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Abstract— In this paper, we propose a GPU parallelized
SLAM system capable of using photometric and inertial data
together with depth data from an active RGB-D sensor to build
accurate dense 3D maps of indoor environments. We describe
several extensions to existing dense SLAM techniques that allow
us to operate in real-time onboard memory constrained robotic
platforms. Our primary contribution is a memory management
algorithm that scales to large scenes without being limited by
GPU memory resources. Moreover, by integrating a visual-
inertial odometry system, we robustly track the camera pose
even on an agile platform such as a quadrotor UAV. Our
robust camera tracking framework can deal with fast camera
motions and varying environments by relying on depth, color
and inertial motion cues. Global consistency is achieved via
regular checking for loop closures in conjunction with a pose
graph, as a basis for corrective deformation of the 3D map.
Our efficient SLAM system is capable of producing highly
dense meshes up to 5mm resolution at rates close to 60Hz fully
onboard a UAV. Experimental validations both in simulation
and on a real-world platform, show that our approach is fast,
more robust and more memory efficient than state-of-the-art
techniques, while obtaining better or comparable accuracy.

I. INTRODUCTION

Dense representations of the environment is a key for
many robotics applications such as navigation, scene under-
standing, and scene manipulation. Research in dense methods
for SLAM has recently grown with the advancements in
computational power. This enables to implement real-time
applications that use complete images, without the need
for pre-processing such as feature detection and descriptor
evaluation. Powerful Graphics Processing Units (GPU) are
now widely available, allowing vision algorithms to harness
the power of parallelization, thus enabling higher amounts
of data to be processed in real-time. KinectFusion [1] is one
such approach that is capable of building dense 3D maps in
real-time using the commercially available Kinect1 sensor.

Several challenges need to be addressed in order to make
dense SLAM suitable for real-world applications. For in-
stance, many existing dense SLAM systems do not scale to
large scenes because they are constrained by GPU memory.
In the context of this paper, we define large-scale scenes
based on the surface area and/or volume of the scene
scanned, rather than the length of the camera trajectory, since
they are more relevant to the amount of memory used to
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Fig. 1: UAV performing onboard real-time scan and the dense
mesh being generated in the GUI. Our lightweight system is
capable of generating sub-centimeter resolution meshes at
rates upto 60Hz, fully onboard.

store the resulting reconstruction. Another limitation is the
inability to handle fast and abrupt camera motion, which is
particularly important for agile drones or handheld devices.
Finally, camera tracking may drift over time, resulting in
inaccurate maps of the environment. Going beyond state-
of-the-art approaches addressing some of these issues, we
propose a framework that offers new levels of accuracy and
robustness suitable for robotics applications.

Overall, the contributions of our work can be summarized
as follows:

• An efficient Memory Management pipeline that enables
scalable highly-dense map building in real-time, while
guaranteeing a fixed GPU memory footprint (Sec. IV-
C).

• A new raycasting technique which generates maps
of previously visited areas. This enables robust drift
quantification during loop closures, without having to
additionally store submaps or depth measurements from
previous time instants (Sec. IV-D, IV-E).

• A method to robustly track the camera under fast
camera motions or complex scene geometry by inte-
grating visual-inertial odometry together with depth and
photometric cues (Sec. IV-A, IV-B).

Our SLAM framework further involves a pose graph sys-
tem capable of performing bundle adjustments on the dense
map whenever loop closures are detected, thus resulting in
globally optimal 3D maps (Sec. IV-F). The proposed system
is lightweight and is capable of real-time performance on em-
bedded platforms onboard commercially available quadrotor
UAVs (Fig. 1). Our modular framework with a Frontend and
Backend architecture is presented in Section III.



II. RELATED WORK

With advances in GPU architectures and GPGPU algo-
rithms, vision and robotics communities have seen a rise
in real-time dense mapping algorithms. DTAM [2] is one
of the first SLAM systems that uses dense methods for
scene reconstruction from an RGB camera in real-time using
a parallelized framework based on a GPU. In contrast,
we focus on the use of low-cost RGB-D sensors such as
Microsoft Kinect and Intel RealSense2 as they are widely
available and readily provide accurate depth information.

