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Abstract

This paper presents underwater 3D capture using a com-
mercial depth camera. Previous underwater capture sys-
tems use ordinary cameras, and it is well-known that a cali-
bration procedure is needed to handle refraction. The same
is true for a depth camera being used underwater. We de-
scribe a calibration method that corrects the depth maps of
refraction effects. Another challenge is that depth cameras
use infrared light (IR) which is heavily attenuated in water.
We demonstrate scanning is possible with commercial depth
cameras for ranges up to 20 cm in water.

The motivation for using a depth camera under water is the
same as in air – it provides dense depth data and higher
quality 3D reconstruction than multi-view stereo. Under-
water 3D capture is being increasingly used in marine biol-
ogy and oceanology; our approach offers exciting prospects
for such applications.

To the best of our knowledge, ours is the first approach
that successfully demonstrates underwater 3D capture us-
ing low cost depth cameras like Intel RealSense. We de-
scribe a complete system, including protective housing for
the depth camera which is suitable for handheld use by a
diver. Our main contribution is an easy-to-use calibration
method, which we evaluate on exemplar data as well as 3D
reconstructions in a lab aquarium. We also present initial
results of ocean deployment.

1. Introduction

Depth cameras have grown in importance since the intro-
duction of the first Kinect [3], a general purpose low-cost
technology alongside ordinary cameras. The underlying
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principle is to emit infrared (IR) light and capture the light
reflected by scene objects. The two common approaches
for using IR light to measure depth are time-of-flight (TOF)
and structured light, wherein a structured pattern of IR light
is projected on the surface and the distortion in reflected
structure is used to calculate surface geometry.

The advantage of a depth camera is that it produces dense
and reliable depth measurements, albeit over a limited
range. While the Kinect was developed for gaming, it was
also demonstrated for 3D scene capture [20]. Google Tango
is a prototype mobile phone with depth camera that is tar-
geted at 3D scene capture [5]. Our goal is to use an under-
water depth camera to capture 3D models of submerged ob-
jects like marine flora/fauna. Applications that make use of
this data require centimeter to millimeter accuracy in order
to capture minute changes in geometry. Our use of depth
cameras is motivated by such high-accuracy requirements.

(a) (b) (c)

Figure 1. (a) The coral nursery, (b) close-up of suspended corals.
and (c) the ecological volume is the volume of the enclosing ellip-
tic cylinder for the coral.

The main motivation for our work comes from coral reef
research being conducted at Disney’s Castaway Cay and
Great Abaco in the Bahamas. Pieces of coral that natu-
rally break off a reef, through storm, wave activity or im-
pact, are taken to a coral nursery where they are suspended
from a frame as shown in Fig 1(b). Measurements of coral
volume are taken at six month intervals and corals which
show healthy growth are transplanted back to the reef. The
current method for measuring coral size is to manually es-



timate the ecological volume [17] i.e. the enclosing elliptic
cylinder as shown in Fig 1(c). We seek to automate and im-
prove the accuracy of volume measurement by capturing a
3D model of the coral using a depth sensor, and estimating
its true volume. Keeping this application in mind, our tar-
get is to develop a cheap and compact solution that enables
handheld scanning of marine life for divers.

There are two challenges in underwater depth sensing –
firstly, IR light used by depth cameras is heavily attenuated
by water. We demonstrate a system that is capable of cap-
turing underwater surfaces within a range of 20 cm, which
is compatible with our application. Secondly, the images or
depth scans captured by any camera underwater do not fol-
low the principles of perspective projection [14] because of
refraction at the transparent interface of the housing of the
camera. A calibration procedure is required to account for
the refraction. There are existing methods for calibrating
ordinary cameras for underwater use [24], but to the best
of our knowledge, there is no analogue for underwater cal-
ibration for the new generation of commercial depth cam-
eras. We present a model for refraction in our setup and an
easy-to-use calibration method which requires only a sin-
gle depth image of a plane. Our approach extends straight-
forwardly to multiple images if needed for improved con-
ditioning. We have tested our calibration method on two
different depth cameras – Intel RealSense [6] as an example
of a structured light camera, and Creative Senz3D [4] as an
example of a TOF camera.

