIFT in a least-squares sense:

arg min
T0
k
, k=1,...,m

∑
p∈T

r(p)‖MSIFT(p)−
m∑
i=1

wk(p)T 0
kp‖2 (18)

This results in a linear system with 6m variables.

If SIFT features are only found in one part of the source image, the
above system may be underdetermined as there might exist transfor-
mations Tk whose corresponding weight functions wk are zero or
near zero for all pixels in T . In these cases we regularize against the
best-fit global affine transformation A found using RANSAC on the
SIFT features, adding the following term to the above minimization:

γ
∑
p∈Is

r(p)‖Ap−
m∑
i=1

wk(p)T 0
kp‖2 (19)

where γ balances between fitting toMSIFT inside T and matching
A everywhere.

4 Experiments and Results

The workflow for our method is simple. The user marks a region of
interest on a source image. She may employ any number of methods
for the selection (for our examples we use the Quick Selection Tool
in [Photoshop 2012]). At this point the content-aware BBW may be
precomputed, taking typically on the order of a hundred milliseconds
for each weight function. Then the user chooses target images of
the same subject as the source. Our method now precomputes maps
Mt for each target image. Optimization times vary depending on
the difficulty of the match, but are typically on the order of a few
seconds. Now the user is free to apply any range of standard image
edits on the source image and in real time see the transferred edits
on all targets. To summarize, weights are precomputed once per

Model |Is| |Rs| n m s/weight LK Iter s/Iter
Lady 640K 196K 3219 11 0.19 7 0.20
Flower Pug 693K 197K 3357 8 0.22 22 0.17
Pantheon 698K 364K 5963 8 0.35 15 0.25
Crying Pug 727K 165K 2852 15 0.17 27 0.88
Corn 786K 22K 453 8 0.05 5 0.12
Bear 786K 136K 2322 15 0.27 26 0.25
Dylan 786K 168K 2858 8 0.16 8 0.18
Church 1279K 568K 10228 11 0.83 30 0.51
Young Man 1314K 204K 3353 11 0.20 12 0.34

Table 2: Statistics and timings for the examples shown in this paper.
|Is| and |Rs| are the number of pixels in the source image and region
of interest respectively; n is the number vertices used for the mesh
when computing m weights. We report the number of seconds of
precomputation for each weight function (s/weight), the average
number of LK iterations (LK Iter) and average seconds per iteration
(s/Iter) over each precomputed target warps.

Source Target #1 Target #2 Target #3

N
RD

C
O

ptical Flow
O

urs

Images courtesy 
*christopher*

Figure 5: Top to bottom: Edits on the source image of the Flower
Pug are transferred to three target images using our method and
those of [HaCohen et al. 2011] and [Zimmer et al. 2011]. The
rightmost column shows a challenging deformation for which our
method fails along with previous methods.

source image; warps are precomputed once per target image; edits
are propagated in real time.

We tested our implementation on an iMac Intel Core i7 3.4GHz
computer with 16GB memory. We report timings and statistics for a
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Figure 6: Left to right: Face paint is added to the Young Man and transferred to three other images, which vary in pose and lighting.

Source Edited source Homography Our method

Figure 7: Comparison of our method to homography-based methods
like [Hasinoff et al. 2010]. Note that the homography is forced to
keep straight lines straight.

number of our results in Table 2. Total precomputation times are on
the order of a few seconds, which is comparable to those reported
by [HaCohen et al. 2011] despite their working on smaller images.

We show a comparison to the non-rigid dense correspondence
(NRDC) matching of [HaCohen et al. 2011]. Their method is not
designed for detailed edit transfer, and this shows in the lack of
continuity and extreme non-surjectivity of the map. In Figure 4,
using their method leaves edits fragmented (e.g. around the buttons)
and large portions are missing (e.g. on each ear), whereas with our
method the edits are seamlessly transferred. We also compare to the
optical flow technique of [Zimmer et al. 2011], which struggles to
capture large displacements and non-rigid deformation. Figure 5
again demonstrates the advantage of our method. Here we also
demonstrate the failure of our method to match an extreme deforma-
tion, but even here our edit transfer seems to fail more gracefully
than previous work. Figure 7 shows a comparison of our method
to homography-based transfer [Hasinoff et al. 2010]. Note that the
smoothness of the weights is a necessary condition for converging
on a good match; when using the non-smooth weights of [Levin et al.
2004], LK has difficulty finding the correspondence (see Figure 8).

Unless explicitly specified, all our examples converged starting
from the fully automatic, SIFT-based initialization described in Sec-
tion 3.5. Figure 6 shows an example where our method succeeds in
converging for two targets using the fully automatic initialization.
At first the third target fails, but after the user manually selects just
10 loosely-corresponding points, our method is able to converge and
produce a meaningful result.