A prominent example using this sensing modality is
KinectFusion [1], which performs accurate real-time map-
ping of complex indoor scenes, harnessing the parallel com-
puting power of a GPU. A single global implicit surface
model of the observed scene is generated and rendered in
real-time resulting in a highly-accurate reconstruction with a
great level of detail. A 6DOF pose of the camera is estimated
by performing coarse-to-fine Iterative Closest Point (ICP)
algorithm for aligning the current depth scan with the global
scene. Variants of KinectFusion involve ElasticFusion [3],
which builds dense globally consistent surfel-based maps
online in an incremental fashion, without needing pose graph
optimization or any post-processing steps. Local surface
loop closure optimizations are applied to detect overlapping
mapped regions and non-rigidly deform the whole scene
model to maintain global consistency. Though this method
achieves high quality consistent maps, it is known to not
scale well for larger datasets.

Dense SLAM methods are in general constrained by the
memory available onboard a GPU, thus limiting the size of
the area that can be mapped. Several methods in the past have
tried to optimize the GPU memory usage to achieve scalable
mapping of larger areas by moving memory in and out of a
GPU. Kintinuous [4] addresses this problem by only keeping
the local environment in the GPU and perform dynamic
memory updates as the camera moves. They propose a
moving TSDF volume method which involves a technique
to virtually translate the TSDF grid and relocate the camera
to the origin of the grid as it starts to move outside of it.
All the voxels that fall out of the grid as a result of this
operation are transferred out of the GPU. In [5], the authors
further extended this to include pose graph optimization
for non-rigid deformation of the dense map, enabling loop
closures on large datasets. However, both these works [4][5]
represent all the space using voxels, despite it being occupied
or not. Our method on the other hand, only allocates memory
for occupied space using the advantages of voxel hashing
technique proposed in [6]. Further, [4][5] dump all the TSDF
information soon as it exits the moving volume, making it
necessary to regenerate it when a particular area is revisited,
resulting in issues with redundancy in the map representa-
tion. Patch Volumes [7] try to combine accuracy of GPU
based volumetric methods with global consistency of RGB-D
SLAM systems. There, a dynamic patch swapping algorithm
is proposed for swapping whole patches in and out of GPU
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memory to map larger areas. But, this results in unknown
time lags depending on patch-size, thus compromising its
real-time performance. Similarly, [8] tries to address this
problem by building submaps which are actively swapped
in and out of the GPU. However, their submap-based graph
optimization only accounts for transformations between pairs
of submaps and hence cannot correct for drifts if they occur
within a submap. These problems do not arise in our method
as it does not require storing and managing any additional
submaps/patches of previously visited areas in the CPU, thus
maintaining a lower memory footprint. In addition, unlike
all these methods, we have an upper limit on the number of
memory transfers in each iteration, thus ensuring the transfer
delay is always bounded.

The goal of the present paper is to make dense mapping
suitable for robotics applications by robustifying the system.
Specially, it was found from our experiments that the works
presented in [1][3], do not deal well with fast motions and
scenes with clutter. On the other hand, unlike works that
use an additional odometry stage for achieving robustness in
camera tracking, such as [5], our approach does not require
uninterrupted availability of depth data. Therefore we are not
limited by the requirement that at least some objects in the
mapped environment need to remain within the range of the
depth sensor, thus limiting the possible applications.

III. SYSTEM OVERVIEW

We choose a modular approach where the system architec-
ture is divided into Frontend and Backend processing blocks.
The Frontend involves all the main processing performed
every time a new image from the sensor is received. The
Backend involves all the processes running in the background
asynchronously that assist Frontend operations. Such an
architecture allows for a distributed operation where one or
more UAVs could be running the Frontend and a base station
platform could be running the computationally expensive
Backend. Fig. 2 depicts a flowchart illustration of all the
individual modules and the data being transferred between
them. A detailed description of modules with significant
contributions are further elaborated in Section IV.