In the remainder of the paper, we discuss previous work in
Sec. 2. We describe our scanning hardware and housing for
the cameras in Sec. 3 and the refraction model along with
the calibration algorithm in Sec. 4. We present our results
on lab as well as ocean environments in Sec. 5 for Intel
RealSense.

We have experimented with both structured light and TOF
depth cameras; we focus on structured light cameras like
Intel RealSense. We describe how to adapt our approach to
TOF cameras like Creative Senz3D in Appendix A.

2. Related Work

The success of terrestrial 3D reconstruction for visualizing
natural and man-made environments has spurred a similar
movement in marine science. The XL Catlin Seaview Sur-
vey [13] is a scientific initiative for capturing imagery for
the world’s coral reefs. The Computer Vision Coral Ecol-
ogy Project [9] is focused on classification and automatic
image annotation of coral reef images, although not con-
cerned with 3D reconstruction. The latter project is also as-
sociated with CoralNet [1], a Citizen Science website that
allows users to upload and label coral images. Hydrous [2]

is a scientist-artist initiative in which 3D models of corals
are created from images using AutoDesk. These conserva-
tion and visualization related projects require high quality
3D reconstructions of ocean bed, marine life etc.

The most prominent work on underwater 3D reconstruc-
tion include monocular [25] and stereo vision [8, 7]. Vision
based approaches have difficulty generating dense and accu-
rate 3D point clouds for complex geometry; depth cameras
often give much better quality, at least for terrestrial scenes.
Our intuition is that if we overcome the complexity of re-
fraction and IR attenuation, using underwater depth cam-
eras can significantly improve reconstruction quality over
stereo vision.

Some previous approaches project structured light [19, 10]
or laser [18] patterns on underwater surfaces and compute
the surface geometry using the reflected patterns captured
using ordinary cameras. Their results are better than stereo
vision, but their use of visible light makes them impracti-
cal for our purpose. Such approaches can only be used in
lab conditions where the ambient lighting can be controlled.
Dancu et al [12] used Kinect to reconstruct an underwa-
ter surface. However, they had to hold the Kinect outside
water because it is only effective for distances greater than
50 cm and IR attenuation under water renders the Kinect in-
effective beyond 20 cm or so. All these approaches account
for some of the refraction-borne complexity, but they are
not usable for actual underwater scanning in the wild.

Our target is to design a system that is effective within the
IR underwater attenuation range of circa 20 cm. To this end,
we have experimented with Intel RealSense and Creative
Senz3D cameras. Instead of designing a custom hardware
setup, we use off-the-shelf depth cameras and account for
attenuation and refraction issues in software. The end re-
sult is an affordable device that can be used by a diver for
handheld scanning of the ocean bed or coral reefs.

3. Capture device

(a) (b)

Figure 2. Capture device. (a) Exploded schematic of the hardware.
The red oblong is the Intel RealSense and the cyan rectangle on the
top-right is the screen. (b) The device being tested underwater.

Our capture hardware is a self-contained device (see Fig. 2)



in a waterproof housing, suitable for handheld use by a
diver. The housing is made of acrylic, sealed with silicone.
The rear cover is removable for accessing the interior when
outside of the water. The system consists of:

• Intel RealSense depth camera,
• Intel NUC mini-PC,
• Waveshare 7” screen,
• SSD for captured data,
• LiPo batteries, and
• magnetic switches.

The magnetic switches allow a diver to activate or deactivate
a small number of functions, such as ‘start/stop recording’,
from outside the housing. The screen allows the diver to see
the current view of the depth camera. The Intel RealSense
generates a stream of both RGB images and depth images,
which are recorded to the SSD. The 3D reconstruction is
performed offline (see Sec. 4); we plan to attempt online
3D reconstruction in the future. The housing has an external
attachment point for ballast. The entire assembly measures
250 cm × 18 cm.