Our method is robust to changes in lighting (see Figure 10), camera
placement (see Figures 1, 9, 13) and subject pose (see Figure 11).
Figure 12 shows how the subspace spanned by Eq. (1) is expressive
enough to handle non-trivial changes in the Lady’s facial expression.
The content-adaptiveness of our weights ensures that changes in
certain image regions like her cheeks do not effect the edit transfer
in other regions separated by salient edges. For a consistent color
transfer in the painting applications, e.g., in case of varying exposure,
we employed the method of Reinhard et al. [2001], utilizing our
per-weight bias and gain estimation.

Occlusions are always challenging for computing image alignments,
but thanks to our content-adaptive weights and our employment
of a robust error norm, our optimization is able to properly ignore
occluded regions such as the bushes and lamppost in Figure 1. To
ensure that edits are not transferred on top of occluding objects, we
first modulate them according to a threshold on the error image.

Limitations. Like all Lucas-Kanade based techniques, our method
assumes some amount of smoothness between source and target and
thus struggles to converge to a meaningful matching when the level
of granularity in the matching is too small or the images are too
fragmented with high frequency details. Defined warp degrees of
freedom for each fragment would produce an ill-posed problem
with likely no or at best slow convergence. This is a long-standing
unsolved problem in image matching, and this limitation is not
limited to our method.

In extreme cases our result may strongly depend on the initialization,
which can fail to correctly align images when the subjects exhibit too
strong deformations, e.g. strong perspective changes (see Figure 5).
In such cases, it is possible to ask the user to specify some corre-
spondences to guide the initialization. Areas that were not matched
well can be visualized by computing the matching error (Eq. (2)) in
order to guide the user to the regions where correspondences should
be provided. Since we only use these manual points indirectly in the
initialization and not as hard constraints, the user may choose them
casually and let our method correct their final positions. Another
possibility would be to use the warps of previous works such as
[Hasinoff et al. 2010; HaCohen et al. 2011] as initialization for ours.

Our current method is limited to transferring edits made within
the region of interest on the source image and correspondingly
the warped region of interest on the target. Exploring methods to
extrapolate our warp function beyond the user-selected region of
interest is an interesting and tangible direction of future work.

5 Conclusions

We presented a method for image edit propagation using content-
aware warping, constructed as a spatially-varying weighted combina-
tion of affine deformations. The weighting functions are computed
by fourth-order energy minimization over the image manifold in
feature space, with constant bound constraints, which makes them
smooth everywhere except at strong image edges. This leads to
successful non-rigid registration between a source image and mul-
tiple target images of the same subject using our adaptation of the
Lucas-Kanade framework.

In future work we would like to improve both precomputation
steps of our algorithm: weight computation and matching. For
the quadratic programming we are currently using an interior point
solver (MOSEK) which cannot efficiently benefit from initial guesses.
However, good initial guesses can be constructed by solving on a
lower resolution and/or employing the unbounded biharmonic so-
lution. For example, it is evident that the solution is stable and
consistent for different image resolutions (see Figure 2). Moreover,
when many weight functions are used, the support of each individual
weight function significantly decreases, implying that optimization
on a much smaller area than the whole region of interest is possible.

The warps for each target are independent of each other and thus
their required computation is trivially parallelized. We leave this for
future work, as it would strengthen the exploration of transferable
edits to see all matched images as soon as possible.



Source Edited source Using [Levin et al. 2004] weights Using our weights

Figure 8: Edits are added to Dylan’s face (left) and transferred to multiple targets with differing subject pose and camera parameters. Using
the nonsmooth harmonic weights of [Levin et al. 2004] creates difficulties during matching (middle). Our weights smoothly approach seed
locations and find the correct match (right).

Source Edited source Edited targets

Figure 9: Decorations added to the Couch are transferred to multiple targets with varying viewpoints.

Source Target Edited source Edited target

Images courtesy Jonathunder and Mykl Roventine

Figure 10: Edits added to this corn water tower are faithfully trans-
ferred to a similar image taken from a different viewpoint and under
different lighting conditions.

Source Target #1 Target #2

Images courtesy Jason Jenkins

Figure 11: Our method transfers edits made on the Crying Pug
to multiple targets despite varying, non-rigid subject poses and
contrasting illumination and shadows.
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Figure 13: Our method transfers edits on an image of the Pantheon to different images, varying in viewpoint and lighting. The rightmost image
shows an extreme change in viewpoint, but our transfer remains faithful even to the orientation of the text edits on the pediment.
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