A. Frontend

The Frontend consists of the Main Processing Pipeline
which is heavily GPU parallelized. Our volumetric rep-
resentation is based on a voxel grid of truncated signed
distance function (TSDF) entries and we use parts of the
framework from InfiniTAM [9], which extends KinectFu-
sion by implementing voxel based hashing with efficient
data structure handling and several optimizations in data
allocation, data transfers, and raycasting. The Main Pro-
cessing Pipeline consists of basic components originally
proposed in KinectFusion with some crucial changes. Data
Pre-processing performs data acquisition from the depth
sensor and performs pre-processing involving conversion of
disparity readings to depth point clouds, hole filling in depth
data, finding pixel colors for depth measurements using
calibration data and building image pyramid. The Camera



Fig. 2: Flowchart indicating individual modules and data transfers. Modules with major contributions are indicated with a ?.

Tracking module performs camera pose estimation using
photometric, visual-inertial odometry estimates and depth
data. Depth Fusion module performs data integration of new
depth data into a locally stored voxel grid containing TSDF
values. The Raycasting module shoots rays along the current
camera viewing direction to evaluate zero crossing points in
the TSDF voxel grid, which will be used to build surface
maps for performing tracking in the next iteration.

In our framework, each voxel consists of an sdf value, time
it was last updated at, its color and nobs observations that are
fused so far. Each hash table entry consists of a pointer ptr
to a voxel grid entry and its position pos in global reference
frame.

B. Backend

The Backend involves several crucial extensions to Kinect-
Fusion. A Visual-Inertial EKF (Extended Kalman Filter)
is used to obtain robust odometry estimates to assist the
Camera Tracking module. The Memory Management module
moves data between active memory (GPU) and inactive
memory (CPU) and always maintains only a relevant section
of the voxel grid within the active memory of GPU. It
also involves a Meshing process that performs marching
cubes [10] on moved-out voxel blocks before storing them
in inactive memory. We propose a novel Incremental Ray-
casting technique together with a Place Detector which
incrementally builds a map from previous visit of a place.
Drift Quantification is performed every few frames to detect
smaller drifts in the pose estimates and a Pose Graph
module involves the creation of a factor graph and graph
optimization. Finally, a Graphical User Interface (GUI) is
designed to visualize the camera trajectory and 3D map being
built in real-time.

IV. APPROACH

In this section we describe, in detail, various stages of our
pipeline that involve modules (please refer to Fig. 2) with our
main contributions and how we differ in our design choices
as compared with other earlier works.

A. Camera Tracking

We chose to implement a modular design for the Cam-
era Tracking module in order to cope with data streams
arriving at different frame rates and/or intermittent sensory
data. Since our framework is ROS based, we use callbacks
whenever sensory data is available, which allows us to
incrementally update the camera pose without having to wait
for other sensory data.

For each odometry measurement available from the EKF,
we perform a Odometry Update which evaluates a differen-
tial pose change and updates camera pose as follows:
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where, T c,t
gc , T

i,t
go are camera and IMU pose at time t refer-

enced with respect to their respective inertial frames gc and
go. The transformation T i

c is the extrinsic calibration param-
eter describing misalignment between IMU and camera.

We further minimize two different metrics for better
alignment of depth data with the scene, while also main-
taining color consistency. These metrics are independently
minimized as and when the depth or color data is available,
in accordance with our modular approach. The first is a point-
to-plane metric:

ED
t (pt) =

∑
pt

‖{(Rgc,t
c pt + tgc,tc )− ps}TNs(ps)‖2 (2)

where, pt is a live depth measurement point at time t and
ps is a corresponding point on the surface with a normal
value Ns(ps), obtained using projective data association
during ray-casting stage. This metric is evaluated between
current depth image and raycasted point map obtained from
the TSDF voxel grid, and is minimized by employing an
ICP based tracker. T gc,t

c = [Rgc,t
c , tgc,tc ] are initialized to

the estimates from Odometry Update and an incremental
transform is applied using a small angle assumption to get
an updated transform. Linearizing around previous estimate
allows for an iterative solution for minimizing Equation 2,
a GPU parallelizable implementation of which is provided
in [1]. We also employ a hierarchical approach based on



image pyramid of varying resolutions, which allows for faster
convergence.