4. Calibration of a Depth Sensor for Underwa-
ter Operation

The pinhole camera model is the de facto standard in com-
puter vision applications. This model is not valid for un-
derwater captures, as light rays are refracted at multiple in-
terfaces. An underwater camera requires a transparent pro-
tective housing; light is refracted in the housing material
as well as water. Previous approaches described solutions
in the context of color cameras [24]. Some approaches
circumvent this problem by placing the camera at the cen-
ter of a hemispherical housing; light rays from/to the cam-
era’s pinhole are orthogonal to the housing and water in-
terfaces, thereby undergoing no refraction. It is physically
challenging to construct such a housing for the Intel Re-
alSense because it has two pinholes, the projector and the
receiver (sensor). Instead of relying on custom fabricated
hardware, we present a generic solution to this problem by
accounting for refraction in our mathematical model.

The Intel RealSense is an infrared (IR) structured light cam-
era that consists of a projector and a receiver. The structured
pattern of IR rays emitted by the projector undergoes re-
fraction at the air-housing interface and then at the housing-
water interface as shown in Fig. 3. The reflected rays un-
dergo the same refractions in the reverse order. We use this
4-stage refraction path instead of a pinhole camera model
for the RealSense (see Fig 4). The parameters required to
describe the complete path of a IR ray are:

dh th

waterhousingair

pinhole

Figure 3. Refractions in an underwater camera. A ray through
the pinhole is refracted at the air-housing and the housing-water
interface. Different rays in water when traced back into the air do
not meet at the pinhole.

n normal to the interface
dh distance from the pinhole to the housing
th thickness of the housing
b baseline between projector and receiver

In the following sections, we review the mathematical de-
tails of ray traversal in our model and then describe the cal-
ibration method to obtain the above parameters.

4.1. Refraction model

Let the pinhole of the receiver be Or with center of the pro-
jector at Op (see Fig 4). We assume that the receiver of the
depth camera is already calibrated in air and its intrinsic ma-
trix is known. We model the projector as a virtual camera
with the same intrinsic matrix as the receiver. Furthermore,
the image planes of the projector and receiver are parallel
with no vertical disparity.

The depth map captured by the receiver contains one depth
measurement dmeas for each pixel (ur, vr). The depth mea-
surement is the distance along the principal axis of the re-
ceiver. Using the intrinsic matrix of the receiver, every pixel
(ur, vr) can be back-projected to compute the direction of
the incident ray in air Xr

a.

This ray intersects the air-housing interface at xr
i. The angle

of incidence θa and the angle of refraction θh (with respect
to the normal n) at the interface can be computed as:

θa = arccos

(
n ·Xr

a

‖Xr
a‖

)
(1)

θh = arcsin

(
ηa sin θa
ηh

)
(2)

where ηa and ηh are the refractive indices of air and the
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Figure 4. Refraction model showing the complete path of a struc-
tured IR ray in an Intel RealSense along with all model parame-
ters. The ray starting from the projector is refracted multiple times
before reaching the receiver.

housing material respectively.

The direction of the refracted ray inside the housing ma-
terial can then be computed by rotating the ray Xr

a by an
angle θha = θh − θa about an axis nh

a perpendicular to both
the interface normal and the incident ray:

nh
a =

n×Xr
a

‖Xr
a‖ sin θa

(3)

The point xr
i can be thus computed as:

xr
i = Or + λh

Xr
a

‖Xr
a‖
, λh =

dh
cos θa

, (4)

where dh is the distance from the pinhole of the receiver to
the housing interface.

The ray inside the housing material Xr
h intersects the

housing-water interface at xr
o and undergoes another refrac-

tion. The point xr
o can be computed as:

xr
o = xr

i + λw
Xr

h

‖Xr
h‖
, λw =

dh + th − n ·Xr
i

cos θh
(5)

The ray direction in water Xr
w can be computed using

Snell’s law and the refractive index of water ηw as before.
The true 3D point xw lies on this ray Xr

w. This point is also
the point of intersection of a ray from the projector Xp

w with
the ray Xr

w. Therefore, if we find the ray Xp
w we can find

the true 3D point. This ray can be found by using the work-
ing principle of a structured light camera. Structured light

cameras project a sequence of light patterns or gray codes
which is unique for each column. Assuming a row-aligned
projector-receiver system, the depth of a 3D point can be
computed as follows under no refractions:

d =
fxb

up − ur
(6)

2D to 3D computation We have the depth measurement
dmeas for each pixel (ur, vr) on the receiver. Under no re-
fractions, substituting this in Eq 6 gives the column index,
and hence the pixel (uc, vr) on the projector. In our above
refraction model, we compute this intersection using a ray
casting algorithm: we shoot rays from the projector’s center
along the column uc, apply all refractions and compute the
set of rays S = {Xp

w} in water. We then select the ray that
intersects the exactly one ray Xr

w from the projector. The
point of intersection gives the true 3D point xw.

4.2. Calibration

We require a calibration step to measure the parameters of
our refractive model from Sec. 4.1. The fundamental prin-
ciple is that the depth measurements of a true planar surface
should give coplanar 3D points after applying the 2D to 3D
mapping of our refraction model as described in Sec. 4.1.

The didactic examples in Fig. 5 illustrate the effect of in-
correct calibration. In all three examples, we assume a
planar surface is being scanned, labeled “true plane”. Us-
ing a pinhole camera model without any refraction correc-
tion, the depth measurements from the sensors amount to
a curved plane labeled “simulated input”. Our refraction
model pushes this result towards the true 3D plane if the
model parameters are estimated correctly. Each of these ex-
amples show computed 3D plane for different values of the
model parameters. The legend on the left indicates the scale
of curvature and displacement in the computed 3D result.

The above examples also show that the normal direction n
has very limited impact on the planarity of the final result
(see Fig 5(c)). This is only a consequence of the values of
the refractive indices of the three media. We therefore fix
n by construction instead of numerical computation which
may become ill-conditioned.

We use an optimization to compute the values of the pa-
rameters. We first select initial estimates for the parame-
ters (dh, th, b). We then capture a single depth image of a
3D plane. We first compute the 3D points corresponding
to depth measurements using the refractive model under the
current set of parameter values. We then fit a single plane
and compute the fitting error normalized by the area of the
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Figure 5. Effect of incorrect values of parameters thickness th, distance dh and normal n. The simulated plane indicates the computed
plane if no refraction modeling is used. Other surfaces indicate the curvature and displacement from the true 3D plane for erroneous values
of the model parameters; legend on the left gives the scale of error. This shows the importance of accurate calibration.

projection of the 3D points on the plane. This gives the fit-
ting error as a function of the current set of parameter val-
ues. We minimize this objective function using BOBYQA
(Bound Optimization BY Quadratic Approximation) [22].
The values of parameters obtained are then used for all ex-
periments.

4.3. 3D to 2D correspondences

In Sec. 4.1, we described the algorithm to convert a mea-
surement on the receiver (ur, vr, dmeas) to a 3D point xw.
We now describe the algorithm for the reverse for complete-
ness. This reverse 3D to 2D mapping is frequently required
by depth map registration algorithms for aligning succes-
sive frames of a scan [11, 23, 15]. This reverse step is also
non-trivial and a ray casting algorithm is needed.

We solve this by performing an exhaustive search over the
entire range of pixels. We cast rays from every pixel of the
depth image, following the refraction model, and finding
the ray in water closest to the 3D point. The pixel corre-
sponding to this ray is the projection of the 3D point onto
the depth image plane. We use binary search by recursively
dividing the image and subimages into 4 quadrants and per-
forming the search within the quadrant which gives the clos-
est ray.