To ensure color consistency between the current color
image and the scene, we also minimize the following pho-
tometric error:
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gc ps + tc,tgc

))
− Cs(ps)‖2 (3)

which is evaluated for each scene point ps obtained during
ray-casting with color values Cs(ps) and projecting it into
color image Ct at time t with projection matrix π. During
our experiments, using the photometric error term was found
to help in avoiding mis-alignments in scenes containing
predominantly flat areas.

We further employ Mahalanobis distance based outlier
rejection and the camera pose is reverted back to previous
best estimate in case of an outlier.

B. Visual-Inertial EKF

We use the robust visual-inertial EKF system (ROVIO)
described in [11], where inertial measurements from an
IMU are used for filter propagation while multi-level fea-
ture patches in the image are tracked for performing filter
updates. The odometry estimates from ROVIO are fed into
the Camera Tracking module to perform odometry update
step as mentioned in Section IV-A.

ROVIO has several parameters to be defined, making
it difficult to be used out of the box for a new type of
sensor. It was found that its performance is quite sensitive
to the IMU used, since the prediction routine of the EKF
is performed solely based on IMU readings. As we use two
different visual-inertial sensors (refer to Section V) for our
experiments, we had to tune the prediction parameters of
EKF to fit the particular IMU. More specifically, we had
to tune for covariance parameters related to the prediction
of position, velocity, attitude along with the gyroscope and
accelerometer biases. First, we estimate the IMU intrinsics
using extended version of Kalibr [12]. The accelerometer and
gyroscope noise parameters obtained through Kalibr are then
used to obtain decent initial estimates for EKF covariance
parameters. To further improve the parameters, we collected
various datasets with different motion patterns within the
motion capture area. A simple non-linear, local optimization
script is then executed to find best fitting parameters for
the EKF such that the RMS error on the camera trajectory
is minimized. We used a derivative-free, bound-constrained
BOBYQA algorithm [13] as implemented in the NLopt non-
linear optimization package [14].

Having a high-frequency odometry system together with
our modular Camera Tracking module allows continuous
tracking despite sensory drop outs in RGB-D cameras.

C. Memory Management

In this section, we describe the voxel operations involved
in GPU-CPU memory transfers. Fig. 3 shows an instant of
the submap inside the GPU which is stored in the form
of a voxel grid and a corresponding hash table. As the

Fig. 3: Submap corresponding to the active memory and
the regions (1-4) affected during each memory management
iteration.

camera spans across the scene (t→ t+1), following actions
are performed: (a) Voxels which have not been updated
for more than told sec (Region 1) are moved out to the
inactive memory. (b) Voxel locations belonging within the
truncation bandwidth µ around the new depth measurement
Dt+1 (Region 2+3) are updated as follows: In the absence
of a voxel at a required location, its memory is allocated
in the active memory, else, the new depth measurement is
integrated and that voxel’s entry is updated in the Depth
Fusion stage. (c) Inactive memory is searched for presence
of previously stored voxels belonging to Region 2+3. In
case of a hit, the required voxel entries are requested by
the active memory. (d) Finally, the voxels moved in as a
result of previous request (Region 3+4) are integrated into
the active memory. We use transfer buffers as described in
[9] for implementing voxel transfers between GPU and CPU.

D. Incremental Raycasting

In the previous Section IV-C, we mentioned how voxels
that are earlier moved out to inactive memory are requested
by the active memory when a place is revisited. In this
section, we describe a novel raycasting technique that in-
crementally estimates the zero crossing of these moved-in
voxels, thus making it possible to detect drift by comparing
it against the current raycast output. Further details on drift
detection and quantification are explained in Section IV-E.