Implementation We used the InfiniTAM library [23, 15]
to generate the 3D reconstructions with a volumetric repre-
sentation [21]. We modified the core projection routines of
the library to incorporate our refraction model and imple-
mented the ray casting algorithms in their CUDA kernels.
Our 2D to 3D and 3D to 2D transformations involve ray
casting; which is much slower than the original real time
3D scan in air. We currently require 1 second of computa-
tion per frame.

5. Results

Figure 6. Experimental setup. The cups are not part of the scanned
geometry; they have been placed to show the scale of the setup.

We tested our approach on some toy objects in an indoor
tank as shown in Fig. 6. The scanning device is submerged
into the tank and panned around the object to capture it from
most sides. For this experiment, we connected a laptop to
our scanning device instead of using the on-board SSD for
debugging convenience.

Qualitative results Fig. 7(a) shows the quality of our
depth maps directly from our implementation. For compar-
ison, we also show the same test objects scanned in air us-
ing the same depth sensor without any refraction correction
in Fig. 7(b). The visual quality of the depth maps clearly
matches that of aerial scans. These figures are intermedi-
ate frames from two separate scans. As scanning was done
by a hand held scanner, exactly same viewpoints were not
available. Hence we show two viewpoints that are close.

We extract a 3D mesh from the signed distance fields of the
depth maps using simple Marching Cubes (see Fig. 8(a)).
Better quality meshes can be reconstructed with more ad-
vanced techniques. This is however, not the main goal of the
paper. We again compare our results to the mesh generated



(a) Depth map of underwater scan (b) Depth map of aerial scan

Figure 7. Comparison of depth maps from (a) underwater scans using our approach and (b) aerial scans using state of the art techniques.
These figures show the target scene from slightly different viewpoints. Our underwater results match the quality of aerial reconstruction
using the same sensor.

(a) Mesh from underwater scan (b) Mesh from aerial scan (c) ICP registration error

Figure 8. Comparison of 3D meshes from underwater and aerial scans. (c) ICP registration error for meshes obtained from underwater and
aerial scans shows that 93% of the mesh vertices have a registration error lower than 4 mm(green vertices).

from an aerial scan (see Fig. 8(b)). Clearly, our approach
matches the quality of aerial scans. Note that the missing
regions in the depth maps and 3D meshes are regions which
fall in the shadow areas of the depth scanner.

Quantitative results We also show quantitative results of
comparing aerial and underwater mesh. This is done to ex-
plicitly identify error arising from refraction effects. To this
end, we register the two meshes using standard ICP (see
Fig. 8(c)) and analyse the error in registration. This is sim-
ilar to the evaluation method used by Koutsoudis et al[16].
The error heatmap shows that the two meshes are very well
aligned: 93% of the mesh vertices have less than 4 mm reg-
istration error.

Experiments in the ocean Finally, we deployed our ap-
proach in a coral nursery for handheld scanning of stony
corals by divers. Fig. 9 shows a color image and a depth
map of the same coral for multiple examples. We did not

encounter water turbidity as a problem in our initial ocean
experiments as the water was clear at the coral nursery.

Turbulence of water was also not a problem. Stony corals
showed no non-rigidity due to turbulence in a current of
2 m/s, which was encountered in our dive experiments. Tur-
bulence can also potentially mix water between different
depth. Different water layers have different temperatures,
salinities and densities and this affects the refractive index.
But these parameters are effectively constant up to depths
of 50 m [26], while our coral reef experiments are confined
to depths up to depths of 20 m. Therefore refractive index
remains unaffected by turbulence at the depths where we
tested our system.