Among the voxels being moved in, the ones with smaller
SDF values (sdf ) and the ones with higher number of
fused observations in evaluating the SDF value (nobs) are
considered more reliable. So, we define voxel reliability
measure R(v) ∈ [0, 1] for a voxel v as follows:

R(v) = α

(
nobs
nmax

)
+ β

(
1− |sdf |

µ

)
(4)

where, nmax is the maximum number of observations after
which no more observations are fused for evaluating the SDF
value, and µ is the truncation bandwidth for the SDF values.
α and β are weights for the individual reliability terms.

Each individual voxel v and its corresponding hash entry
h can then be used to estimate a point p0,v on zero crossing
surface using its SDF value as follows:

~r =
h.pos− pc
‖h.pos− pc‖

p0,v = h.pos+ {~r × sdf}
(5)



Fig. 4: Incremental raycast technique. Zero crossing of the
TSDF voxel grid is incrementally estimated as the voxels are
moved-in from the inactive memory.

For each voxel v moved in at time t, a raycast estimate R?
t

can be generated by forward projecting the corresponding
p0,v onto the camera’s image plane. In the case where
multiple p0,vs project into the same pixel location, one with
highest reliability score is stored in R? along with the corre-
sponding score. As the time passes, more voxels are moved in
and the raycast estimate can be further refined incrementally.
As depicted in Fig. 4, by picking the most reliable zero-
crossing entry among the newly moved-in voxels at time
t + 1 and remapped raycast estimates R?

t→t+1 from time t,
the new raycast estimate R?

t+1 can be obtained as follows:

R?
t→t+1(u, v) = max

R(.)

{
R?

t (ú, v́) 3 Ft+1

(
R?

t (ú, v́)
)

= (u, v)
}

R?
t+1(u, v) = max

R(.)

{
R?

t→t+1(u, v) ∪ {p0,v 3 vεVin}
}

(6)

where, R(.) is the reliability measure associated with a zero-
crossing/raycast estimate and Ft+1 is the forward projection
operation for time t+ 1.

It was observed in our experiments that the remapping
stage results in sparsification due to multiple raycast entries
falling into same pixel location during forward projection
operation. By initializing a random pixel entry neighboring
to the collision pixel location with the most reliable raycast
estimate among the colliding candidates, one can quickly
obtain dense raycast maps. The reliability score associated
with the newly initialized entry is same as the score of most
reliable candidate, but scaled by a fixed factor.

E. Drift Quantification

Despite having an accurate Camera Tracking pipeline,
over longer sequences the system will drift in the pose.
This can cause problems in Depth Fusion stage, specially
when a particular section of the scene is re-visited after some
time. A slight drift in pose can result in wrongly fusing new
depth values within the voxel grid resulting in a deformed
map. This section explains how a raycast of the scene from

Fig. 5: Drift quantification using a Place Detector

previous time visit (Section IV-D) can be used to accurately
quantify drift in the camera pose.

Incremental Raycast module assumes that the previously
visited part of the voxel grid is within a truncation bandwidth
(µ) search region around the current depth measurement.
Though this assumption is valid in cases of smaller drifts,
it does not hold true for larger drifts such as in Fig. 5.
Increasing the search region could solve this problem but
comes with a heavy computational price. To address this
problem, we use a Place Detector based on a binary bag-
of-words approach [15] to provide a candidate image from
previous time instants that resembles closest to the scene
being observed. We first evaluate the essential matrix be-
tween the current image and this candidate image, using
the matched feature pairs. Then, by performing Singular
Value Decomposition (SVD) of this essential matrix, relative
camera pose between these two instances can be obtained
[16]. This relative pose is obtained to the true scale by
ensuring that the matched features are triangulated to their
true depth, which is known from the depth image. An
“Epipolar Correction” is now performed on current camera
pose such that it is consistent with this relative pose. The
corrected pose is then used to generate the raycast map R?

(Section IV-D).
The drift is accurately quantified by performing an ICP

routine between R and R?. If considerable drift is detected,
a bundle adjustment is triggered within the Pose Graph stage
(explained in Section IV-F). As can be seen in the Fig. 5,
the resulting R? (Red) overlaps very well with the current
scene’s raycast R (Cyan) after the correction (Green).

F. Global Consistency

We use GTSAM [17] to perform global optimization on
the 3D maps, after a bundle adjustment trigger is set off
by Drift Quantification stage (Section IV-E). Pose estimates
from the Camera Tracking module are used to link consec-
utive nodes of the graph, while measurements are fed in the
form of a triangular mesh from Meshing stage. We use unary
factors to impose priors on the graph and a bundle adjustment
is performed using Levenberg-Marquardt optimization. To
summarize, Algorithm 1 describes how globally consistent
mapping is achieved, over large scale, using the routines
mentioned in previous sections.



Algorithm 1 Large Scale Mapping Algorithm
Input: It is the current image. Vin and Vout are list of voxels moved-in

and moved-out respectively. Hin are hash entries and R? ray-casting
output corresponding to Vin generated using viewpoint TR? . Hout are
hash entries and M is mesh output corresponding to Vout.

Output: Corrected trajectory T ? and corrected 3D map M?

procedure LARGESCALEMAPPING
M← toMesh(Vout, Hout) . Sec. IV-C
if isPlaceRevisited(It) then . Sec. IV-E

TR? ← queryBoWDataBase(It)
else

TR? ← T c,t
gc

end if
R?

t ← raycast(TR? , R?
t−1, Vin, Hin) . Sec. IV-D

Tdrift ← quantifyDrift(R?
t , Rt) . Sec. IV-E

if Tdrift 6= I4×4 then . Sec. IV-F
T ? ← performBundleAdjustment()
M? ← deformMesh(M, T ?)

end if
end procedure

Fig. 6: DJI M100 UAV used for real-world experiments.

V. EXPERIMENTAL SETUP

We perform thorough evaluations both in simulation and
also in real-world. Our real-world experiments include indoor
datasets collected both with a hand-held sensor-rig and a
modified DJI Matrice M100 UAV3 (Fig. 6). The hand-held
unit’s sensor-rig comprises of a Visual-Inertial sensor and a
Kinect for depth sensing. Our DJI UAV is equipped with a
sensor-rig comprising of a DUO-MLX visual-inertial sensor4

and a Intel Realsense R200 camera for depth sensing. The
UAV further has a NVIDIA Jetson TX1 embedded GPU plat-
form5 onboard for real-time computation. Simulator datasets
are collected with a UAV in RotorS gazebo simulation
platform [18]. Ground truth for camera pose is available from
OptiTrack motion capture system6 providing sub-millimeter
accuracy. To measure the accuracy of reconstructed meshes,
we compare our optimized meshes against groundtruth scans
obtained from Leica Multistation MS507 laser scanner pro-
viding sub-millimeter precise scene structure.

VI. RESULTS

In this section, we illustrate several experiments with re-
sults from our pipeline in terms of scalability to large scenes,
computational efficiency, camera tracking accuracy and scene

3www.dji.com/matrice100
4duo3d.com/product/duo-minilx-lv1
5www.nvidia.com/object/jetson-tx1-dev-kit.html
6www.optitrack.com/
7leica-geosystems.com

reconstruction quality. We provide quantitative results for
five different datasets. We had to use custom datasets since
there were not any open source RGB-D datasets with IMU
measurements and groundtruth scene for real-world scenario,
with the kind of variation in camera motion and scene size
needed for our experiments. Though, note that we use the
synthetic living room scene from ICL-NUIM RGB-D dataset
[19] for our simulator environment, but scaled by a factor of
2 in size. Our dataset collection includes: (1) A Loopy dataset
with a very loopy camera motion, thus resulting in a lot of
small loop closures happening. (2) A Fast dataset with high
translational and rotational velocities of camera. (3) A Long
dataset with camera motion spanning very long distances
resulting in meshes with tens of millions of vertices. (4) A
RotorS dataset collected with a UAV simulated in RotorS
[18] simulation environment. (5) A UAV dataset collected
with our custom UAV in an indoor space. Some relevant
statistics for each dataset are presented in Table I.