6. Conclusion

We have presented a low-cost commercial depth camera
and housing setup for underwater 3D scanning. Our goal
was to develop a system that uses off-the-shelf hardware



Figure 9. Depth maps (top) and images (bottom) from scans of multiple corals in a nursery.

for scanning. To this end, we created a waterproof hous-
ing for a self-contained scanning system including depth
camera, screen, and onboard data storage. The main algo-
rithmic contribution of the paper is an easy-to-use calibra-
tion method for a depth camera in water. We also mod-
ified KinectFusion to develop an algorithm that accounts
for multiple refraction effects in our setup, and converts the
scanned depth maps into a 3D mesh. Our results demon-
strate that the calibration provides a correct model of refrac-
tion effects. We also presented initial results of deploying
this system in a coral nursery for scanning of stony corals.
Finally, we believe that our simple and light-weight system
is an important step towards reliable solution for scanning
of coral reefs.

A. Refraction Model of a Time of Flight Depth
Camera for Underwater Operation

This section describes our refraction model for underwater
operation of a depth camera that works on the principle of
Time of Flight. As noted in Sec. 4, a pinhole camera model
is not valid underwater because light rays get refracted at
two interfaces, the air-housing interface and the housing-
water interface.

We model the depth camera as an aligned projector-receiver
pair but unlike the model of the structured light camera,
here we assume that the centres of the projector and the
receiver coincide with each other and shall refer to them to-
gether as the camera. This simplification implies that the
projected ray and the received ray coincide with each other

(see Fig 10). The model is thus parametrized by:

n normal to the interface
dh distance from the pinhole to the housing
th thickness of the housing

It must be noted that this model cannot be obtained sim-
ply by equating the value of the baseline in the model of
the structured light sensor to zero because the principles of
working of the two cameras are different from one another.

The refraction model is shown in Fig 10. The pinhole of the
camera is at Or. Once again we assume that the intrinsics
of the depth camera in air are known. The depth image
captured by the camera contains one depth measurement dm
for every pixel (ur, vr).

A Time of Flight based depth camera measures depth, dm
by indirectly measuring the time difference tm between the
instants at which a ray is emitted and at which the ray is
received back. This can be written as

dm = (tm/2) · cair, (7)

where cair is the speed of light in air. When the sensor is
used underwater, we have to account for the lengths of the
ray in three different media; air, housing material and water
and the corresponding speed of light in each medium.

We split the time tm into three segments namely ta, th and
th for the times the ray travels in air, housing material and
water respectively. This is written as

tm = ta + th + tw. (8)



dh
la

lh

lw

dm

th

O r

n

(u  ,v  )n n

water

housing

air

(u  ,v )r r

xi

xo

θa

θh

θw

xw
xa

Xa

Xh

Xw

Figure 10. Refraction model showing the complete path of a struc-
tured IR ray in an Intel RealSense along with all model parame-
ters. The ray starting from the projector is refracted multiple times
before reaching the receiver.

Following the principles of refraction described in Sec 4
(Eq.s 1-5), for every pixel (ur, vr) of the depth image we
can compute the following.

• Xa, incident (or projected) ray in air,

• xi, intersection of Xa with the air-housing interface,

• Xh, ray direction inside the housing,

• xo, intersection of Xh with the housing-water inter-
face,

• Xw, ray direction in water.

The true 3D point in water lies at xw on the ray Xw. The
problem now is to find the distance lw from xo at which xw

lies. We can compute the distances la and lh as

la = ‖xi −Or‖ , lh = ‖xo − xi‖ . (9)

The times for which the ray travels in air and inside the
housing can then be computed as

ta =
2 · la
cair

, th = ηh
2 · lh
cair

, (10)

where ηh is the refractive index of the housing material.

Eqs 7,8 and 10 can be combined to get

tw = ηw
2 · lw
cair

= 2

(
dm − la − ηh · lh

cair

)
,

(11)
where ηw is the refractive index of water. The true point xw

can then be computed as

xw = xo + lw
Xw

‖Xw‖
, lw =

dm − la − ηh · lh
ηw

. (12)

This gives us a mapping from a 2D depth image to 3D coor-
dinates. The 3D to 2D mapping is done similar to the way it
was done for the structured light based depth camera using
ray casting.
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