To benchmark our results against earlier works, we evalu-
ated the performance of InfiniTAM [9] and ElasticFusion
[3] on our datasets. We don’t use IMU-aided version of
InfiniTAM in our evaluations, since the software only sup-
ports pose inputs in the form of quaternions obtained from
an external estimator, available for example in a tablet.
Whereas, our system uses raw inertial measurements, i.e, the
linear accelerations and angular velocities from the IMU. Our
framework is shown to perform comparable or better for all
the above datasets as compared with the benchmarks.

A. Scalability

Our efficient Memory Management module enables scal-
able mapping over longer sequences. To monitor the GPU
memory footprint, we collected a minute long dataset and
plotted the memory consumption. Fig. 7 shows the memory
usage on the GPU (in MB) as the camera explores new areas.
As can be seen, in the implementation without the memory
management, more and more voxels had to be allocated as
new area is explored. As a result very soon the memory
usage hits the maximum limit of 1200 MB. Whereas, in
the implementation with proposed memory management
algorithm, the memory footprint has always stayed within
300-600 MB and only used half of the allocated memory
despite more new area being covered. This proves that our
technique can scale very well to longer sequences covering
large areas, while maintaining a bounded memory footprint
on the GPU.

Consequently, our system is capable of generating highly
dense meshes of about 20m × 10m × 3m large indoor spaces
at resolution of 1cm resulting in a mesh containing several
tens of millions of vertices, as shown in Fig. 9b.

B. Timing

Timing results for our SLAM system are shown in Fig. 8.
From our experiments, run time performance is found to be
affected by sensors used, computational platform involved
and also most importantly on the voxel size used. Results for
Simulator and Hand-held rig are computed on a Desktop



Dataset Source Duration # frames Distance covered
(total / end-to-end)

Average speed
(translational / rotational) Volume covered

Loopy Hand-held rig 185 s 2784 42.379 m / 0.808 m 0.1650 m/s / 14.209 ◦/s 149.649 m3

Fast Hand-held rig 29.3 s 427 16.734 m / 0.893 m 0.4392 m/s / 35.484 ◦/s 77.469 m3

Long† Hand-held rig 84 s 1246 50.4 m / 6.2 m 0.4054 m/s / 20.895 ◦/s 549.828 m3

RotorS Simulator 58.8 s 1762 20.731 m / 0.512 m 0.3002 m/s / 14.235 ◦/s 1214.933 m3

UAV DJI M100 55.4 s 3308 9.46 m / 0.84 m 0.1732 m/s / 12.131 ◦/s 56.549 m3

TABLE I: Dataset statistics. Note the variation in platform used, camera speeds, sequence length and volume covered.
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Fig. 7: GPU memory usage with and without Memory
Management. Note that, with memory management, less than
half the allocated GPU memory is used at all times.

PC running Ubuntu 14.04 with an Intel i7 PCU running
at 3.4GHz, 39GB RAM and an NVIDIA GeForce GTX
980 graphics card with 4GB memory. The difference in
timing between these two setups was due to the fact that
Simulator has a wide-angle depth camera which resulted
in more voxels being viewed in each frame, thus resulting
in higher computation times. Results for Onboard and On-
board+ are computed on a Jetson TX1 embedded platform
running Ubuntu 14.04, with RGB-D data available at 60Hz.
For the Onboard setup, running the original system as is
doesn’t achieve desired run-time efficiency. So, to improve
computational speeds, in Onboard+ setup, we suppress the
heavy visualization routines used in the GUI, since raycasting
is one of the most expensive processes in the pipeline. Only
the visible part of scene is raycasted for performing camera
to model tracking. We further speed-up the performance by
skipping ICP routine every few frames and only employ
odometry and color based tracking for every frame. In
this setup we only raycast the scene when ICP routine is
performed otherwise just forward render the raycast from
previous iteration. Having a modular tracking pipeline allows
us to easily implement such changes. By saving time on
raycasting and also the ICP routine, we achieve real-time
performance at frame rates close to 60Hz. Moreover, no sig-
nificant deterioration - both quantitatively and qualitatively
- of tracking and mesh accuracy are observed due to these
changes.

C. Camera Tracking

To evaluate the performance of camera tracking pipeline,
we compared the estimated camera poses against the ground
truth trajectories. Calibration between sensors is performed
using Kalibr [20]. Calibration between visual and motion
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Fig. 8: Average per-frame timing results on different plat-
forms with varying voxel sizes.

capture marker frame along with alignment of their respec-
tive inertial reference frames is done offline using batch es-
timation as described in [21]. Tracking results for individual
datasets are provided in Table II. As it can be noted, the
tracking accuracy only barely degrades despite translational
and rotational velocities in Fast dataset being more than two
times higher as compared with Loopy dataset.

D. Meshing

To measure the accuracy of reconstructed meshes, we
compared our optimized 3D meshes against groundtruth
obtained from a high precision laser scanner. CloudCompare
[22] is used to register the point clouds and evaluate align-
ment errors. Some sample meshes produced from various
datasets can be seen in Fig. 9. Mesh accuracy results for indi-
vidual datasets are provided in Table II, showing our superior
reconstruction quality compared to benchmark methods.

VII. CONCLUSION

In this work, we described a framework for GPU ac-
celerated dense SLAM using RGB-D+Inertial sensors with
robust camera tracking and globally optimal map generation,
that can scale well to large areas. We particularly showed
satisfactory performance for different datasets involving vari-
ations in camera motions and size of the mapped area, both
in simulation and real-world scenarios. Our results have
shown that a robust camera tracking pipeline is crucial for
using dense SLAM methods on agile robotic platforms such
as a quadrotor UAV. Moreover, we have proven that its
possible to achieve highly accurate mapping at very high
frame rates even on computationally constrained platforms.
In future work, we plan to test our framework for much
longer sequences spanning even larger areas.



(a) Loopy dataset (b) Long dataset (c) RotorS dataset

Fig. 9: Meshing results from various datasets.

Dataset Method Tracking accuracy Mesh accuracy (mean ± std) Avg. time per frame (On PC)

Loopy
Ours (1cm voxel)

ElasticFusion
InfiniTAM

11.93 cm
12.16 cm

29.17 cm?

24.06 ± 14.97 mm
25.79 ± 32.45 mm
41.16 ± 25.83 mm

28.18 ms (with GUI)
28.33 (Core) + 11.03 (GUI) ms

23.61 ms (with GUI)

Fast
Ours (1cm voxel)

ElasticFusion
InfiniTAM

12.14 cm
23.88 cm?

84.41 cm?

24.98 ± 15.46 mm
50.42 ± 64.70 mm

highly distorted

33.54 ms (with GUI)
24.92 (Core) + 9.44 (GUI) ms

28.10 ms (with GUI)

RotorS
Ours (1cm voxel)

ElasticFusion
InfiniTAM

3.08 cm
3.37 cm

3.21 cm?

5.25 ± 4.99 mm†
6.41 ± 4.80 mm
5.34 ± 5.23 mm

36.01 ms (with GUI)
28.42 (Core) + 13.32 (GUI) ms

30.46 ms (with GUI)

TABLE II: Tracking, reconstruction and timing results for some datasets. Compared to benchmark results, our results show
significant improvement in accuracy at comparable frame rates. (?- Tracking fails halfway through the dataset. † - While
our system achieved better mean, ElasticFusion achieved better standard deviation in RMS error. )
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